首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spore characteristics of wood-inhabiting fungi suggest that wind is their predominant dispersal vector. However, since they are restricted to ephemeral habitats, colonizing new patches should benefit from dispersal by animals with similar habitat preferences because the directed, resource-searching movement of animals increases the likelihood of reaching suitable habitats. Here we determine which fungal guilds are carried by wood-inhabiting beetles and what influences beetle-associated fungal communities. High-throughput sequencing identified >1800 fungal taxa from beetle communities that emerged from 64 experimental logs. Beetle-associated fungi included mutualistic, decomposing, pathogenic and mycorrhizal fungi; decomposers were the most diverse. Partial-procrustes analysis revealed that the total beetle-associated community and mutualists were correlated (p ≤ 0.05) with beetle community composition and decomposers were marginally correlated (p ≤ 0.10) with beetle community composition. All three groups were marginally correlated with the total fungal communities that inhabit the dead wood. Our results show that beetles carry a broad range of wood-inhabiting fungi and beetle-associated fungal communities are determined by environmental factors and the vectoring beetle community and to some degree by the fungal source community. This suggests that wood-inhabiting beetles contribute to fungal dispersal, including directed dispersal, which could affect fungal community assembly and ecosystem processes like wood decomposition.  相似文献   

2.
We investigated which of the following environmental factors: the number of years since the windthrow of the tree (the age of dead wood), the phytocenosis (the type of forest community), altitude, exposure, wood hardness and the spatial scale of forest disturbances (small gaps with a few fallen spruces vs large-area windthrows) contributed to the diversity and abundance of lichens inhabiting the exposed wood of windthrown spruce trees in Polish Western Carpathian forests. Both Shannon H index and sum of coverage coefficients rose with increasing age of the wood, levelling off after 11–14 y (diversity) and 14–17 y (abundance). This factor appeared to be the most important for this group of lichens, but the significant positive impact of large-area windthrows on the lichen abundance was also demonstrated by using a GLM model. The age of the wood we precisely determined on the basis of data on Norway spruce mortality collected annually in permanent plots of the Gorce National Park since 2000. Using the Shore durometer we linked the course of the wood-inhabiting lichen succession with wood decay more precisely than before. The largest number of species was associated with medium hard wood, i.e., 51 < x ≤ 80 on the Shore scale. Based on the NMDS analysis, we distinguished four age groups of logs, differing in lichen abundance and defined by the dominance of distinctive species. A large number of usually corticolous lichen species used the wood of windthrown spruce logs as an optional habitat to survive large-scale, post-hurricane forest disturbances.  相似文献   

3.
Species turnover of monkey beetle (Scarabaeidae: Hopliini) assemblages along disturbance and environmental gradients was examined at three sites within the arid, winter rainfall Namaqualand region of the succulent Karoo, South Africa. At each site two study plots with comparable vegetation and soils but contrasting management (grazing) histories were chosen, the disturbed sites having fewer perennial shrubs and generally more annuals and bare ground. Beetles collected using coloured pan-traps showed a consistently higher abundance in disturbed sites. Lepithrix, Denticnema and Heterochelus had higher numbers in disturbed plots, while Peritrichia numbers were lower in disturbed areas. Measures of species richness and diversity were consistently higher in the undisturbed sites. Distinctive assemblages of monkey beetles and plants occurred at each site. A high compositional turnover ( diversity) was recorded for both monkey beetles and plants along a rainfall gradient; between-site diversity values ranged from 0.7 to 0.8 (out of a maximum of 1.0). Species turnover of beetles was higher between the disturbed sites along the environmental gradient than the corresponding undisturbed sites. The high monkey beetle species turnover is probably linked to the high plant species turnover, a distinctive feature of succulent Karoo landscapes. Monkey beetles are useful indicators of overgrazing disturbance in Namaqualand, as their pollinator guilds are apparently disrupted by overgrazing. A shift away from perennial and bulb pollinator guilds towards those favouring weedy annuals was observed in disturbed areas. The consequences to ecosystem processes due to the effects of disturbance on monkey beetle communities and the role of monkey beetles as indicators of disturbance is discussed, as well as the implications of disturbance on monkey beetle pollination guilds.  相似文献   

