首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Activation of CD25(+)CD4(+) regulatory T cells by oral antigen administration   总被引:36,自引:0,他引:36  
CD25(+)CD4(+) T cells are naturally occurring regulatory T cells that are anergic and have suppressive properties. Although they can be isolated from the spleens of normal mice, there are limited studies on how they can be activated or expanded in vivo. We found that oral administration of OVA to OVA TCR transgenic mice resulted in a modification of the ratio of CD25(+)CD4(+) to CD25(-)CD4(+) cells with an increase of CD25(+)CD4(+) T cells accompanied by a decrease of CD25(-)CD4(+) T cells. The relative increase in CD25(+)CD4(+) T cells persisted for as long as 4 wk post feeding. We also found that CTLA-4 was dominantly expressed in CD25(+)CD4(+) T cells and there was an increase in the percentage of CD25(+)CD4(+) T cells expressing CTLA-4 in OVA-fed mice. In contrast to CD25(-)CD4(+) cells, CD25(+)CD4(+) cells from fed mice proliferated only minimally to OVA or anti-CD3 and secreted IL-10 and elevated levels of TGF-beta(1) following anti-CD3 stimulation. CD25(+)CD4(+) cells from fed mice suppressed the proliferation of CD25(-)CD4(+) T cells in vitro more potently than CD25(+)CD4(+) T cells isolated from unfed mice, and this suppression was partially reversible by IL-10 soluble receptor or TGF-beta soluble receptor and high concentration of anti-CTLA-4. With anti-CD3 stimulation, CD25(+)CD4(+) cells from unfed mice secreted IFN-gamma, whereas CD25(+)CD4(+) cells from fed mice did not. Adoptive transfer of CD25(+)CD4(+) T cells from fed mice suppressed in vivo delayed-type hypersensitivity responses in BALB/c mice. These results demonstrate an Ag-specific in vivo method to activate CD25(+)CD4(+) regulatory T cells and suggest that they may be involved in oral tolerance.  相似文献   

2.
Effector CD8+ T cells mediate inflammation and airway hyper-responsiveness   总被引:3,自引:0,他引:3  
Allergic asthma is a complex syndrome characterized by airway obstruction, airway inflammation and airway hyper-responsiveness (AHR). Using a mouse model of allergen-induced AHR, we previously demonstrated that CD8-deficient mice develop significantly lower AHR, eosinophilic inflammation and interleukin (IL)-13 levels in bronchoalveolar lavage fluid compared with wild-type mice. These responses were restored by adoptive transfer of antigen-primed CD8(+) T cells. Previously, two distinct populations of antigen-experienced CD8(+) T cells, termed effector (T(EFF)) and central memory (T(CM)) cells, have been described. After adoptive transfer into CD8-deficient mice, T(EFF), but not T(CM), cells restored AHR, eosinophilic inflammation and IL-13 levels. T(EFF), but not T(CM), cells accumulated in the lungs, and intracellular cytokine staining showed that the transferred T(EFF) cells were a source of IL-13. These data suggest an important role for effector CD8(+) T cells in the development of AHR and airway inflammation, which may be associated with their Tc2-type cytokine production and their capacity to migrate into the lung.  相似文献   

3.
Overexpression of interleukin (IL)-5 by the airway epithelium in mice using the rat CC10 promoter (NJ.1726 line) leads to several histopathologies characteristic of human asthma, including airway hyperreactivity (AHR). We investigated the contribution of B and T cells, as well as CD4 expression, to the development of AHR in IL-5 transgenic mice. NJ.1726 mice on a T cell or CD4 knockout background, but not on a B cell knockout background, lost intrinsic AHR. These effects occurred without decreases in IL-5 or eosinophils. We further investigated the contribution of alpha(4)-integrin signaling to the development of AHR in IL-5 transgenic mice through the administration of anti-CD49d (alpha(4)-integrin) antibody (PS/2). Administration of PS/2 resulted in immediate (16-h) inhibition of AHR. The inhibition of AHR was not associated with a decrease in airway eosinophils. These studies demonstrate that, despite the presence of increased levels of IL-5 and eosinophils in the lungs of NJ.1726 mice, CD4(+) cells and alpha(4)-integrin signaling are necessary for the intrinsic AHR that develops in IL-5 transgenic mice.  相似文献   

