首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lactogenic hormone prolactin (PRL) has been known to affect Ca(2+) and electrolyte transport in the intestinal epithelium. In the present study we analyzed ion transport in mouse proximal and distal colon, and acute changes induced by PRL. In the proximal colon, carbachol activated a Ca(2+) dependent Cl(-) secretion that was sensitive to DIDS and NFA. In the distal colon, both ATP and carbachol activated K(+) secretion. Ca(2+) -activated KCl transport in proximal and distal colon was inhibited by PRL (200 ng/ml), while amiloride sensitive Na(+) absorption and cAMP induced Cl(-) secretion remained unaffected. Luminal large conductance Ca(2+) -activated K(+) (BK) channels were largely responsible for Ca(2+) -activated K(+) secretion in the distal colon, and basolateral BK channels supported Ca(2+) -activated Cl(-) secretion in the proximal colon. Ca(2+) chelating by BAPTA-AM attenuated effects of carbachol and abolished effects of PRL. Both inhibition of PI3 kinase with wortmannin and blockage of MAP kinases with SB 203580 or U 0126, interfered with the acute inhibitory effect of PRL on ion transport, while blocking of Jak/Stat kinases with AG 490 was without effects. PRL attenuated the increase in intracellular Ca(2+) that was caused by stimulation of isolated colonic crypts with carbachol. Thus PRL inhibits Ca(2+) dependent Cl(-) and K(+) secretion by interfering with intracellular Ca(2+) signaling and probably by activating PI3 kinase and MAP kinase pathways.  相似文献   

2.
Rectal biopsies from cystic fibrosis (CF) patients show defective cAMP-activated Cl(-) secretion and an inverse response of the short-circuit current (I(sc)) toward stimulation with carbachol (CCh). Alternative Cl(-) channels are found in airway epithelia and have been attributed to residual Cl(-) secretion in CF colon. The aim of the present study was to investigate ion conductances causing reversed I(sc) upon cholinergic stimulation. Furthermore, the putative role of an alternative Ca(2+)-dependent Cl(-) conductance in human distal colon was examined. Cholinergic ion secretion was assessed in the absence and presence of cAMP-dependent stimulation. Transepithelial voltage and I(sc) were measured in rectal biopsies from non-CF and CF individuals by means of a perfused micro-Ussing chamber. Under baseline conditions, CCh induced a positive I(sc) in CF rectal biopsies but caused a negative I(sc) in non-CF subjects. The CCh-induced negative I(sc) in non-CF biopsies was gradually reversed to a positive response by incubating the biopsies in indomethacin. The positive I(sc) was significantly enhanced in CF and was caused by activation of a luminal K(+) conductance, as shown by the use of the K(+) channel blockers Ba(2+) and tetraethylammonium. Moreover, a cAMP-dependent luminal K(+) conductance was detected in CF individuals. We conclude that the cystic fibrosis transmembrane conductance regulator is the predominant Cl(-) channel in human distal colon. Unlike human airways, no evidence was found for an alternative Cl(-) conductance in native tissues from CF patients. Furthermore, we demonstrated that both Ca(2+)- and cAMP-dependent K(+) secretion are present in human distal colon, which are unmasked in rectal biopsies from CF patients.  相似文献   

3.
Distal lung epithelial cells isolated from fetal rats were cultured (48 h) on permeable supports so that transepithelial ion transport could be quantified electrometrically. Unstimulated cells generated a short-circuit current (I(sc)) that was inhibited (~80%) by apical amiloride. The current is thus due, predominantly, to the absorption of Na(+) from the apical solution. Isoprenaline increased the amiloride-sensitive I(sc) about twofold. Experiments in which apical membrane Na(+) currents were monitored in basolaterally permeabilized cells showed that this was accompanied by a rise in apical Na(+) conductance (G(Na(+))). Isoprenaline also increased apical Cl- conductance (G(Cl-)) by activating an anion channel species sensitive to glibenclamide but unaffected by 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS). The isoprenaline-evoked changes in G(Na(+)) and G(Cl(minus sign)) could account for the changes in I(sc) observed in intact cells. Glibenclamide had no effect upon the isoprenaline-evoked stimulation of I(sc) or G(Na(+)) demonstrating that the rise in G(Cl-) is not essential to the stimulation of Na(+) transport.  相似文献   