4.
Summary We examined the impact of pocket gopher disturbances on the dynamics of a shortgrass prairie community. Through their burrowing activity, pocket gophers (Thomomys bottae) cast up mounds of soil which both kill existing vegetation and create sites for colonization by competitively-inferior plant species. Three major patterns emerge from these disturbances: First, we show that 10 of the most common herbaceous perennial dicots benefit from pocket gopher disturbance; that is, a greater proportion of seedlings are found in the open space created by pocket gopher disturbance than would be expected based on the availability of disturbed habitat. Additionally, these seedlings exhibited higher growth rates than adjacent seedlings of the same species growing in undisturbed habitat. Second, we tested two predictions of the Intermediate Disturbance Hypothesis and found that species diversity was greatest for plots characterized by disturbances of intermediate age. However, we did not detect significant differences in diversity between plots characterized by intermediate and high levels of disturbance, indicating that many species are adapted to or at least tolerant of high levels of disturbance. Third, we noted that the abundance of grasses decreased with increasing disturbance, while the abundance of dicots increased with increasing disturbance.  相似文献   

5.
Factors related to diversity of decomposer fungi in tropical forests   总被引:8,自引:0,他引:8  
Recent studies suggest that host-preferences are common among certain groups of tropical fungal decomposers but rare in others, and sometimes occur where we least expect them. Host preferences among microfungi and ascomycetes that decompose leaf litter are common but usually involve differences in relative frequencies more than presence/absence, so their diversity may be loosely correlated with species richness of host trees. Strong host-specificity appears to be rare among wood decomposer fungi, whereas characteristics of their substrata and habitat are very important for this group. Anthropogenic disturbance predisposed a tropical forest to subsequent hurricane damage, and the resulting direct and indirect effects on host diversity and habitat heterogeneity were reflected in the decomposer fungal community more than sixty years after the original disturbance. While species richness of dictyostelid slime molds and functional diversity of their bacterial prey increased with disturbance, the more diverse microfungi and ascomycetes were apparently negatively affected by disturbance.  相似文献   

6.
Windstorms, bark beetle outbreaks and fires are important natural disturbances in coniferous forests worldwide. Wind-thrown trees promote biodiversity and restoration within production forests, but also cause large economic losses due to bark beetle infestation and accelerated fungal decomposition. Such damaged trees are often removed by salvage logging, which leads to decreased biodiversity and thus increasingly evokes discussions between economists and ecologists about appropriate strategies. To reveal the reasons behind species loss after salvage logging, we used a functional approach based on four habitat-related ecological traits and focused on saproxylic beetles. We predicted that salvage logging would decrease functional diversity (measured as effect sizes of mean pairwise distances using null models) as well as mean values of beetle body size, wood diameter niche and canopy cover niche, but would increase decay stage niche. As expected, salvage logging caused a decrease in species richness, but led to an increase in functional diversity by altering the species composition from habitat-filtered assemblages toward random assemblages. Even though salvage logging removes tree trunks, the most negative effects were found for small and heliophilous species and for species specialized on wood of small diameter. Our results suggested that salvage logging disrupts the natural assembly process on windthrown trees and that negative ecological impacts are caused more by microclimate alteration of the dead-wood objects than by loss of resource amount. These insights underline the power of functional approaches to detect ecosystem responses to anthropogenic disturbance and form a basis for management decisions in conservation. To mitigate negative effects on saproxylic beetle diversity after windthrows, we recommend preserving single windthrown trees or at least their tops with exposed branches during salvage logging. Such an extension of the green-tree retention approach to windthrown trees will preserve natural succession and associated communities of disturbed spruce forests.  相似文献   