4.
The role of Th2/CD4 T cells, which secrete IL-4, IL-5, and IL-13, in allergic disease is well established; however, the role of CD8(+) T cells (allergen-induced airway hyperresponsiveness (AHR) and inflammation) is less clear. This study was conducted to define the role of Ag-primed CD8(+) T cells in the development of these allergen-induced responses. CD8-deficient (CD8(-/-)) mice and wild-type mice were sensitized to OVA by i.p. injection and then challenged with OVA via the airways. Compared with wild-type mice, CD8(-/-) mice developed significantly lower airway responsiveness to inhaled methacholine and lung eosinophilia, and exhibited decreased IL-13 production both in vivo, in the bronchoalveolar lavage (BAL) fluid, and in vitro, following Ag stimulation of peribronchial lymph node (PBLN) cells in culture. Reconstitution of sensitized and challenged CD8(-/-) mice with allergen-sensitized CD8(+) T cells fully restored the development of AHR, BAL eosinophilia, and IL-13 levels in BAL and in culture supernatants from PBLN cells. In contrast, transfer of naive CD8(+) T cells or allergen-sensitized CD8(+) T cells from IL-13-deficient donor mice failed to do so. Intracellular cytokine staining of lung as well as PBLN T cells revealed that CD8(+) T cells were a source of IL-13. These data suggest that Ag-primed CD8(+) T cells are required for the full development of AHR and airway inflammation, which appears to be associated with IL-13 production from these primed T cells.  相似文献   

5.
CD4+ T cells, particularly Th2 cells, play a pivotal role in allergic airway inflammation. However, the requirements for interactions between CD4+ and CD8+ T cells in airway allergic inflammation have not been delineated. Sensitized and challenged OT-1 mice in which CD8+ T cells expressing the transgene for the OVA(257-264) peptide (SIINFEKL) failed to develop airway hyperresponsiveness (AHR), airway eosinophilia, Th2 cytokine elevation, or goblet cell metaplasia. OT-1 mice that received naive CD4+IL-4+ T cells but not CD4+IL-4- T cells before sensitization developed all of these responses to the same degree as wild-type mice. Moreover, recipients of CD4+IL-4+ T cells developed significant increases in the number of CD8+IL-13+ T cells in the lung, whereas sensitized OT-1 mice that received primed CD4+ T cells just before challenge failed to develop these responses. Sensitized CD8-deficient mice that received CD8+ T cells from OT-1 mice that received naive CD4+ T cells before sensitization increased AHR and eosinophil numbers in bronchoalveolar lavage fluid when challenged with allergen. In contrast, sensitized CD8-deficient mice receiving CD8+ T cells from OT-1 mice without CD4+ T cells developed reduced AHR and eosinophil numbers in bronchoalveolar lavage fluid when challenged. These data suggest that interactions between CD4+ and CD8+ T cells, in part through IL-4 during the sensitization phase, are essential to the development of CD8+IL-13+ T cell-dependent AHR and airway allergic inflammation.  相似文献   

6.
Recent studies in both human and rodents have indicated that in addition to CD4+ T cells, CD8+ T cells play an important role in allergic inflammation. We previously demonstrated that allergen-sensitized and -challenged CD8-deficient (CD8-/-) mice develop significantly lower airway hyperresponsiveness (AHR), eosinophilic inflammation, and IL-13 levels in bronchoalveolar lavage fluid compared with wild-type mice, and that all these responses were restored by adoptive transfer of in vivo-primed CD8+ T cells or in vitro-generated effector CD8+ T cells (T(EFF)). Recently, leukotriene B4 and its high affinity receptor, BLT1, have been shown to mediate in vitro-generated T(EFF) recruitment into inflamed tissues. In this study we investigated whether BLT1 is essential for the development of CD8+ T cell-mediated allergic AHR and inflammation. Adoptive transfer of in vivo-primed BLT1+/+, but not BLT1-/-, CD8+ T cells into sensitized and challenged CD8-/- mice restored AHR, eosinophilic inflammation, and IL-13 levels. Moreover, when adoptively transferred into sensitized CD8-/- mice, in vitro-generated BLT1+/+, but not BLT1-/-, T(EFF) accumulated in the lung and mediated these altered airway responses to allergen challenge. These data are the first to show both a functional and an essential role for BLT1 in allergen-mediated CD8+ T(EFF) recruitment into the lung and development of AHR and airway inflammation.  相似文献   