4.
The present study was undertaken to identify and determine the mechanism of noncholinergic pathways for the induction of liquid secretion across airway epithelium. Excised porcine bronchi secreted substantial and significant quantities of liquid when exposed to acetylcholine, substance P, or forskolin but not to isoproterenol, norepinephrine, or phenylephrine. Bumetanide, an inhibitor of Na(+)-K(+)-2Cl(-) cotransport, reduced the liquid secretion response to substance P by 69%. Approximately two-thirds of bumetanide-insensitive liquid secretion was blocked by dimethylamiloride (DMA), a Na(+)/H(+) exchange inhibitor. Substance P responses were preserved in airways after surface epithelium removal, suggesting that secreted liquid originated from submucosal glands. The anion channel blockers diphenylamine-2-carboxylate (DPC) and 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) inhibited >90% of substance P-induced liquid secretion, whereas DIDS had no effect. DMA, DPC, and NPPB had greater inhibitory effects on net HCO(3)(-) secretion than on liquid secretion. Although preserved relative to liquid secretion, net HCO(3)(-) secretion was reduced by 39% in the presence of bumetanide. We conclude that substance P induces liquid secretion from bronchial submucosal glands of pigs through active transport of Cl(-) and HCO(3)(-). The pattern of responses to secretion agonists and antagonists suggests that the cystic fibrosis transmembrane conductance regulator mediates this process.  相似文献   

5.
6.
The effect of baicalein on mucosal ion transport in the rat distal colon was investigated in Ussing chambers. Mucosal addition of baicalein (1-100 microM) elicited a concentration-dependent short-circuit current (I(sc)) response. The increase in I(sc) was mainly due to Cl(-) secretion. The presence of mucosal indomethacin (10 microM) significantly reduced both the basal and subsequent baicalein-evoked I(sc) responses. The baicalein-induced I(sc) were inhibited by mucosal application of diphenylamine-2-carboxylic acid (100 microM) and glibenclamide (500 microM) and basolateral application of chromanol 293B (30 microM), a blocker of K(v)LQT1 channels and Ba(2+) ions (5 mM). Treatment of the colonic mucosa with baicalein elicited a threefold increase in cAMP production. Pretreating the colonic mucosa with carbachol (100 microM, serosal) but not thapsigargin (1 microM, both sides) abolished the baicalein-induced I(sc). Addition of baicalein subsequent to forskolin induced a further increase in I(sc). These results indicate that the baicalein evoked Cl(-) secretion across rat colonic mucosa, possibly via a cAMP-dependent pathway. However, the action of baicalein cannot be solely explained by its cAMP-elevating effect. Baicalein may stimulate Cl(-) secretion via a cAMP-independent pathway or have a direct effect on cystic fibrosis transmembrane conductance regulator.  相似文献   

7.
Pancreatic duct epithelial cells (PDEC) mediate the secretion of fluid and electrolytes and are exposed to refluxed bile. In nontransformed cultured dog PDEC, which express many ion transport pathways of PDEC, 1 mM taurodeoxycholic acid (TDCA) stimulated an (125)I(-) efflux inhibited by DIDS and 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) and a (86)Rb(+) efflux inhibited by charybdotoxin. Inhibition by 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA)-AM suggests mediation via increased intracellular Ca(2+) concentration, whereas the absence of lactate dehydrogenase release excludes cellular toxicity. At 1 mM, TDCA stimulated a larger (125)I(-) efflux than glycodeoxycholate; two dihydroxy bile acids, taurochenodeoxycholate and TDCA, were similarly effective, whereas a trihydroxy bile acid, taurocholate, was ineffective. In Ussing chambers, 1 mM serosal or 2 mM luminal TDCA stimulated an I(sc) increase from confluent PDEC monolayers. TDCA also stimulated 1) a short-circuit current (I(sc)) increase from basolaterally permeabilized PDEC subject to a serosal-to-luminal Cl(-) gradient that was inhibited by BAPTA-AM, DIDS, and NPPB and 2) an I(sc) increase from apically permeabilized PDEC subject to a luminal-to-serosal K(+) gradient inhibited by BAPTA-AM and charybdotoxin. Along with the efflux studies, these findings suggest that TDCA interacts directly with PDEC to stimulate Ca(2+)-activated apical Cl(-) channels and basolateral K(+) channels. Monolayer transepithelial resistance was only minimally affected by 1 mM serosal and 2 mM luminal TDCA but decreased after exposure to higher TDCA concentrations (2 mM serosal and 4 mM luminal). A secretory role for bile acids should be considered in pancreatic diseases associated with bile reflux.  相似文献   

