首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stable isotope ratios of nitrogen were measured in the mysid,Neomysis intermedia, together with various biogenic materials in a eutrophic lake, Lake Kasumigaura, in Japan throughout a year of 1984/85. The mysid, particulate organic matter (POM, mostly phytoplankton), and zooplankton showed a clear seasonal change in 15N with high values in spring and fall, but the surface bottom mud did not. A year to year variation as well as seasonal change in 15N was found in the mysid. The annual averages of 15N of each material collected in 1984/85 are as follows: surface bottom mud, 6.3 (range: 5.7–6.9); POM, 7.9 (5.8–11.8); large sized mysid, 11.6 (7.7–14.3); zooplankton, 12.5 (10.0–16.4); prawn, 13.2 (9.9–15.4); goby, 15.1 (13.8–16.7). The degree of15N enrichment by the mysid was determined as 3.2 by the laboratory rearing experiments. The apparent parallel relationship between the POM and the mysid in the temporal patterns of 15N with about 3 difference suggests the POM (mostly phytoplankton) as a possible food source ofN. intermedia in this lake through the year.  相似文献   

2.
On-line instantaneous carbon isotope discrimination was measured in conjunction with net uptake of CO2 in leaves of exposed and shaded plants of the C3-CAM intermediate Clusia minor growing under natural conditions in Trinidad. At the end of the rainy season (late January-early February, 1992) C3 photosynthesis predominated although exposed leaves recaptured a small proportion of respiratory CO2 at night for the synthesis of malic acid. Citric acid was the major organic acid accumulated by exposed leaves at this time with a citric: malic acid ratio of 11:1. Values of instantaneous discrimination () in exposed leaves during the wet season rose from 17.1 shortly after dawn to 22.7 around mid-day just before stomata closed, suggesting that most CO2 was fixed by Rubisco at this time. During the late afternoon, instantaneous declined from 22.2 to 17, probably reflecting the limited contribution from PEPc activity and an increase in diffusional resistance to CO2 in exposed leaves. Shaded leaves showed no CAM activity and CO2 uptake proceeded throughout the day in the wet season. The decrease in instantaneous from 27 in the morning to 19.2 in the late afternoon was therefore entirely due to diffusional limitation. Leaves sampled in the dry season (mid-March, 1992) had by now induced full CAM activity with both malic and citric acids accumulated overnight and stomata closed for 4–5 h over the middle of the day. Values of instantaneous measured over the first 3 h after dawn (6.4–9.1) indicated that C4 carboxylation dominated CO2 uptake for most of the morning when rates of photosynthesis were maximal, implying that under natural conditions, the down regulation of PEPc in phase II occurs much more slowly than laboratory-based studies have suggested. The contribution from C3 carboxylation to CO2 uptake during phase II was most marked in leaves which accumulated lower quantities of organic acids overnight. In exposed leaves, measurements of instantaneous during the late afternoon illustrated the transition from C3 to C4 carboxylation with stomata remaining open during the transition from dusk into the dark period. Uptake of CO2 by shaded leaves during the late afternoon however appeared to be predominantly limited by decreased stomatal conductance. The short-term measurements of instantaneous were subsequently integrated over 24 h in order to predict the leaf carbon isotope ratios (p) and to compare this with the p measured for leaf organic material. Whilst there was close agreement between predicted and measured p for plants sampled in the wet season, during the dry season the predicted carbon isotope ratios were 5–9 higher than the measured isotope ratios. During the annual cycle of leaf growth most carbon was fixed via the C3 pathway although CAM clearly plays an important role in maintaining photochemical integrity in the dry season.  相似文献   

3.
Summary The ratio of deuterium to hydrogen (expressed as D) in hydrogen released as water during the combustion of dried plant material was examined. The D value (metabolic hydrogen) determined on plant materials grown under controlled conditions is correlated with pathways of photosynthetic carbon metabolism. C3 plants show mean D values of-132 for shoots and -117 for roots; C4 plants show mean D values of -91 for shoots and-77 for roots and CAM plants a D value of-75 for roots and shoots. The difference between the D value of shoot material from C3 and C4 plants was confirmed in species growing under a range of glasshouse conditions. This difference in D value between C3 and C4 species does not appear to be due to differences in the D value (tissue water) in the plants as a result of physical fractionation of hydrogen isotopes during transpiration. In C3 and C4 plants the hydrogen isotope discrimination is in the same direction as the carbon isotope discrimination and factors contributing to the difference in D values are discussed. In CAM plants grown in the laboratory or collected from the field D values range from-75 to +50 and are correlated with 13C values. When deprived of water, the D value (metabolic hydrogen) in both soluble and insoluble material in leaves of Kalanchoe daigremontiana Hamet et Perr., becomes less negative. These changes may reflect the deuterium enrichment of tissue water during transpiration, or in field conditions, may reflect the different D value of available water in areas of increasing aridity. Whatever the origin of the variable D value in CAM plants, this parameter may be a useful index of the water relations of these plants under natural conditions.  相似文献   