7.
Costimulatory ligands CD80 and CD86 have different binding preferences and affinities to their receptors, CD28 and CTLA-4. Earlier, we demonstrated that CD80 binds to CTLA-4 with higher affinity and has a role in suppressing T cell response. The current study demonstrates that not only did blockade of CD86 upon Ag presentation by bone marrow-derived dendritic cells (DC) to OVA-specific T cells result in induction of hyporesponsive T cells but also that these T cells could suppress the proliferative response of effector T cells. These T cells showed TGF-beta1 on their surface and secreted TGF-beta1 and IL-10 upon restimulation. Although blockade of CTLA-4 and neutralization of IL-10 profoundly inhibited the induction of these TGF-beta1(+) T cells, their ability to suppress the effector T cell proliferation was abrogated by neutralization of TGF-beta1 alone. Induction of TGF-beta1(+) and IL-10(+) T cells was found to be independent of natural CD4(+)CD25(+) regulatory T cells, demonstrating that preferential ligation of CTLA-4 by CD80 induced IL-10 production by effector T cells, which in turn promoted the secretion of TGF-beta1. Treatment of prediabetic NOD mice with islet beta cell Ag-pulsed CD86(-/-) DCs, but not CD80(-/-) DCs, resulted in the induction of TGF-beta1- and IL-10-producing cells, significant suppression of insulitis, and delay of the onset of hyperglycemia. These observations demonstrate not only that CD80 preferentially binds to CTLA-4 but also that interaction during Ag presentation can result in IL-10-dependent TGF-beta1(+) regulatory T cell induction, reinstating the potential of approaches to preferentially engage CTLA-4 through CD80 during self-Ag presentation in suppressing autoimmunity.  相似文献   

8.
Lupus is an Ab-mediated autoimmune disease. One of the potential contributors to the development of systemic lupus erythematosus is a defect in naturally occurring CD4(+)CD25(+) regulatory T cells. Thus, the generation of inducible regulatory T cells that can control autoantibody responses is a potential avenue for the treatment of systemic lupus erythematosus. We have found that nasal administration of anti-CD3 mAb attenuated lupus development as well as arrested ongoing lupus in two strains of lupus-prone mice. Nasal anti-CD3 induced a CD4(+)CD25(-)latency-associated peptide (LAP)(+) regulatory T cell that secreted high levels of IL-10 and suppressed disease in vivo via IL-10- and TFG-beta-dependent mechanisms. Disease suppression also occurred following adoptive transfer of CD4(+)CD25(-)LAP(+) regulatory T cells from nasal anti-CD3-treated animals to lupus-prone mice. Animals treated with nasal anti-CD3 had less glomerulonephritis and diminished levels of autoantibodies as measured by both ELISA and autoantigen microarrays. Nasal anti-CD3 affected the function of CD4(+)ICOS(+)CXCR5(+) follicular helper T cells that are required for autoantibody production. CD4(+)ICOS(+)CXCR5(+) follicular helper T cells express high levels of IL-17 and IL-21 and these cytokines were down-regulated by nasal anti-CD3. Our results demonstrate that nasal anti-CD3 induces CD4(+)CD25(-)LAP(+) regulatory T cells that suppress lupus in mice and that it is associated with down-regulation of T cell help for autoantibody production.  相似文献   

