首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Greenhouse and growth chamber experiments were conducted to determine the effect of soil moisture and temperature on the phytotoxicity in wild oat of imazamethabenz or fenoxaprop tank-mixed with certain additives or MCPA. The surfactants Agral 90 at 0.5% and Enhance at 0.5% increased imazamethabenz phytotoxicity under both moist and drought conditions. These surfactants had no significant effect on fenoxaprop phytotoxicity regardless of the soil moisture regimes. Fenoxaprop activity was increased by ammonium sulfate [(NH4)2SO4] at 1% but only under well watered conditions. Wild oat control with imazamethabenz was also slightly enhanced in a well watered regime by the addition of sodium bisulfate (NaHSO4) at 0.13%. At high temperature (30/20°C) and low temperature (10/5°C), the phytotoxicity of imazamethabenz was increased when tank-mixed with Agral 90 at 0.25% or NaHSO4 at 0.13% compared with that when imazamethabenz was applied alone, if soil moisture was adequate. There was no such increase under conditions of drought and high temperature. (NH4)2SO4 at 1% did not significantly affect imazamethabenz performance irrespective of temperature/soil moisture conditions. The phytotoxicity to wild oat of imazamethabenz or fenoxaprop was not changed by tank-mixing with MCPA isooctyl ester at 300 g a.i./ha, regardless of soil moisture levels. The reduced fenoxaprop phytotoxicity in wild oat due to moisture stress was not readily alleviated by the inclusion of selected additives or MCPA in the tank mixture. Received May 10, 1996; accepted January 10, 1997  相似文献   

2.
The influences of nutrient supply and plant growth regulators on the phytotoxicity of imazamethabenz in wild oat (Avena fatua L.) were evaluated in the greenhouse. Wild oat plants supplied with half-strength rather than one-eighth-strength Hoagland solution were more susceptible to imazamethabenz, showing greater growth reduction in main shoot and tillers. The improved herbicide efficacy at higher nutrient levels appeared related to increased herbicide interception by the greater leaf surface available. Leaves developing at either nutrient level did not differ significantly in epicuticular wax, so differential absorption appeared unlikely. Wild oat plants supplemented with nutrient, switching from low to high levels at the time of herbicide application, were as susceptible to imazamethabenz or even more so than plants growing with a constant high level of nutrition. The wild oat pure-line Montana 73, a strongly tillering line, was more susceptible to imazamethabenz than the limited-tillering line, Crop Science 40. Both 2,4-D and GA3 reduced imazamethabenz-induced tillering. Imazamethabenz efficacy was increased by GA3 but not by 2,4-D. These results support the hypothesis that lowering apical dominance of wild oat increases imazamethabenz activity in tillers, and that increased tillering following sublethal doses of imazamethabenz treatment is associated with the release of apical dominance.  相似文献   

3.
The response of wild oat to imazamethabenz varies with the growth stage, but the role of tillers in this regard is unclear. Removal of tillers at the three-leaf stage before spraying with imazamethabenz did not significantly affect the total shoot fresh weight measured 3 weeks later. The leaf area and dry weight of intact plants at the three-leaf stage were 17–21% greater than for plants with coleoptilar and first leaf main shoot tillers (T0 and T1) removed. The greater leaf area may have increased herbicide interception per plant. Similar fresh weight reductions in main shoot, total tillers, and total shoots were found whether imazamethabenz was applied to the plant at the two-leaf without tillers or the three-leaf with two tillers stage. Imazamethabenz applied only to the main shoot reduced total shoot dry weight more than an equivalent amount of imazamethabenz applied only to tiller T1 or applied over the whole shoot. Imazamethabenz had the least inhibitory effect on whole plant growth when applied only to T1. When 14C-herbicide was applied to the first main shoot leaf of plants at the three-leaf stage with two tillers, the 14C translocated 38% to roots, 33% to the main shoot, and nearly 30% to all tillers. When 14C-herbicide was applied to the first leaf of T1 then the 14C translocated 50% to T1, 25% to the main shoot, 20% to roots, and 5% to all other tillers. The translocation pattern and fresh weight values suggested that the presence of early tillers during herbicide application neither increased nor decreased imazamethabenz efficacy in wild oat. Received June 4, 1997; accepted June 5, 1997  相似文献   

4.
The absorption and translocation of fenoxaprop-ethyl and imazamethabenz-methyl were investigated in wild oat (Avena fatua L.) plants grown under different temperature and light intensity conditions by using 14C tracer techniques. The phytotoxicity of both herbicides, applied as individual droplets, was also determined under similar environments. The absorption of fenoxaprop-ethyl and imazamethabenz-methyl was increased by high temperature (30/20°C) and to a lesser extent by 70% shading; low temperature (10/5°C) had limited effect on the absorption. The basipetal translocation of fenoxaprop-ethyl was not affected by high temperature, and the increase in imazamethabenz-methyl translocation at high temperature was likely the result of the increased absorption. Low temperature decreased total translocation and translocation efficiency in both fenoxaprop-ethyl and imazamethabenz-methyl. Low light intensity tended to reduce the efficiency of basipetal translocation of both herbicides. Fenoxaprop-ethyl phytotoxicity was reduced by high temperature but not by low temperature. Temperature had little effect on imazamethabenz-methyl effectiveness. Under 70% shading, the phytotoxicity of both herbicides was enhanced.Abbreviation S.E.D. standard errors of difference  相似文献   