4.
The study deals with a comparative analysis of the relative abundances of the carbon isotopes 12C and 13C in the metabolites and biomass of the Burkholderia sp. BS3702 and Pseudomonas putida BS202-p strains capable of utilizing aliphatic (n-hexadecane) and aromatic (naphthalene) hydrocarbons as sources of carbon and energy. The isotope compositions of the carbon dioxide, biomass, and exometabolites produced during the growth of Burkholderia sp. BS3702 on n-hexadecane (13C = –44.6 ± 0.2) were characterized by the values of 13CCO 2 = –50.2 ± 0.4, 13Cbiom = –46.6 ± 0.4, and 13Cexo = –41.5 ± 0.4, respectively. The isotope compositions of the carbon dioxide, biomass, and exometabolites produced during the growth of the same bacterial strain on naphthalene (13C = –21 ± 0.4) were characterized by the isotope effects 13CCO 2 = –24.1 ± 0.4, 13Cbiom = –19.2 ± 0.4, and 13Cexo = –19.1 ± 0.4, respectively. The possibility of using the isotope composition of metabolic carbon dioxide for the rapid monitoring of the microbial degradation of petroleum hydrocarbons in the environment is discussed.  相似文献   

5.
The influence of salinity on the performance of the sibling species Tisbe holothuriae and T. battagliai in pure and mixed cultures was studied, using laboratory stocks adapted to 32 for over 175 generations. Cohort studies show that T. holothuriae has higher growth rates (Ro and r) at 32, T. battagliai at 20 The latter's life cycle is much less affected by the difference in salinity. De Wit replacement series were used to study competitive interactions. Without water renewal, T. holothuriae eliminates its sibling species in less than 2 generations, apparently through chemical interference. With water renewal, i.e. when exploitation competition becomes relatively more important, T. holothuriae still proves superior at 27 but the two species are competitively almost equal at 20. The two species cooccur in situ during autumn, but their differential predominance at different sites is not explained by the effect of salinity.  相似文献   

6.
Summary Stable carbon isotope ratio analysis is a powerful technique in tracing ecosystem carbon flows, especially those between primary and secondary producers. The distinctive 13C/12C ratios of plant species tend to pass along the food chain with little further fractionation, hence the stable carbon isotope composition of an animal is an important clue to what it has eaten. We compared the stable carbon isotope composition of plants and insects in an old field in Georgia. Of the dominant plants in the old field, 6 were C4 species and had 13C1 values of-10.9 to 12.9, and 7 were C3 species with values of-27.3 to-29.1. Insects known to be feeding on only one plant species had 13C values within 1 of the isotopic composition of the plant. Wasp larvae parasitizing two insect species had 13C values 1.3 and 1.7 higher than that of the food plant. A variety of insects of unknown food habits collected on monospecific and mixed species plant stands in the old field had 13C values ranging from-10.1 to-30.0. Two species of leafhopper and a grasshopper had isotopic compositions within the range of C4 plant values; a tortoise beetle and a lace bug had isotopic compositions within C3 plant values. Other insects had intermediate 13C values, suggesting a mixed diet composed of both C3 and C4 plants. The carbon isotopic ratios of field collected insects appears to be a useful qualitative indicator of their feeding preference.  相似文献   