9.
Regulatory T cells (Treg) play a decisive role in many diseases including asthma and allergen-induced lung inflammation. However, little progress has been made developing new therapeutic strategies for pulmonary disorders. In the current study we demonstrate that cytokine:antibody complexes of IL-2 and anti-IL-2 mAb reduce the severity of allergen-induced inflammation in the lung by expanding Tregs in vivo. Unlike rIL-2 or anti-IL-2 mAb treatment alone, IL-2:anti-IL-2 complexes dampened airway inflammation and eosinophilia while suppressing IL-5 and eotaxin-1 production. Mucus production, airway hyperresponsiveness to methacholine, and parenchymal tissue inflammation were also dramatically reduced following IL-2:anti-IL-2 treatment. The suppression in allergic airway disease was associated with a marked expansion of Tregs (IL-10(+)CD4(+)CD25(+) and Foxp3(+)CD4(+)CD25(+)) in the tissues, with a corresponding decrease in effector T cell responses. The ability of IL-2:anti-IL-2 complexes to suppress airway inflammation was dependent on Treg-derived IL-10, as IL-10(+/+), but not IL-10(-/-) Tregs, were capable of mediating the suppression. Furthermore, a therapeutic protocol using a model of established airway allergy highlighted the ability of IL-2:anti-IL-2 complexes to expand Tregs and prevent successive airway inflammation and airway hyperresponsiveness. This study suggests that endogenous Treg therapy may be a useful tool to combat the rising incidence of allergic airway disease.  相似文献   

10.
CD4(+)CD25(+) regulatory T (Treg) cells naturally occur in mice and humans, and similar Treg cells can be induced in vivo and in vitro. However, the molecular mechanisms that mediate the generation of these Treg cell populations remain unknown. We previously described anti-4C8 mAbs that inhibit the postadhesive transendothelial migration of T cells through human endothelial cell monolayers. We demonstrate in this work that Treg cells are induced by costimulation of CD4(+) T cells with anti-CD3 plus anti-4C8. The costimulation induced full activation of CD4(+) T cells with high levels of IL-2 production and cellular expansion that were comparable to those obtained on costimulation by CD28. However, upon restimulation, 4C8-costimulated cells produced high levels of IL-10 but no IL-2 or IL-4, and maintained high expression levels of CD25 and intracellular CD152, as compared to CD28-costimulated cells. The former cells showed hyporesponsiveness to anti-CD3 stimulation and suppressed the activation of bystander T cells depending on cell contact but not IL-10 or TGF-beta. The suppressor cells developed from CD4(+)CD25(-)CD45RO(+) cells. The results suggest that 4C8 costimulation induces the generation of Treg cells that share phenotypic and functional features with CD4(+)CD25(+) T cells, and that CD25(-) memory T cells may differentiate into certain Treg cell subsets in the periphery.  相似文献   

11.
IL-2 influences both survival and differentiation of CD4(+) T effector and regulatory T cells. We studied the effect of i.n. administration of Abs against the alpha- and the beta-chains of the IL-2R in a murine model of allergic asthma. Blockade of the beta- but not the alpha-chain of the IL-2R after allergen challenge led to a significant reduction of airway hyperresponsiveness. Although both treatments led to reduction of lung inflammation, IL-2 signaling, STAT-5 phosphorylation, and Th2-type cytokine production (IL-4 and IL-5) by lung T cells, IL-13 production and CD4(+) T cell survival were solely inhibited by the blockade of the IL-2R beta-chain. Moreover, local blockade of the common IL-2R/IL-15R beta-chain reduced NK cell number and IL-2 production by lung CD4(+)CD25(+) and CD4(+)CD25(-) T cells while inducing IL-10- and TGF-beta-producing CD4(+) T cells in the lung. This cytokine milieu was associated with reduced CD4(+) T cell proliferation in the draining lymph nodes. Thus, local blockade of the beta-chain of the IL-2R restored an immunosuppressive cytokine milieu in the lung that ameliorated both inflammation and airway hyperresponsiveness in experimental allergic asthma. These findings provide novel insights into the functional role of IL-2 signaling in experimental asthma and suggest that blockade of the IL-2R beta-chain might be useful for therapy of allergic asthma in humans.  相似文献   