8.
We isolated and cultured fetal distal lung epithelial (FDLE) cells from 17- to 19-day rat fetuses and assayed for anion secretion in Ussing chambers. With symmetrical Ringer solutions, basal short-circuit currents (I(sc)) and transepithelial resistances were 7.9 +/- 0.5 microA/cm(2) and 1,018 +/- 73 Omega.cm(2), respectively (means +/- SE; n = 12). Apical amiloride (10 microM) inhibited basal I(sc) by approximately 50%. Subsequent addition of forskolin (10 microM) increased I(sc) from 3.9 +/- 0.63 microA/cm(2) to 7.51 +/- 0.2 microA/cm(2) (n = 12). Basolateral bumetanide (100 microM) decreased forskolin-stimulated I(sc) from 7.51 +/- 0.2 microA/cm(2) to 5.62 +/- 0.53, whereas basolateral 4,4'-dinitrostilbene-2,2'-disulfonate (5 mM), an inhibitor of HCO secretion, blocked the remaining I(sc). Forskolin addition evoked currents of similar fractional magnitudes in symmetrical Cl(-)- or HCO(-)(3)-free solutions; however, no response was seen using HCO(-)(3)- and Cl(-)-free solutions. The forskolin-stimulated I(sc) was inhibited by glibenclamide but not apical DIDS. Glibenclamide also blocked forskolin-induced I(sc) across monolayers having nystatin-permeablized basolateral membranes. Immunolocalization studies were consistent with the expression of cystic fibrosis transmembrane conductance regulator (CFTR) protein in FDLE cells. In aggregate, these findings indicate the presence of cAMP-activated Cl(-) and HCO(-)(3) secretion across rat FDLE cells mediated via CFTR.  相似文献   

9.
Exposure of the giant marine alga Valonia utricularis to acute hypo-osmotic shocks induces a transient increase in turgor pressure and subsequent back-regulation. Separate recording of the electrical properties of tonoplast and plasmalemma together with turgor pressure was performed by using a vacuolar perfusion assembly. Hypo-osmotic turgor pressure regulation was inhibited by external addition of 300 microM of the membrane-permeable ion channel blocker 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB). In the presence of 100 microM NPPB, regulation could only be inhibited by simultaneous external addition of 200 microM 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), a membrane-impermeable inhibitor of Cl(-) transport. At concentrations of about 100 microM, NPPB seems to selectively inhibit Cl(-) transporters in the tonoplast and K(+) transporters in the plasmalemma, whereas 300 microM NPPB inhibits K(+) and Cl(-) transporters in both membranes. Evidence was achieved by measuring the tonoplast and plasmalemma conductances (G(t) and G(p)) in low-Cl(-) and K(+)-free artificial seawater. Inhibition of turgor pressure regulation by 300 microM NPPB was accompanied by about 85% reduction of G(t) and G(p). Vacuolar addition of sulfate, an inhibitor of tonoplast Cl(-) transporters, together with external addition of DIDS and Ba(2+) (an inhibitor of K(+) transporters) also strongly reduced G(p) and G(t) but did not affect hypo-osmotic turgor pressure regulation. These and many other findings suggest that KCl efflux partly occurs via electrically silent transport systems. Candidates are vacuolar entities that are disconnected from the huge and many-folded central vacuole or that become disconnected upon disproportionate swelling of originally interconnected vacuolar entities upon acute hypo-osmotic challenge.  相似文献   