7.
13C discrimination during CO2 assimilation by the terrestrial biosphere   总被引:1,自引:0,他引:1  
Estimates of the extent of the discrimination against13CO2 during photosynthesis (A) on a global basis were made using gridded data sets of temperature, precipitation, elevation, humidity and vegetation type. Stomatal responses to leaf-to-air vapour mole fraction difference (D, leaf-to-air vapour pressure difference divided by atmospheric pressure) were first determined by a literature review and by assuming that stomatal behaviour results in the optimisation of plant water use in relation to carbon gain. Using monthly time steps, modelled stomatal responses toD were used to calculate the ratio of stomatal cavity to ambient CO2 mole fractions and then, in association with leaf internal conductances, to calculate A. Weighted according to gross primary productivity (GPP, annual net CO2 asimilation per unit ground area), estimated A for C3 biomes ranged from 12.9 for xerophytic woods and shrub to 19.6 for cool/cold deciduous forest, with an average value from C3 plants of 17.8. This is slightly less than the commonly used values of 18–20. For C4 plants the average modelled discrimination was 3.6, again slightly less than would be calculated from C4 plant dry matter carbon isotopic composition (yielding around 5). From our model we estimate that, on a global basis, 21% of GPP is by C4 plants and for the terrestrial biosphere as a whole we calculate an average isotope discrimination during photosynthesis of 14.8. There are large variations in A across the globe, the largest of which are associated with the precence or absence of C4 plants. Due to longitudinal variations in A, there are problems in using latitudinally averaged terrestrial carbon isotope discriminations to calculate the ratio of net oceanic to net terrestrial carbon fluxes.  相似文献   

8.
Drought induces oxidative stress in pea plants   总被引:40,自引:4,他引:36  
Pea (Pisum sativum L. cv. Frilene) plants subjected to drought (leaf water potential of -1.3 MPa) showed major reductions in photosynthesis (78), transpiration (83), and glycolate oxidase (EC 1.1.3.1) activity (44), and minor reductions (18) in the contents of chlorophyll a, carotenoids, and soluble protein. Water stress also led to pronounced decreases (72–85) in the activities of catalase (EC 1.11.1.6), dehydroascorbate reductase (EC 1.8.5.1), and glutathione reductase (EC 1.6.4.2), but resulted in the increase (32–42) of non-specific peroxidase (EC 1.11.1.7) and superoxide dismutase (EC 1.15.1.1). Ascorbate peroxidase (EC 1.11.1.11) and monodehydroascorbate reductase (EC 1.6.5.4) activities decreased only by 15 and the two enzymes acted in a cyclic manner to remove H2O2, which did not accumulate in stressed leaves. Drought had no effect on the levels of ascorbate and oxidized glutathione in leaves, but caused a 25 decrease in the content of reduced glutathione and a 67 increase in that of vitamin E. In leaves, average concentrations of catalytic Fe, i.e. Fe capable of catalyzing free-radical generation by redox cycling, were estimated as 0.7 to 7 M (well-watered plants, depending on age) and 16 M (water-stressed plants); those of catalytic Cu were 4.5 M and 18 M, respectively. Oxidation of lipids and proteins from leaves was enhanced two- to threefold under stress conditions and both processes were highly correlated. Fenton systems composed of the purported concentrations of ascorbate, H2O2, and catalytic metal ions in leaves produced hydroxyl radicals, peroxidized membrane lipids, and oxidized leaf proteins. It is proposed that augmented levels and decompartmentation of catalytic metals occurring during water stress are responsible for the oxidative damage observed in vivo.Abbreviations and Symbol ASC ascorbate - DW dry weight - DHA dehydroascorbate - GSH reduced glutathione - GSSG oxidized glutathione - MDHA monodehydroascorbate (ascorbate free radical) - SOD Superoxide dismutase - wa water potential We thank Dr. R. Picorel (E.E. de Aula Dei, CSIC) for allowing us access to HPLC equipment. J.F.M., 1.1., and S.F. were the recipients of predoctoral fellowships from the Comunidades Autónomas de Aragon, Pais Vasco, and Navarra, respectively. R.V.K. thanks the U.S. Department of Agriculture (grant 91-37305-6705) for travel support. This work was financed by grants from the Comisión Interministerial de Ciencia y Tecnología (AGR-91-0857-C02 to P.A. and M.B.) and the Dirección General de Investigación Científica y Técnica (PB92-0058 to M.B) of Spain.  相似文献   

9.
Summary During high salinity stress, -alanine accumulates to high levels in the sea anemone,Bunodosoma cavernata. Following a salinity increase from 26 to 40 -alanine increased 28-fold from 1.5 to 41.9 moles/g dry weight. Both whole animal studies and experiments with cell free homogenates indicate that under high salinity conditions an increase in the rate of -alanine synthesis from aspartic acid as well as a decrease in the rate of -alanine oxidation are responsible for the observed accumulation of -alanine. The rate of aspartic acid decarboxylation to -alanine is about 3 times greater in anemones acclimated to 40 than for those in normal salinity water (26). -alanine oxidation to CO2 and acetyl-CoA proceeds 2.5 to 3 times slower in high salinity adaptedB. cavernata than in those acclimated to normal salinity. There is always a rapid degradation of uracil to -alanine, but this does not change with salinity.Abbreviations CASF cold acid soluble fraction - FAA free amino acids - MES 2(N-morpholino) ethane sulfonic acid - NPS ninhydrin positive substances - PCA perchloric acid - TCA trichloroacetic acid  相似文献   