12.
Activation of CD4(+)CD25(+)Foxp3(+) naturally occurring regulatory T cells (nTregs) resulting in suppression of lung allergic responses requires interaction of MHC class I on nTregs and CD8. In the absence of CD8 (CD8(-/-) recipients), transferred nTregs restored airway hyperresponsiveness, eosinophilic inflammation, and IL-13 levels following allergen exposure. Enhancement of lung allergic responses was accompanied by reduced expression of Foxp3 and increased expression of IL-13 in the transferred nTregs. In CD8(-/-) recipients pretreated with glucocorticoid-induced TNFR-related protein-ligand Ab, the transferred nTregs maintained high levels of Foxp3 and did not result in altered lung responses. Thus, the regulatory function of nTregs can be subverted by reducing the expression of Foxp3 and following signaling through glucocorticoid-induced TNFR-related protein are converted nTregs into IL-13-producing CD4(+) T cells mediating lung allergic responses.  相似文献   

13.
Viral respiratory infections can cause bronchial hyperresponsiveness and exacerbate asthma. In mice, respiratory syncytial virus (RSV) infection results in airway hyperresponsiveness (AHR) and eosinophil influx into the airways. The immune cell requirements for these responses to RSV infection are not well defined. To delineate the role of CD8 T cells in the development of RSV-induced AHR and lung eosinophilia, we tested the ability of mice depleted of CD8 T cells to develop these symptoms of RSV infection. BALB/c mice were depleted of CD8 T cells using anti-CD8 Ab treatment before intranasal administration of infectious RSV. Six days postinfection, airway responsiveness to inhaled methacholine was assessed by barometric body plethysmography, and numbers of lung eosinophils and levels of IFN-gamma, IL-4, and IL-5 in bronchoalveolar lavage fluid were monitored. RSV infection resulted in airway eosinophilia and AHR in control mice, but not in CD8-depleted animals. Further, whereas RSV-infected mice secreted increased amounts of IL-5 into the airways as compared with noninfected controls, no IL-5 was detectable in both bronchoalveolar lavage fluid and culture supernatants from CD8-depleted animals. Treatment of CD8-depleted mice with IL-5 fully restored both lung eosinophilia and AHR. We conclude that CD8 T cells are essential for the influx of eosinophils into the lung and the development of AHR in response to RSV infection.  相似文献   

14.
We have previously shown that mice lacking the IL-12-specific receptor subunit beta2 (IL-12Rbeta2) develop more severe experimental autoimmune encephalomyelitis than wild-type (WT) mice. The mechanism underlying this phenomenon is not known; nor is it known whether deficiency of IL-12Rbeta2 impacts other autoimmune disorders similarly. In the present study we demonstrate that IL-12Rbeta2(-/-) mice develop earlier onset and more severe disease in the streptozotocin-induced model of diabetes, indicating predisposition of IL-12Rbeta2-deficient mice to autoimmune diseases. T cells from IL-12Rbeta2(-/-) mice exhibited significantly higher proliferative responses upon TCR stimulation. The numbers of naturally occurring CD25(+)CD4(+) regulatory T cells (Tregs) in the thymus and spleen of IL-12Rbeta2(-/-) mice were comparable to those of WT mice. However, IL-12Rbeta2(-/-) mice exhibited a significantly reduced capacity to develop Tregs upon stimulation with TGF-beta, as shown by significantly lower numbers of CD25(+)CD4(+) T cells that expressed Foxp3. Functionally, CD25(+)CD4(+) Tregs derived from IL-12Rbeta2(-/-) mice were less efficient than those from WT mice in suppressing effector T cells. The role of IL-12Rbeta2 in the induction of Tregs was confirmed using small interfering RNA. These findings suggest that signaling via IL-12Rbeta2 regulates both the number and functional maturity of Treg cells, which indicates a novel mechanism underlying the regulation of autoimmune diseases by the IL-12 pathway.  相似文献   