10.
Our previous studies with a line of Madin-Darby canine kidney (MDCK) cells (FL-MDCK) transfected with FLAG-labeled alpha, beta, and gamma subunits of epithelial Na(+) channel (ENaC) showed that, although most of the short-circuit current (I (sc)) was amiloride sensitive (AS-I (sc)), there was also an amiloride-insensitive component (NS-I (sc)) due to Cl(-) secretion (Morris and Schafer, J Gen Physiol 120:71-85, 2002). In the present studies, we observed a progressive increase in NS-I (sc) and a corresponding decrease in AS-I (sc) during experiments. There was a significant negative correlation between AS-I (sc) and NS-I (sc) both in the presence and absence of treatment with cyclic adenosine monophosphate (cAMP). NS-I (sc) could be attributed to both cystic fibrosis transmembrane conductance regulator (CFTR) and a 4, 4'-diisothiocyano-2, 2'-disulfonic acid stilbene (DIDS)-sensitive Ca(2+)-activated Cl(-) channel (CaCC). Continuous perfusion of both sides of the Ussing chamber with fresh rather than recirculated bathing solutions, or addition of hexokinase (6 U/ml), prevented the time-dependent changes and increased AS-I (sc) by 40-60%, with a proportional decrease in NS-I (sc). Addition of 100 muM adenosine triphosphate (ATP) in the presence of luminal amiloride produced a transient four-fold increase in NS-I (sc) that was followed by a sustained increase of 50-60% above the basal level. ATP release from the monolayers, measured by bioluminescence, was found to occur across the apical but not the basolateral membrane, and the apical release was tripled by cAMP treatment. These data show that constitutive apical ATP release, which occurs under both basal and cAMP-stimulated conditions, underlies the time-dependent rise in Cl(-) secretion and the proportional fall in ENaC-mediated Na(+) absorption in FL-MDCK cells. Thus, endogenous ATP release can introduce a significant confounding variable in experiments with this and similar epithelial cells, and it may underlie at least some of the observed interaction between Cl(-) secretion and Na(+) absorption.  相似文献   

11.
The regulation of intracellular pH (pH(i)) in colonocytes of the rat proximal colon has been investigated using the pH-sensitive dye BCECF and compared with the regulation of pH(i) in the colonocytes of the distal colon. The proximal colonocytes in a HEPES-buffered solution had pH(i)=7.24+/-0.04 and removal of extracellular Na(+) lowered pH(i) by 0.24 pH units. Acid-loaded colonocytes by an NH(3)/NH(4)(+) prepulse exhibited a spontaneous recovery that was partially Na(+)-dependent and could be inhibited by ethylisopropylamiloride (EIPA). The Na(+)-dependent recovery rate was enhanced by increasing the extracellular Na(+) concentration and was further stimulated by aldosterone. In an Na(+)- and K(+)-free HEPES-buffered solution, the recovery rate from the acid load was significantly stimulated by addition of K(+) and this K(+)-dependent recovery was partially blocked by ouabain. The intrinsic buffer capacity of proximal colonocytes at physiological pH(i) exhibited a nearly 2-fold higher value than in distal colonocytes. Butyrate induced immediate colonocyte acidification that was smaller in proximal than in distal colonocytes. This acidification was followed by a recovery phase that was both EIPA-sensitive and -insensitive and was similar in both groups of colonocytes. In a HCO(3)(-)/CO(2)-containing solution, pH(i) of the proximal colonocytes was 7.20+/-0.04. Removal of external Cl(-) caused alkalinization that was inhibited by DIDS. The recovery from an alkaline load induced by removal of HCO(3)(-)/CO(2) from the medium was Cl(-)-dependent, Na(+)-independent and blocked by DIDS. Recovery from an acid load in EIPA-containing Na(+)-free HCO(3)(-)/CO(2)-containing solution was accelerated by addition of Na(+). Removal of Cl(-) inhibited the effect of Na(+). In summary, the freshly isolated proximal colonocytes of rats express Na(+)/H(+) exchanger, H(+)/K(+) exchanger ((H(+)-K(+))-ATPase) and Na(+)-dependent Cl(-)/HCO(3)(-) exchanger that contribute to acid extrusion and Na(+)-independent Cl(-)/HCO(3)(-) exchanger contributing to alkali extrusion. All of these are likely involved in the regulation of pH(i) in vivo. Proximal colonocytes are able to maintain a more stable pH(i) than distal cells, which seems to be facilitated by their higher intrinsic buffer capacity.  相似文献   

12.
The effect of nitric oxide (NO) on ion transport in the porcine proximal colon was investigated in slide-stripped epithelia mounted in Ussing chambers. The serosal addition of the NO-donors sodium nitroprusside (SNP, 0.5 mM) or S-nitroso-N-acetylpenicillamine (SNAP, 0.5 mM) induced a steep increase of short-circuit current ( I(sc)). The stimulatory effect of SNP on I(sc) could not be blocked by piroxicam or tetrodotoxin. Potassium channel inhibitors (quinidine, tetraethylammonium or barium) added serosally reduced the SNP- or SNAP-induced increases of I(sc). In chloride-free solutions, the SNP-induced increase of I(sc) was smaller than in chloride-containing solutions. Cl(- )and Na(+) flux measurements demonstrated that SNP diminished Cl(-) and Na(+) net absorption. Pre-treatment with barium was able to block the inhibitory effect of SNP on NaCl net absorption totally. NO effects on paracellular pathways were assessed by measuring flux rates of [(14)C]-D-mannitol. SNP did not change unidirectional D-mannitol flux rates. In conclusion, NO inhibits NaCl net absorption in the proximal colon of pigs by acting directly on the enterocyte. The antiabsorptive (and/or prosecretory) effect of NO depends on a functional basolateral potassium conductance.  相似文献   