10.
The relative contribution of autotrophic carbon sources (aquatic macrophytes, flooded forest, phytoplankton) for heterotrophic bacterioplankton was evaluated in a floodplain lake of the Central Amazon. Stable carbon isotopes (13C) were used as tracers. Values of 13C of different autotrophic sources were compared to those of dissolved organic carbon (DOC) and those of bacterially produced CO2.The percentage of carbon derived from C4 macrophytes for bacterially produced CO2 was the highest, on average 89%. The average 13C value of CO2 from bacterial respiration was –18.5 ± 3.3. Considering a fractionation of CO2 of 3 by bacterial respiration, 13C value was –15.5, near C4 macrophyte 13C value (–13.1).The average value of total DOC 13C was –26.8 ± 2.4. The percentage of C4 macrophytes carbon for total DOC was on average 17%. Considering that bacteria consume mainly carbon from macrophytes, the dominance of C3 plants for total DOC probably reflects a faster consumption of the former source, rather than a major contribution of the latter source.Heterotrophic bacterioplankton in the floodplain may be an important link in the aquatic food web, transferring the carbon from C4 macrophytes to the consumers.  相似文献   

11.
Schmidt  Olaf  Scrimgeour  Charles M. 《Plant and Soil》2001,229(2):197-202
The use of 13C isotope tracer techniques in terrestrial ecology has been restricted by the technical requirements and high costs associated with the production of 13C enriched plant material by 13CO2 release in labelling chambers. We describe a novel, simple and relatively inexpensive method for the small-scale production of 13C and 15N labelled plant material. The method is based on foliar feeding of plants with a urea solution (97 atom% 13C, 2 atom% 15N) by daily misting. Maize was grown in a greenhouse in a compost–soil mixture and enclosed in clear polythene bags between urea applications. Final enrichment in 27 d old maize shoots was 211 13C (1.34 atom% 13C) and 434 15N (0.52 atom% 15N). Enrichments of hot-water extractable fractions (289 13C, 469 15N) were only slightly higher than those observed in plant bulk material, which suggests that daily urea applications ensured fairly uniform labelling of different biochemical fractions and plant tissues. Recovery of applied excess 13C and 15N in plant shoots was 22% and 42%, respectively. Roots were less enriched (21 13C and 277 15N), but no attempts were made to recover roots quantitatively.  相似文献   