7.
茂县土地岭植被恢复过程中物种多样性动态特征   总被引:20,自引:3,他引:17  
植被恢复是退化生态系统重建的重要途径,植被恢复过程物种多样性的变化反映了植被的恢复程度.通过群落调查和多样性分析,研究了岷江上游土地岭植被恢复过程中群落物种多样性特征.结果表明: 恢复过程中6类不同类型群落分别表现其对于不同环境特征、干扰及更新方式等的响应;森林是较灌丛更适合当地环境状况的植被类型;人工恢复无干扰和轻度干扰群落的多样性相对较高,是较好的恢复模式.重度干扰使得1年生植物与地下芽植物比例增加,其它口食性较好的多年生草本减少.较强的干扰是群落无法更新、长期处于灌丛阶段且多样性较低的重要原因.本地区人工恢复群落在更新进程和多样性维持上优于自然更新群落,种植华山松加速了本地区植被演替进程.建议以适合恢复区域的多种恢复配置方式进行造林,并避免较强干扰,可以加速群落演替进程并保持恢复群落较高的物种丰富度与多样性.  相似文献   

8.
Habitat loss and fragmentation can negatively impact the persistence of dispersal-limited lichen species with narrow niches. Rapid change in microclimate due to canopy dieback exposes species to additional stressors that may limit their capacity to survive and colonize. We studied the importance of old trees as micro-refuges and microclimate stability in maintaining lichen survival and diversity. The study was situated in mountain Norway spruce (Picea abies) forests of the Gorgany Mountains of the Ukrainian Carpathian mountain belt. Lichens were collected on 13 circular study plots (1000 m2). Dendrochronological methods were used to reconstruct age structure and maximum disturbance event history. A linear mixed effects model and general additive models were used to explain patterns and variability of lichens based on stand age and disturbance history for each plot. Tree age was the strongest variable influencing lichen diversity and composition. Recent (<80 years ago) severely disturbed plots were colonized only by the most common species, however, old trees (>200 years old) that survived the disturbances served as microrefuges for the habitat-specialized and/or dispersal limited species, thus epiphytic lichen biodiversity was markedly higher on those plots in comparison to plots without any old trees. Most species were able to survive microclimatic change after disturbances, or recolonize disturbed patches from surrounding old-growth forests. We concluded that the survival of old trees after disturbances could maintain and/or recover large portions of epiphytic lichen biodiversity even in altered microclimates.  相似文献   

9.
Dead wood is an important habitat feature for lichens in forest ecosystems, but little is known about how many and which lichens are dependent on dead wood. We reviewed substrate use by epiphytic lichens in the combined floras of Fennoscandia and the Pacific Northwest of North America based on literature and herbarium data and analyzed substrate affinity relative to life form, reproductive mode and major phylogenetic group within the floras. A total of 550 (43%) of the 1271 epiphytic species in the combined floras use wood, and 132 species (10%) are obligately associated with dead wood in one or both regions. Obligate and facultative wood‐dwelling guilds in the two floras were strongly similar in terms of internal guild structure in each region, but differ somewhat in species composition, while the bark‐dwelling guild differs strongly in both. Most obligate dead wood users are sexually reproducing crustose lichens. The largest numbers of species are associated with forest structural features such as logs and snags that have been greatly reduced by forest practices. Conservation of lichens inhabiting wood requires greater attention to crustose lichen species and the development of conservation strategies that look beyond numbers and volumes of dead wood and consider biologically meaningful dead wood structure types.  相似文献   

10.
To study the importance of insects in the establishment of fungi, stem sections of Norway spruce were placed in mature managed conifer forests in Southeast Sweden. After one or two flying seasons, fungal communities in wood, bark and bark beetle samples were analysed by molecular methods. Excluding insects from stem sections with cages had a significant effect on the fungal community. Small wounds made in the bark to mimic insect activity did not significantly alter the fungal community, indicating that physical holes as such only played a minor role for the insect interaction with the fungal community development. Several white rot species were significantly more abundant in stem sections with insect access and were also detected from bark beetle samples. This suggests that insects do contribute to the development of early fungal succession on dead wood, but that creating small disturbances in the bark only have a minor contributing effect.  相似文献   