13.
1. Electrogenic ion transport was monitored in vitro as the short-circuit current (Isc in μA/cm2) across proximal, mid and distal colon removed from fed and 48 hr-starved Swiss albino mice (Mus muscaris).2. Electrogenic secretion was induced either with serosal bethanechol (muscarinic agonist), DMPP (nicotinic agonist) or dibutyryl-cyclic AMP (DbcAMP). Proximal and distal colon from starved mice showed greater electrogenic secretion in response to bethanechol than those from the fed controls while DMPP and DbcAMP did not activate the hypersecretion.3. In the distal colon, starvation induced a large increase in the basal Isc that was unaffected by mucosal amiloride but was inhibited by tetrodotoxin (TTX) and by diphenylamine-2-carboxylic acid (DPC) unlike the fed basal Isc. Bethanechol activated a biphasic response consisting of a transient decrease in the Isc followed by a sustained increase both of which were significantly greater in the starved than the fed tissue and were inhibited by TTX, DPC and atropine but not hexamethonium.4. Starvation enhances the secretory response to muscarinic activation in proximal and distal colon and induces an increased basal electrogenic (Cl ) secretion in the distal colon stimulated by an augmented neural tone.  相似文献   

14.
In order to assess the role of different classes of K(+) channels in recirculation of K(+) across the basolateral membrane of rabbit distal colon epithelium, the effects of various K(+) channel inhibitors were tested on the activity of single K(+) channels from the basolateral membrane, on macroscopic basolateral K(+) conductance, and on the rate of Na(+) absorption and Cl(-) secretion. In single-channel measurements using the lipid bilayer reconstitution system, high-conductance (236 pS), Ca(2+)-activated K(+) (BK(Ca)) channels were most frequently detected; the second most abundant channel was a low-conductance K(+) channel (31 pS) that exhibited channel rundown. In addition to Ba(2+) and charybdotoxin (ChTX), the BK(Ca) channels were inhibited by quinidine, verapamil and tetraethylammonium (TEA), the latter only when present on the side of the channel from which K(+) flow originates. Macroscopic basolateral K(+) conductance, determined in amphotericin-permeabilised epithelia, was also markedly reduced by quinidine and verapamil, TEA inhibited only from the lumen side, and serosal ChTX was without effect. The chromanol 293B and the sulphonylurea tolbutamide did not affect BK(Ca) channels and had no or only a small inhibitory effect on macroscopic basolateral K(+) conductance. Transepithelial Na(+) absorption was partly inhibited by Ba(2+), quinidine and verapamil, suggesting that BK(Ca) channels are involved in basolateral recirculation of K(+) during Na(+) absorption in rabbit colon. The BK(Ca) channel inhibitors TEA and ChTX did not reduce Na(+) absorption, probably because TEA does not enter intact cells and ChTX is 'knocked off' its extracellular binding site by K(+) outflow from the cell interior. Transepithelial Cl(-) secretion was inhibited completely by Ba(2+) and 293B, partly by quinidine but not by the other K(+) channel blockers, indicating that the small (<3 pS) K(V)LQT1 channels are responsible for basolateral K(+) exit during Cl(-) secretion. Hence different types of K(+) channels mediate basolateral K(+) exit during transepithelial Na(+) and Cl(-) transport.  相似文献   

15.
Phenylalanine deletion at position 508 of the cystic fibrosis transmembrane conductance regulator (DeltaF508-CFTR), the most common mutation in cystic fibrosis (CF), causes a misfolded protein exhibiting partial chloride conductance and impaired trafficking to the plasma membrane. 4-Phenylbutyrate corrects defective DeltaF508-CFTR trafficking in vitro, but is not clinically efficacious. From a panel of short chain fatty acid derivatives, we showed that 2,2-dimethyl-butyrate (ST20) and alpha-methylhydrocinnamic acid (ST7), exhibiting high oral bioavailability and sustained plasma levels, correct the DeltaF508-CFTR defect. Pre-incubation (>or=6h) of CF IB3-1 airway cells with >or=1mM ST7 or ST20 restored the ability of 100microM forskolin to stimulate an (125)I(-) efflux. This efflux was fully inhibited by NPPB, DPC, or glibenclamide, suggesting mediation through CFTR. Partial inhibition by DIDS suggests possible contribution from an additional Cl(-) channel regulated by CFTR. Thus, ST7 and ST20 offer treatment potential for CF caused by the DeltaF508 mutation.  相似文献   