12.
Zusammenfassung 1. Es wurde untersucht, welchen Einfluß kurzfristige und langfristige Salzgehaltsveränderungen auf verschiedene Standortformen der RotalgeDelesseria sanguinea und der BraunalgeFucus serratus haben. Als Kriterium des Lebenszustandes wurde die photosynthetische Leistung gewählt. Die Algen wurden folgenden Salzgehaltskonzentrationen ausgesetzt: 0, 5, 10, 15, 20, 30, 40, 50 S.2. Die Versuche ergaben, daß kurzfristige Konzentrationsveränderungen (30 min) — sowohl Erniedrigung als auch Erhöhung des Salzgehaltes — die photosynthetische Leistung stimulieren. Ein langfristiger Aufenthalt (24 Std) unter den veränderten Bedingungen bewirkt, sofern diese innerhalb der Toleranzgrenzen der Algen liegen, einen Ausgleich der anfänglichen Stimulation. Außerhalb der Toleranzgrenzen liegende Konzentrationen rufen nach der Stimulation eine Leistungsdepression hervor. Bei Rückübertragung in den Ausgangssalzgehalt sind die Depressionen teilweise reversibel.3. Im hypotonischen Milieu verhalten sich die Delesserien der verschiedenen Standorte (Helgoland, Kattegat, Kieler Bucht) gleich: in 5 S treten starke Depressionen auf. Nordsee-Delesserien sind im hypertonischen Milieu weniger empfindlich, sie zeigen noch bei 50 S eine gesteigerte photosynthetische Leistung. In diesem Bereich sind die Ostseeformen schon schwer geschädigt. Am empfindlichsten gegenüber allen Konzentrationsänderungen ist die BrackwasserformDelesseria sanguinea formalanceolata aus der Kieler Bucht.4.Fucus serratus aus dem Litoral von Helgoland zeichnet sich im Gegensatz zu der submers lebenden Form der Ostsee, die sich ähnlich wieDelesseria verhält, in allen untersuchten Konzentrationsbereichen durch eine unveränderte photosynthetische Leistung aus. Die beiden Standortformen vonFucus entsprechen gemäß der Einteilung vonMontfort (1931) dem resistenten Typ und dem Stimulations-Depressionstyp.
On the influence of salinity on photosynthetic performance of various ecotypes ofDelesseria sanguinea andFucus serratus
The phaeophyceanF. serratus and the rhodophyceanD. sanguinea came from the North Sea (30 S) and the Baltic Sea (15 S). The activity of photosynthesis was taken as a criterion of algae vitality. Experiments were made in salinity concentrations of 0, 5, 10, 15, 20, 30, 40 and 50 S. Thirty-minute exposures to sub- or supranormal salinities stimulate photosynthesis. Within their physiological salinity ranges the algae assume normal photosynthetic rates within 24 hours. Extreme salinities cause a reduction in photosynthetic activity; this reduction mostly disappears, however, after re-transfer into normal salinity conditions. At 5 S all test individuals ofDelesseria from different locations exhibit a reduction of photosynthetic rates. At 50 SDelesseria from the North Sea still show increased activity, whileDelesseria from the Baltic are already severely damaged. The brackish-water formD. sanguinea (formalanceolata) is most sensitive to salinity variations. The photosynthetic activity ofF. serratus from Helgoland does not vary in all salinities employed. The range of test salinities corresponds to that of the habitat in the littoral zone, where high salinities occur during air exposure, and low salinities, during rainfall. By contrast, inF. serratus from the Baltic Sea occurring only in the sublittoral zone, photosynthetic rates are similarly affected by salinity as inDelesseria.
  相似文献   

13.
Summary The total carbon 13C values of two C3 halophytes,Salicornia europaea L. ssp.rubra (Nels.) Breitung andPuccinellia muttalliana (Schultes) Hitch., native to inland saline areas of Alberta, Canada, were determined for plants grown under controlled conditions of supplied NaCl in the nutrient solution, and for plants found growing in the field. Field specimens were collected along line transects which ran from areas of high salinity to areas of low salinity across the pattern of species zonation. The 13C value of the two species seemed to reflect the water potential of the soil ( w soil ) as measured arbitrarily at a depth of 10 cm, becoming less negative as the w soil decreased. Over a linear distance of 5.55 m,S. europaea spp.rubra showed a shift of +5.3 as the w soil went from-25x102 kPa to a minimum of-73x102 kPa. ForP. nuttalliana, the 13C values differed by 3.4 over a distance of 7.45 m where the maximum difference in w soil was 12.7x102 kPa. However, 13C values ofP. nuttalliana only roughly reflected the spatial trends in w soil at the time of collection. In the growth chamber, the 13C value ofS. europaea ssp.rubra changed by a maximum of +8.0 when the solute potential of the nutrient solution ( w soil ) was dropped from-0.25x102 kPa to-64.25x102 kPa; while the 13C value ofP. nuttalliana changed by a maximum of +10.8 when the w soil was dropped from-0.25x102 kPa to-40.25x102 kPa. Linear regression analyses indicated that the 13C values of both species were strongly correlated (P<0.2%) with w soil . The observed shifts in 12C may represent changes in the mode of photosynthetic CO2 fixation. However, a number of other explanations, some of which are discussed in the text, are also possible. A proper ecophysiological interpretation of such shifts in 13C values of C3 plants awaits a better understanding of the isotope fractionation mechanisms involved.  相似文献   

14.
Intra- and inter-tree variations in 13C/12C ratios were studied within a single clone plantation of 20-year-old Sitka spruce, some of which were treated with mist simulating acidic cloud water. For groups of trees of similar height and the same treatment, sampled at the same whorl height, 13C values for current year needles showed variations (1 SD) of between 0.2 and 0.7. The variations reflect the seasonally averaged influences, on intercellular CO2 concentrations, of slight variations in the microhabitat within a group. For a typical intra-group variation of 0.4 one may be able to distinguish between groups whose mean intercellular CO2 concentrations differ by only 8 ppm. Acid misting resulted in a lowering of 13C values by c. 0.7 (significant at the P0.05 level). This reflects higher intercellular CO2 concentrations for acid misted trees, which can be interpreted in terms of their having assimilation rates c. 10% lower than those of control trees, and might explain the observed reduction in stem growth for acid-misted trees. Without careful attention to sampling strategy, however, these small inter-tree 13C variations can be easily masked by the much larger intra-tree variations with height. Large gradients of increasing needle 13C with height, of c. 0.5 m-1, were observed in two untreated trees of different total height. The gradient was similar for both trees so, though 13C values of both trees were identical close to their leaders (–27), the taller tree displayed much lower values close to the ground (–31). The gradients are believed to reflect lower light levels close to the ground, rather than the accumulation of respired CO2 in the atmosphere. The different height response of stems versus needles, reflected by an increase in 13Cstems13Cneedles with height (for cellulose), is discussed in terms of stem photosynthetic recapture of internally respired CO2.  相似文献   