11.
The diversity in different groups of obligate saproxylic beetles was related to ecological variables at three levels of spatial scale in mature spruce-dominated forest. The variables were connected to: (i) decaying wood, (ii) wood-inhabiting fungi, (iii) the level of disturbance, (iv) landscape ecology, and (v) vegetational structure. Several strong relationships were found at medium (1 km2) and large scales (4 km2), while only weak relationships were found at a small scale (0.16 ha; 1 ha=104 m2). This may be explained by the local variations in habitat parameters and the high mobilities of many beetle species. Factors connected to decaying wood and wood-inhabiting fungi were clearly the most important factors at all scale levels. In particular, the variables diversity of dead tree parts, number of dead trees of large diameter and number of polypore fungi species increased the species richness of many groups and increased the abundance of many species. Eight species were absent below a certain density of decaying wood per 1 or 4 km2. Former extensive cutting was a negative factor at large scale, probably because of decreasing recolonization with increasing distance to the source habitats. Thinning reduced the diversity of species associated with birch. The development of guidelines favouring the diversity of saproxylic beetles are discussed below.  相似文献   

12.
The arbuscular mycorrhizal (AM) symbiosis is a key plant–microbe interaction in sustainable functioning ecosystems. Increasing anthropogenic disturbance poses a threat to AM fungal communities worldwide, but there is little empirical evidence about its potential negative consequences. In this global study, we sequenced AM fungal DNA in soil samples collected from pairs of natural (undisturbed) and anthropogenic (disturbed) plots in two ecosystem types (10 naturally wooded and six naturally unwooded ecosystems). We found that ecosystem type had stronger directional effects than anthropogenic disturbance on AM fungal alpha and beta diversity. However, disturbance increased alpha and beta diversity at sites where natural diversity was low and decreased diversity at sites where natural diversity was high. Cultured AM fungal taxa were more prevalent in anthropogenic than natural plots, probably due to their efficient colonization strategies and ability to recover from disturbance. We conclude that anthropogenic disturbance does not have a consistent directional effect on AM fungal diversity; rather, disturbance equalizes levels of diversity at large scales and causes changes in community functional structure.  相似文献   

13.
As self‐supporting and long‐living symbiotic structures, lichens provide a habitat for many other organisms beside the traditionally considered lichen symbionts—the myco‐ and the photobionts. The lichen‐inhabiting fungi either develop diagnostic phenotypes or occur asymptomatically. Because the degree of specificity towards the lichen host is poorly known, we studied the diversity of these fungi among neighbouring lichens on rocks in an alpine habitat. Using a sequencing metabarcoding approach, we show that lichen mycobiomes clearly reflect the overlap of multiple ecological sets of taxa, which differ in their trophic association with lichen thalli. The lack of specificity to the lichen mycobiome is further supported by the lack of community structure observed using clustering and ordination methods. The communities encountered across samples largely result from the subsampling of a shared species pool, in which we identify three major ecological components: (i) a generalist environmental pool, (ii) a lichenicolous/endolichenic pool and (iii) a pool of transient species. These taxa majorly belong to the fungal classes Dothideomycetes, Eurotiomycetes and Tremellomycetes with close relatives in adjacent ecological niches. We found no significant evidence that the phenotypically recognized lichenicolous fungi influence the occurrence of the other asymptomatic fungi in the host thalli. We claim that lichens work as suboptimal habitats or as a complex spore and mycelium bank, which modulate and allow the regeneration of local fungal communities. By performing an approach that minimizes ambiguities in the taxonomic assignments of fungi, we present how lichen mycobiomes are also suitable targets for improving bioinformatic analyses of fungal metabarcoding.  相似文献   