16.
Cystic fibrosis transmembrane conductance regulator (CFTR) is a protein kinase A (PKA) and ATP regulated Cl- channel. Studies using mostly ex vivo systems suggested diphenylamine-2-carboxylate (DPC), 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) and glybenclamide inhibit CFTR Cl- conductance (CFTR GCl). However, the properties of inhibition in a native epithelial membrane have not been well defined. The objective of this study was to determine and compare the inhibitory properties of the aforementioned inhibitors as well as the structurally related anion-exchange blockers (stilbenes) including 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS), 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS) in the microperfused intact and basilaterally permeabilized native sweat duct epithelium. All of these inhibitors blocked CFTR in a dose-dependent manner from the cytoplasmic side of the basilaterally permeabilized ducts, but none of these inhibitors blocked CFTR GCl from the luminal surface. We excluded inhibitor interference with a protein kinase phosphorylation activation process by "irreversibly" thiophosphorylating CFTR prior to inhibitor application. We then activated CFTR GCl by adding 5 mM ATP. At a concentration of 10(-4) M, NPPB, DPC, glybenclamide, and DIDS were equipotent and blocked approximately 50% of irreversibly phosphorylated and ATP-activated CFTR GCl (DIDS = 49 +/- 10% > NPPB = 46 +/- 10% > DPC = 38 +/- 7% > glybenclamide = 34 +/- 5%; values are mean +/- SE expressed as % inhibition from the control). The degree of inhibition may be limited by inhibitor solubility limits, since DIDS, which is soluble to 1 mM concentration, inhibited 85% of CFTR GCl at this concentration. All the inhibitors studied primarily blocked CFTR from the cytoplasmic side and all inhibition appeared to be independent of metabolic and phosphorylation processes.  相似文献   

17.
Iono- and osmoregulation by the blood-feeding hemipteran Rhodnius prolixus involves co-ordinated actions of the upper and lower Malpighian tubules. The upper tubule secretes ions (Na(+), K(+), Cl(-)) and water, whereas the lower tubule reabsorbs K(+) and Cl(-) but not water. The extent of KCl reabsorption by the lower tubule in vitro was monitored by ion-selective microelectrode measurement of Cl(-) and/or K(+) concentration in droplets of fluid secreted by Malpighian tubules isolated under oil. An earlier study proposed that K(+) reabsorption involves an omeprazole-sensitive apical K(+)/H(+) ATPase and Ba(2+)-sensitive basolateral K(+) channels. This paper examines the effects acetazolamide and of compounds that inhibit chloride channels, Cl(-)/HCO(3)(-) exchangers and Na(+)/K(+)/2Cl(-) or K(+)/Cl(-) co-transporters. The results suggest that Cl(-) reabsorption is inhibited by acetazolamide and by Cl(-) channel blockers, including diphenylamine-2-carboxylate(DPC) and 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB), but not by compounds that block Na(+)/K(+)/Cl(-) and K(+)/Cl(-) co-transporters. Measurements of transepithelial potential and basolateral membrane potential during changes in bathing saline chloride concentration indicate the presence of DPC- and NPPB-sensitive chloride channels in the basolateral membrane. A working hypothesis of ion movements during KCl reabsorption proposes that Cl(-) moves from lumen to cell through a stilbene-insensitive Cl(-)/HCO(3)(-) exchanger and then exits the cell through basolateral Cl(-) channels.  相似文献   