15.
Stable isotopes (13C, D) and radiocarbon weremeasured in methane bubbles emitted from rice paddies and swamps in southernThailand. Methane emitted from the Thai rice paddies was enriched in13C (mean 13C; –51.5 ±7.1 and–56.5 ± 4.6 for mineral soil and peat soil paddies,respectively)relative to the reported mean value of methane from temperate rice paddies(– 63 ± 5). Large seasonal variation was observed in13C(32) in the rice paddies, whereas variationinD was much more smaller (20), indicating that variation in13C is due mainly to changes in methane production pathways.Values of 13C were lower in swamps (–66.1 ±5.1)than in rice paddies. The calculated contribution of acetate fermentation from13C value was greater in rice paddies (mineral soils:62–81%, peat soils: 57–73%) than in swamps (27–42%). Din methane from Thai rice paddies (–324± 7 (n=46)) isrelativelyhigher than those from 14 stations in Japanese rice paddies ranging from–362 ± 5 (Mito: n=2) to –322 ± 8(Okinawa: n=3), due tohigher D in floodwaters. 14C content in methane produced fromThai rice paddies (127±1 pMC) show higher 14Cactivity compared with previous work in paddy fields and those from Thai swamps(110±2 pMC).  相似文献   

16.
The isotopic composition ofmethyl bromide (CH3Br) has been suggestedto be a potentially useful tracer forconstraining the global CH3Br budget. Inorder to determine the carbon isotopiccomposition of CH3Br emitted from the mostsignificant anthropogenic application(pre-plant fumigation) we directly measured the13C of CH3Br released duringcommercial fumigation. We also measured theisotopic fractionation associated withdegradation in agricultural soil under typicalfield fumigation conditions. The isotopiccomposition of CH3Br collected in soilseveral hours after injection of the fumigantwas –44.5 and this value increased to –20.7over the following three days. The mean kineticisotope effect (KIE) associated withdegradation of CH3Br in agricultural soil(12) was smaller than the reported value formethylotrophic bacterial strain IMB-1, isolatedfrom previously fumigated agricultural soil,but was similar to methylotrophic bacterialstrain CC495, isolated from a pristine forestlitter zone. Using this fractionationassociated with the degradation of CH3Brin agricultural soil and the mean13C of the industriallymanufactured CH3Br (–54.4), we calculatethat the agricultural soil fumigation sourcehas a carbon isotope signature that ranges from–52.8 to –42.0. Roughly 65% ofindustrially manufactured CH3Br is usedfor field fumigations. The remaining 35% isused for structural and post-harvestfumigations with a minor amount used duringindustrial chemical manufacturing. Assumingthat the structural and post-harvest fumigationsources of CH3Br are emitted withoutsubstantial fractionation, we calculate thatthe 13C of anthropogenicallyemitted CH3Br ranges from –53.2 to –47.5.  相似文献   

17.
T. H. E. Heaton 《Oecologia》1987,74(2):236-246
Summary Data are presented for the 15N/14N ratios of 140 indigenous terrestrial plants from a wide variety of natural habitats in South Africa and Namibia. Over much of the area, from high-rainfall mountains to arid deserts, the 15N values of plants lie typically in the range -1 to +6; with no evident differences between C3 plants and C4 grasses. There is a slight correlation between 15N and aridity, but this is less marked than the correlation between the 15N values of animal bones and aridity. At coastal or saline sites, however, the mean 15N values for plants are higher than those at nearby inland or non-saline sites-e.g.: arid Namib coast (10 higher than inland Namib); wet Natal beach (5 higher than inland Natal); saline soils 500 km from coast (4 higher than non-saline soils). High values were also found at one site where there were no marked coastal or saline influences. These environmental effects on the isotopic composition of plants will extend upwards to the animals and humans they support. They therefore have important consequences for the use of nitrogen isotope data in the study of the dietary habits and trophic structures of modern and prehistoric communities.  相似文献   