15.
CD4(+)CD25(+) T cells have been proposed as the principal regulators of both self-tolerance and transplantation tolerance. Although CD4(+)CD25(+) T cells do have a suppressive role in transplantation tolerance, so do CD4(+)CD25(-) T cells, although 10-fold less potent. Abs to CTLA-4, CD25, IL-10, and IL-4 were unable to abrogate suppression mediated by tolerant spleen cells so excluding any of these molecules as critical agents of suppression. CD4(+)CD25(+) T cells from naive mice can also prevent rejection despite the lack of any previous experience of donor alloantigens. However, this requires many more naive than tolerized cells to provide the same degree of suppression. This suggests that a capacity to regulate transplant rejection pre-exists in naive mice, and may be amplified in "tolerized" mice. Serial analysis of gene expression confirmed that cells sorted into CD4(+)CD25(+) and CD4(+)CD25(-) populations were distinct in that they responded to TCR ligation with very different programs of gene expression. Further characterization of the differentially expressed genes may lead to the development of diagnostic tests to monitor the tolerant state.  相似文献   

16.
Allergic airway inflammation and hyperreactivity are modulated by gammadelta T cells, but different experimental parameters can influence the effects observed. For example, in sensitized C57BL/6 and BALB/c mice, transient depletion of all TCR-delta(+) cells just before airway challenge resulted in airway hyperresponsiveness (AHR), but caused hyporesponsiveness when initiated before i.p. sensitization. Vgamma4(+) gammadelta T cells strongly suppressed AHR; their depletion relieved suppression when initiated before challenge, but not before sensitization, and they suppressed AHR when transferred before challenge into sensitized TCR-Vgamma4(-/-)/6(-/-) mice. In contrast, Vgamma1(+) gammadelta T cells enhanced AHR and airway inflammation. In normal mice (C57BL/6 and BALB/c), enhancement of AHR was abrogated only when these cells were depleted before sensitization, but not before challenge, and with regard to airway inflammation, this effect was limited to C57BL/6 mice. However, Vgamma1(+) gammadelta T cells enhanced AHR when transferred before challenge into sensitized B6.TCR-delta(-/-) mice. In this study Vgamma1(+) cells also increased levels of Th2 cytokines in the airways and, to a lesser extent, lung eosinophil numbers. Thus, Vgamma4(+) cells suppress AHR, and Vgamma1(+) cells enhance AHR and airway inflammation under defined experimental conditions. These findings show how gammadelta T cells can be both inhibitors and enhancers of AHR and airway inflammation, and they provide further support for the hypothesis that TCR expression and function cosegregate in gammadelta T cells.  相似文献   

17.
Thymus-derived, natural CD4(+)CD25(+) regulatory T cells can educate peripheral CD4(+)CD25(-) cells to develop suppressive activity by poorly understood mechanisms. TGF-beta has IL-2-dependent costimulatory effects on alloactivated naive, human CD4(+) T cells and induces them ex vivo to become potent contact-dependent, cytokine-independent suppressor cells. In this study, we report that CD4(+)CD25(+) cells are the targets of the costimulatory effects of IL-2 and TGF-beta. These cells do not divide, but, instead, greatly increase the numbers of CD4(+)CD25(-) cells that become CD25(+) cytokine-independent suppressor cells. These CD4(+)CD25(+) regulatory cells, in turn, induce other alloactivated CD4(+)CD25(-) cells to become potent suppressor cells by mechanisms that, surprisingly, require both cell contact and TGF-beta and IL-10. The suppressive effects of these secondary CD4(+)CD25(+) cells depend upon TGF-beta and IL-10. Moreover, both the naive CD4(+) cells induced by IL-2 and TGF-beta to become suppressor cells, and the subsequent CD4(+)CD25(-) cells educated by them to become suppressors express FoxP3. We suggest that the long-term effects of adoptively transferred natural-like CD4(+)CD25(+) regulatory cells induced ex vivo are due to their ability to generate new cytokine-producing CD4(+) regulatory T cells in vivo.  相似文献   