14.
Endophytic fungal communities in leaves of deciduous trees usually undergo pronounced seasonal changes. We hypothesised that such compositional shifts are predominantly caused by annuality of the leaves and therefore less pronounced in fungi colonising the perennial substrates bark and corticolous lichens. To test this hypothesis, thalli of the foliose lichen-forming fungal species Xanthoria parietina and Physconia distorta, along with the adjacent bark, were sampled during spring and autumn at two sides of a single tree in southern Germany. Analysis of clone libraries by restriction fragment length polymorphism (RFLP) revealed 588 singleton and 221 non-singleton RFLP-types of non-lichenised fungi. The communities differed significantly between host lichen species. Season and exposure had only a significant impact when the two factors were combined in the analysis. Accordingly, bark- and/or the lichen-associated fungal communities change throughout the year’s course, a finding that rejects the initial hypothesis. This survey revealed valuable information for future broad-based studies, by indicating that a relatively high diversity of non-lichenised fungi is associated with corticolous lichen thalli and the adjacent bark. Furthermore, the structure of non-lichenised fungal assemblages associated with corticolous lichen communities obviously depends at least on the following factors: ‘lichen species’, ‘exposure’, and ‘season’.  相似文献   

15.
The Uholka-Shyrokyi Luh area of the Carpathian Biosphere Reserve is considered the largest and the most valuable primeval beech forest in Europe for biodiversity conservation. To study the impact of different topographic and forest-stand variables on epiphytic lichen diversity a total of 294 systematically distributed sampling plots were surveyed and 198 epiphytic lichen species recorded in this forest landscape, which has an uneven-aged structure. The obtained data were analysed using a non-metric multidimensional ordination and a generalized linear model. The epiphytic lichen species density at the plot level was mainly influenced by altitude and forest-stand variables. These variables are related to both the light availability i.e. canopy closure, and the habitat diversity, i.e. the developmental stage of the forest stands and the mean stem diameter. We found that lichen species density on plots with a relatively open canopy was significantly higher than on plots with a fairly loose or closed canopy structure. The late developmental stage of forest stands, which is characterized by a large number of old trees with rough and creviced bark, had a strong positive effect on lichen species density. In the Uholka-Shyrokyi Luh primeval forest the mean stem diameter of beech trees significantly correlated with lichen species density per plot. Similar trends in the species diversity of nationally red-listed lichens were revealed. Epiphytic lichens with a high conservation value nationally and internationally were found to be rather abundant in the Uholka-Shyrokyi Luh area, which shows its international importance for the conservation of forest-bound lichens.  相似文献   

16.
1.?Priority effects have been hypothesized to have long-lasting impact on community structure in natural ecosystems. Long-term studies of priority effects in natural ecosystems are however sparse, especially in terrestrial ecosystems. 2.?Wood decay is a slow process involving a high diversity of insect and fungus species. Species interactions that drive change in communities of insects and fungi during wood decay are poorly understood because of a lack of sufficient long-term studies. 3.?In this paper, we followed the colonization and succession of wood-living insects and fungi on cut trees during 15 years, from tree death and onwards, in a boreal forest landscape. We test the long-term priority effects hypothesis that the identity and abundance of species that colonize first affect the colonization success of later-arriving species. We also hypothesize that species interact in both facilitative and inhibitory ways, which ultimately affect habitat quality for a red-listed late-succession beetle species. 4.?Possible causal associations between species were explored by path analysis. The results indicate that one bark beetle species, Hylurgops palliatus, and one wood-borer species, Monochamus sutor, which colonized the wood during the first year after cutting, influenced the occurrence of a rare, wood-living beetle, Peltis grossa, that started to emerge from the stumps about 10 years later. The positive effects of Hylurgops palliatus and negative effects of M. sutor were largely mediated through the wood-decaying fungus species Fomitopsis pinicola. 5.?The study shows that variable priority effects may have long-lasting impact on community assembly in decaying wood. The study also exemplifies new possibilities for managing populations of threatened species by exploring links between early, well-understood species guilds and late, more poorly understood species guilds.  相似文献   