18.
Zusammenfassung Enchytraeus albidus aus dem Anwurf mariner Algen an der Kieler Förde (Ostsee) erträgt als Nahrung die folgenden dort vorkommenden Pflanzen (Reihenfolge mit abnehmender Verträglichkeit): Fucus — Grünalgen —Seegras (Zostera) — Rotalgen (Delesseria). Diese Reihenfolge gilt für Nahrungsaufnahme, Fortpflanzungsrate und Überlebensdauer.Mit zunehmender Fäulnis des Nahrungssubstrates steigt die Zahl der Tiere, die aus ihm fliehen. Ihre Anzahl wird außerdem bestimmt durch den Salzgehalt des Substrates: Von 15–45 ist sie proportional der Substratsalinität. Bei 60 ist die Aktivität der Tiere bereits stark eingeschränkt.Bei Fucus-Nahrung ertragen auf Sand gehaltene Tiere eine Salinität von 60–70 länger als 4 Wochen, auf Filtrierpapier dagegen nur 50 für durchschnittlich 1 Woche. Die obere Fortpflanzungsgrenze liegt bei 40 Salzgehalt im Substrat. Bei 5 werden die meisten Kokons abgelegt. Die Sterblichkeit im Kokon ist bei 15 am geringsten. Auf den Substratsalinitäten 0–15 ist die Entwicklungsdauer im Kokon signifikant kürzer als auf Substraten von 30 und 40. Enchytraeus hat sich als Rückwanderer zum Meer mit einer sekundär erweiterten Poikilosmotie an den neuen Lebensraum angepaßt. Er kann eine Binnenkonzentration entsprechend etwa 72 längere Zeit ertragen. Auf niedrigen Salzgehalten besitzt er eine ausgeprägte Hypertonieregulation.
Summary Enchytraeus albidus was fed with Fucus, green algae, Zostera marina and Delesseria. Judging from absorption of food, rate of reproduction and duration of life, the animals preferred the plants in the sequence given above.As the putrefaction of a Fucus substrate advances, more and more enchytraeids leave it. A changing salinity of the substrate also influences the number of emigrating worms, increasing it from 15–45, but decreasing it towards 60. Fed with Fucus E. albidus tolerates a salinity of 60–70 on sand for more than 4 weeks, on filter paper only 50 for about one week.Reproduction is possible at salinities up to 40. Cocoon production is most frequent at 5. The mortality of young worms within the cocoons is lowest at 15. The incubation period is significantly shorter at salinities of 0–15 than at 30 and 40.As a terrestrial immigrant to the seashore Enchytraeus albidus secondarily enlarged its range of poikilosmosis, tolerating a concentration of 72 in its coelomic fluid for some time. At low salinities it maintains a remarkable degree of hyperosmosis.
  相似文献   