18.
Protective immunity to the fungus Candida albicans is mediated by Ag-specific Th1 cells. Paradoxically, some Th2 cytokines are required for the maintenance of Th1-mediated immune resistance to the fungus. Therefore, in addition to the Th1/Th2 balance, other mechanisms seem to be involved in the regulation of Th1 immunity to the fungus. Here we show that CD4(+)CD25(+) T cells, negatively regulating antifungal Th1 reactivity, are generated in mice with candidiasis. CD4(+)CD25(+) T cells were not generated in B7-2- or CD28-deficient mice or in condition of IL-10 signaling deficiency. Accordingly, although capable of efficiently restricting the fungal growth, these mice experienced inflammatory pathology and were incapable of resistance to reinfection. CD4(+)CD25(+) T cells poorly proliferated in vitro; were highly enriched for cells producing IL-4, IL-10, and TGF-beta; and required IL-10-producing, Candida hypha-activated dendritic cells for generation. Adoptive transfer of CD4(+)CD25(+) T cells or IL-10-producing dendritic cells restored resistance to reinfection and decreased inflammation in B7-2-deficient mice. These results show that oral tolerance induced by Candida hyphae is required for the occurrence of long-lasting protective immunity after yeast priming. The implication is that preventing reactivation rather than favoring sterilizing immunity to ubiquitous fungal pathogens may represent the ultimate expectation of vaccine-based strategies.  相似文献   

19.
Flt3 ligand (Flt3-L) is a growth factor for dendritic cells and induces type 1 T cell responses. We recently reported that Flt3-L prevented OVA-induced allergic airway inflammation and suppressed late allergic response and airway hyper-responsiveness (AHR). In the present study we examined whether Flt3-L reversed allergic airway inflammation in an established model of asthma. BALB/c mice were sensitized and challenged with OVA, and AHR to methacholine was established. Then mice with AHR were randomized and treated with PBS or 6 microg of Flt3-L i.p. for 10 days. Pulmonary functions and AHR to methacholine were examined after rechallenge with OVA. Treatment with Flt3-L of presensitized mice significantly suppressed (p < 0.001) the late allergic response, AHR, bronchoalveolar lavage fluid total cellularity, absolute eosinophil counts, and inflammation in the lung tissue. There was a significant decrease in proinflammatory cytokines (TNF-alpha, IL-4, and IL-5) in bronchoalveolar lavage fluid, with a significant increase in serum IL-12 and a decrease in serum IL-5 levels. There was no significant effect of Flt3-L treatment on serum IL-4 and serum total IgE levels. Sensitization with OVA significantly increased CD11b(+)CD11c(+) cells in the lung, and this phenomenon was not significantly affected by Flt3-L treatment. These data suggest that Flt3-L can reverse allergic airway inflammation and associated changes in pulmonary functions in murine asthma model.  相似文献   

20.
The host immune response is believed to contribute to the severity of pulmonary disease induced by acute respiratory syncytial virus (RSV) infection. Because RSV-induced pulmonary disease is associated with immunopathology, we evaluated the role of IL-10 in modulating the RSV-specific immune response. We found that IL-10 protein levels in the lung were increased following acute RSV infection, with maximum production corresponding to the peak of the virus-specific T cell response. The majority of IL-10-producing cells in the lung during acute RSV infection were CD4(+) T cells. The IL-10-producing CD4(+) T cells included Foxp3(+) regulatory T cells, Foxp3(-) CD4(+) T cells that coproduce IFN-γ, and Foxp3(-) CD4(+) T cells that do not coproduce IFN-γ. RSV infection of IL-10-deficient mice resulted in more severe disease, as measured by increased weight loss and airway resistance, as compared with control mice. We also observed an increase in the magnitude of the RSV-induced CD8(+) and CD4(+) T cell response that correlated with increased disease severity in the absence of IL-10 or following IL-10R blockade. Interestingly, IL-10R blockade during acute RSV infection altered CD4(+) T cell subset distribution, resulting in a significant increase in IL-17A-producing CD4(+) T cells and a concomitant decrease in Foxp3(+) regulatory T cells. These results demonstrate that IL-10 plays a critical role in modulating the adaptive immune response to RSV by limiting T-cell-mediated pulmonary inflammation and injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号