17.
Acridid communities are sensitive to anthropogenic disturbance and the community structure of acridids plays vital role in functioning the forest ecosystem. They are potentially useful bioindicators for conservation planning and habitat disturbances. Acridid assemblages of three different habitat types based on degree of disturbance as follows five natural sites, five moderately disturbed sites and five highly disturbed sites in Chaupahari forest, West Bengal, India were studied. Diversity, abundance, equitability and species richness of acridid were observed in respect to undisturbed and disturbed habitats. The species richness and diversity of the sites tracked the intensity of disturbance, the greatest value being associated with the natural site followed by the moderately disturbed site and highly disturbed site. The highest species richness and diversity index indicate the suitable habitat for acridid population. Statistical analysis infers that different species show different behavior and the sites are also different in relation to different habitat types.  相似文献   

18.
Anthropogenic disturbances have serious impacts on ecosystems across the world. Understanding the effects of disturbance on woodlands, especially in regions where local people depend on these natural resources, is essential for sustainable natural resource management and biodiversity conservation. In this study, we evaluated the effects of anthropogenic disturbance, specifically selective logging of Brachystegia floribunda, on woodlands by comparing species composition, species diversity and functional diversity of woody plants between disturbed and undisturbed woodlands. We combined species data and functional trait data for leaves, fruits and other traits related to resource and disturbance responses to calculate functional indices (functional richness, evenness and divergence) and community‐weighted means of each trait. Shifts in taxonomic species composition were analysed using nonmetric multi‐dimensional scaling. Species composition differed significantly between disturbed and undisturbed woodlands. Tree density was greater in disturbed woodlands, whereas evenness, functional evenness and functional divergence were greater in undisturbed woodlands. In terms of forest cover, selective logging of B. floribunda appeared to have little impact on Miombo woodlands, but some shifts in functional traits, such as the shift from a deciduous to evergreen phenology, may increase the vulnerability of these ecosystems to environmental change, especially drought.  相似文献   

19.
In the extant lemur communities of Madagascar the number of lemur species increases with increasing number of tree species. In forests with few tree species lemurs use patches with higher number of tree species than average. However, in forest plots with high number of tree species, lemurs stay in places with lower number of tree species than average. At low tree species diversity a minimum number of different tree species seems to be required within the animals' home range to assure year-round food availability. At high tree species diversity tree species essential for survival might be diluted by resources which are of no use for lemurs, thus increasing energetic expenses for traveling between suitable patches. According to the present analyses, structural diversity is of subordinate importance to the number of tree species as a correlate of lemur species richness. Within limits of disturbance intensity and on a small geographic scale, disturbances increase forest productivity. Lemurs reach higher species numbers and population densities in slightly disturbed areas compared with undisturbed sites. This peaked curve of the number of lemur species over disturbance, however, may not only be a consequence of “resource dilution” in undisturbed sites and higher food abundance in slightly disturbed areas, but also a consequence of selective extinction of lemur species which were unable to cope with the disturbance regime exaggerated by human interference over the last few hundred or thousand years.  相似文献   

20.
In order to investigate the diversity of wood-inhabiting aphyllophoroid basidiomycetes in Swiss forests, 86 plots of 50 m 2 were established. They harboured a total of 3339 samples of woody debris, classified according to three categories (coarse, fine, and very fine woody debris), yielding 238 species of wood-inhabiting fungi. The selected sites cover the main forest types of Switzerland and various degrees of management intensity. A multiple linear regression analysis showed that substrate variation, i.e. differences in the quality of dead wood, including volume, age, degree of decomposition and host tree species, are the most important factors influencing diversity of wood-inhabiting fungi. In addition, a Principle Coordinate Analysis highlighted differences in the fungal communities in the different forest types. The greatest fungal species richness is found on thermophilic deciduous tree and woody shrub species. Fine and very fine woody debris, even present in intensively managed forests, often serve as important refuges for many species. Forests with a recent management intervention were found to be either species poor or species rich. Possible reasons for these differences may lay in forest size and landscape fragmentation, the distance to the nearest species pool or microclimatic factors. In Switzerland intensively managed forests harbour significantly less wood-inhabiting, aphyllophoroid fungi than non-managed or extensively managed forests. This is the case in both deciduous forests and in conifer forests. However, occasionally intensively managed forest will also harbour rare and endangered species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号