19.
The organic-matter carbon isotope discrimination () of lichens with a wide range of photobiont and/or cyanobiont associations was used to determine the presence or absence of a carbon-concentrating mechanism (CCM). Two groups were identified within the lichens with green algal photobionts. One group was characterised by low, more C4-like values ( < 15), the other by higher, more C3-like values ( > 18). Tri-partite lichens (lichens with a green alga as the primary photobiont and cyanobacteria within internal or external cephalodia) occurred in both groups. All lichens with cyanobacterial photobionts had low values ( < 15). The activity of the CCM, organic-matter values, on-line values and gas-exchange characteristics correlated with the presence of a pyrenoid in the algal chloroplast. Consistent with previous findings, lichens with Trebouxia as the primary photobiont possessed an active CCM while those containing Coccomyxa did not. Organic values for lichens with Stichococcus as the photobiont varied between 11 and 28. The lichen genera Endocarpon and Dermatocarpon (Stichococcus + pyrenoid) had C4-like organic values ( = 11 to 16.5) whereas the genus Chaenotheca (Stichococcus — pyrenoid) was characterised by high C3-like values ( = 22 to 28), unless it associated with Trebouxia ( = 16). Gas-exchange measurements demonstrated that Dermatocarpon had an affinity for CO2 comparable to those species which possessed the CCM, with K0.5 = 200–215 1 · 1–1, compensation point () = 45–48 l · l–1, compared with K0.5 = 195 1 · 1–1, = 441 · 1–1 for Trebouxioid lichens. Furthermore, lichens with Stichococcus as their photobiont released a small pool (24.2 ± 1.9 to 34.2 ± 2.5 nmol · mg–1 Chl) of inorganic carbon similar to that released by Trebouxioid lichens [CCM present, dissolved inorganic carbon (DIC) pool size = 51.0 ± 2.8 nmol · mg–1 Chl]. Lichens with Trentepohlia as photobiont did not possess an active CCM, with high C3-like organic values ( = 18 to 23). In particular, Roccella phycopsis had very high on-line values ( = 30 to 33), a low affinity for CO2 (K0.5 = 400 1 · 1–1, = 120 1 · –1) and a negligible DIC pool. These responses were comparable to those from lichens with Coccomyxa as the primary photobiont with Nostoc in cephalodia (organic = 17 to 25, on-line = 16 to 21, k0.5 = 388 1 · 1–1, = 85 1 · 1–1, DIC pool size = 8.5 ± 2.4 nmol · mg–1 Chl). The relative importance of refixation of respiratory CO2 and variations in source isotope signature were considered to account for any variation between on-line and organic . Organic was also measured for species of Anthocerotae and Hepaticae which contain pyrenoids and/or Nostoc enclosed within the thallus. The results of this screening showed that the pyrenoid is correlated with low, more C4-like organic values ( = 7 to 12 for members of the Anthocerotae with a pyrenoid compared with = 17 to 28 for the Hepaticae with and without Nostoc in vesicles) and confirms that the pyrenoid plays a fundamental role in the functioning of the CCM in microalgal photobionts and some bryophytes.Abbreviations and Symbols CCM carbon-concentrating mechanism - DIC dissolved inorganic carbon (CO2 + HCO 3 - + CO 3 2- ) - DW dry weight - K0.5 external concentration of CO2 at which half-maximal rates of CO2 assimilation are reached - photobiont photosynthetic organism present in the lichen - Rubisco ribulose-1,5-bisphosphate carboxylase-oxygenase - carbon isotope discrimination (%) - 13C carbon isotope ratio (%) This research was funded by Natural Environment Research Council grant no. GR3/8313. The authors would also like to thank Dr. B. Coppins, Royal Botanic Gardens Edinburgh and Prof. A. Roy Perry, National Museum of Wales, for access to herbarium collections, Dr. T. Booth for confocal microscopy work and Dr. A.J. Richards, University of Newcastle upon Tyne and Dr. O.L. Gilbert, University of Sheffield for identifying bryophytes and lichens respectively. E.S. would particularly like to thank Dr. M. Broadmeadow, The Forestry Authority, Farnham, Surrey, and Cristina Máguas, Universidade de Lisboa, for their advice and expertise at the beginning of the project.  相似文献   

20.
The link between climate-driven river runoff and sole fishery yields observed in the Gulf of Lions (NW Mediterranean) was analysed using carbon- and nitrogen stable isotopes along the flatfish food webs. Off the Rhone River, the main terrestrial (river POM) and marine (seawater POM) sources of carbon differed in 13C (–26.11 and –22.36, respectively). Surface sediment and suspended POM in plume water exhibited low 13C (–24.38 and –24.70, respectively) that differed more from the seawater POM than from river POM, demonstrating the dominance of terrestrial material in those carbon pools. Benthic invertebrates showed a wide range in 15N (mean 4.30 to 9.77) and 13C (mean –23.81 to –18.47), suggesting different trophic levels, diets and organic sources. Among the macroinvertebrates, the surface (mean 13C –23.71) and subsurface (mean 13C –23.81) deposit-feeding polychaetes were particularly 13C depleted, indicating that their carbon was mainly derived from terrestrial material. In flatfish, 15N (mean 9.42 to 10.93) and 13C (mean –19.95 to –17.69) varied among species, indicating differences in food source and terrestrial POM use. A significant negative correlation was observed between the percentage by weight of polychaetes in the diet and the 13C of flatfish white muscle. Solea solea (the main polychaete feeder) had the lowest mean 13C, Arnoglossus laterna and Buglossidium luteum (crustacean, mollusc and polychaete feeders) had intermediate values, and Solea impar (mollusc feeder) and Citharus linguatula (crustacean and fish feeder) exhibited the highest 13C. Two different benthic food webs were thus identified off the Rhone River, one based on marine planktonic carbon and the other on the terrestrial POM carried by the river. Deposit-feeding polychaetes were responsible for the main transfer of terrestrial POM to upper trophic levels, linking sole population dynamics to river runoff fluctuations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号