18.
The aim of the present study was to investigate whether carbon monoxide (CO) induces changes in ion transport across the distal colon of rats and to study the mechanisms involved. In Ussing chamber experiments, tricarbonyldichlororuthenium(II) dimer (CORM-2), a CO donor, evoked a concentration-dependent increase in short-circuit current (I(sc)). A maximal response was achieved at a concentration of 2.5·10(-4) mol/l. Repeated application of CORM-2 resulted in a pronounced desensitization of the tissue. Anion substitution experiments suggest that a secretion of Cl(-) and HCO(3)(-) underlie the CORM-2-induced current. Glibenclamide, a blocker of the apical cystic fibrosis transmembrane regulator channel, inhibited the I(sc) induced by the CO donor. Similarly, bumetanide, a blocker of the basolateral Na(+)-K(+)-2Cl(-) cotransporter, combined with 4-acetamido-4'-isothiocyanato-stilbene-2,2'-disulfonic acid sodium salt, an inhibitor of the basolateral Cl(-)/HCO(3)(-) exchanger, inhibited the CORM-2-induced I(sc). Membrane permeabilization experiments indicated an activation of basolateral K(+) and apical Cl(-) channels by CORM-2. A partial inhibition by the neurotoxin, tetrodotoxin, suggests the involvement of secretomotor neurons in this response. In imaging experiments at fura-2-loaded colonic crypts, CORM-2 induced an increase of the cytosolic Ca(2+) concentration. This increase depended on the influx of extracellular Ca(2+), but not on the release of Ca(2+) from intracellular stores. Both enzymes for CO production, heme oxygenase I and II, are expressed in the colon as observed immunohistochemically and by RT-PCR. Consequently, endogenous CO might be a physiological modulator of colonic ion transport.  相似文献   

19.
In this study, electrogenic ion transport in the intestine of the Australian common brushtail possum, Trichosurus vulpecula was investigated. In the ileum, a Na(+)-dependent, phloridzin- and amiloride-insensitive short-circuit current ( Isc) was present. Mucosal glucose stimulated a further phloridzin-sensitive, dose-dependent increase in Isc. A Na(+)-dependent, ouabain-sensitive Isc was also present in the caecum and colon. In the proximal and distal colon, amiloride (100 micro mol l(-1), mucosal) inhibited this Isc by 81+/-4% and 65+/-3%, respectively and the Ki for amiloride (approximately 1 micro mol l(-1)) was consistent with the inhibition of a classical epithelial Na(+) channel. In the caecum, 50% of the Isc was inhibited by amiloride (100 micro mol l(-1), mucosal). The amiloride-insensitive Isc in the colon was not due to electrogenic Cl(-) secretion, as serosal bumetanide (100 micro mol l(-1)) had no effect on the Isc. Furthermore, the secretagogues forskolin (10 micro mol l(-1)), carbachol (100 micro mol l(-1)) and dibutyryl-cAMP or dibutyryl-cGMP (100 micro mol l(-1)) did not stimulate electrogenic Cl(-) secretion by the colon. These results indicate that the transport properties of the hindgut of the possum differ significantly from those of eutherian mammals and may be associated with different functions of the hindgut of possums when compared to eutherian mammals.  相似文献   

20.
Xiao GN  Guan YY  He H 《Life sciences》2002,70(19):2233-2241
The effects of Cl- channel blockers on endothelin-1 (ET-1)-induced proliferation of rat aortic vascular smooth muscle cells (VSMC) were examined. We found ET-1 concentration-dependently increased cell count and [3H]-thymidine incorporation into VSMC, with EC50 values of 24.8 and 11.4 nM, respectively. Both nifedipine and SK&F96365 inhibited 10 nM ET-1-induced [3H]-thymidine incorporation into VSMC with the maximal inhibitory concentrations of 1 and 10 microM, respectively. DIDS inhibited 10 nM ET-1-induced increase in cell count and [3H]-thymidine incorporation into VSMC in a concentration-dependent manner, whereas other Cl- channel blockers including IAA-94, NPPB, DPC, SITS and furosemide did not produce these effects. 3 microM DIDS reduced 10 nM ET-1-induced sustained increase in cytoplasmic Ca2+ concentration ([Ca2+]) by 52%. Pretreatment of VSMC with 1 microM nifedipine completely inhibited the DIDS effect on 10 nM ET-1-induced [3H]-thymidine incorporation into VSMC and sustained increase in [Ca2+]i, whereas pretreatment with 10 microM SK&F96365 did not completely block these effects of DIDS. DIDS did not affect ET-1-induced Ca2+ release and 30 mM KCl-induced increase in [Ca2+]i. Our data suggest that DIDS-sensitive Cl- channels mediate VSMC proliferation induced by ET-1 by mechanisms related to membrane depolarization and Ca2+ influx through voltage-dependent Ca2+ channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号