5.
The release of apical dominance by the physical destruction in situ of the apical meristem and associated leaf primordia (decapitation) promoted the growth of tillers in non-herbicide-treated wild oat plants, as indicated by increased tiller lengths and fresh weights. At 96 h after [14C] herbicide treatment following decapitation, the absorption of [14C]imazamethabenz and total translocation of radioactivity were respectively increased by 28% and 49%. By 96 h after [14C]imazamethabenz application, the radioactivity detected in the roots of decapitated plants was 45% higher than that in the roots of nondecapitated plants while the radioactivity in tillers of decapitated plants was 2.6-fold that in tillers of intact plants. Decapitation together with foliar spraying of imazamethabenz at 200 g ha–1 further reduced tiller fresh weight, greatly decreased the total tiller number, and thereafter significantly increased overall phytotoxicity by 32% as measured by total shoot fresh weight. The results of this study support the hypothesis that main shoot apical dominance limits translocation of applied imazamethabenz to lateral shoots, rendering tillers less susceptible to growth inhibition by the herbicide.  相似文献   

6.
Experiments were conducted in greenhouse, growth chamber, and laboratory conditions to determine the effect of ammonium sulfate [(NH4)2SO4] on the phytotoxicity, foliar uptake, and translocation of imazamethabenz on wild oat. Rates of (NH4)2SO4 up to 5% (w/v) applied with a greenhouse sprayer did not affect the phytotoxicity of the herbicide when the mix was applied at the one- to two-leaf stage. However, inclusion of 1 and 2% (NH4)2SO4 increased the phytotoxicity of the herbicide when the mix was sprayed at the two- to three-leaf, or the three- to four-leaf stage. At 10%, (NH4)2SO4 decreased the phytotoxicity of the sublethal dosage of the herbicide. When the herbicide was applied as individual drops to the growth chamber-grown plants, inclusion of (NH4)2SO4 at 1% did not affect phytotoxicity as measured by shoot growth. The presence of (NH4)2SO4 did not affect the amount of imazamethabenz retained by wild oat foliage, but it decreased [14C]imazamethabenz absorption, slightly antagonized acropetal translocation, and increased the basipetal translocation of [14C]imazamethabenz. It was concluded that application methods greatly modify the effect of (NH4)2SO4 on imazamethabenz phytotoxicity. Herbicide absorption and translocation as determined by one method do not necessarily represent the absorption and translocation patterns when different application methods are used. Absorption and translocation were not the factors that were responsible for the observed effect of (NH4)2SO4 on the herbicide phytotoxicity.Abbreviations SC suspension concentrate  相似文献   

7.
Water availability is a critical determinant for the growth and ecological distribution of terrestrial plants. Although some xerophytes are unique regarding their highly developed root architecture and the successful adaptation to arid environments, virtually nothing is known about the molecular mechanisms underlying this adaptation. Here, we report physiological and molecular responses of wild watermelon (Citrullus lanatus sp.), which exhibits extraordinarily high drought resistance. At the early stage of drought stress, root development of wild watermelon was significantly enhanced compared with that of the irrigated plants, indicating the activation of a drought avoidance mechanism for absorbing water from deep soil layers. Consistent with this observation, comparative proteome analysis revealed that many proteins induced in the early stage of drought stress are involved in root morphogenesis and carbon/nitrogen metabolism, which may contribute to the drought avoidance via the enhancement of root growth. On the other hand, lignin synthesis-related proteins and molecular chaperones, which may function in the enhancement of physical desiccation tolerance and maintenance of protein integrity, respectively, were induced mostly at the later stage of drought stress. Our findings suggest that this xerophyte switches survival strategies from drought avoidance to drought tolerance during the progression of drought stress, by regulating its root proteome in a temporally programmed manner. This study provides new insights into the complex molecular networks within plant roots involved in the adaptation to adverse environments.  相似文献   

8.
Abstract Growth of the second leaf of susceptible wild oat (Avena fatua L.) was inhibited within 2 days after treatment with the herbicide, diclofop-methyl, in the 1-1/2 leaf stage. Leaf growth of resistant wheat (Triticum aestivum L.) was unaffected by diclofop-methyl. In wild oat. chlorosis developed 1 day after leaf growth was inhibited. Foliar absorption of diclofop-methyl was similar between wild oat and wheat with 67 and 61% of the recovered radioactivity from [14C]diclofop-methyl being absorbed by wild oat and wheat, respectively, after 4 days. Wild oal was equally sensitive to the methyl ester and acid forms of the herbicide when the compounds were injected into the stem. Wheat was unaffected by both forms when treated similarly. Very little diclofop-methyl and diclofop (combined total of 10 to 12% in wild oat and 5 to 7% in wheat) remained in plant tissues 2 days after leaf treatment in both susceptible and resistant plants. Therefore, the active form of the herbicide must inhibit growth of susceptible plants very rapidly and at relatively low concentrations. Diclofop-methyl was rapidly hydrolyzed to diclofop by wild oat and wheat. Wild oat predominantly conjugated diclofop to an ester conjugate but wheat hydroxylated the 2,4-dichlorophenyl ring and formed a phenolic conjugate. The formation of the different conjugates between wild oat and wheat was the most significant difference in metabolism between the two species. Nearly 60 and 70% of the methanol-soluble radioactivity was present as water-soluble conjugates in wild oat and wheat, respectively, 4 days after treatment.  相似文献   

9.
A bioassay is described which uses young oat seedlings to determine the activity of wild oat herbicides alone and in mixtures with other xenobiotics. Test solution (10 μl) was pipetted into the first leaf sheath of the oat seedlings, and 24 to 48 h later, basal shoot sections were removed and cultured for 24 h on agar. The inhibition of leaf growth from these sections, compared with control sections, was an assessment of herbicidal activity. Marked inhibition occurred when as little as 0–5 to 1 -0 μg of either diclofop-methyl or diclofop had been applied to each plant. Wheat and barley seedlings were unaffected by 12 μg of these herbicides, reflecting their known selectivity in cereal crops. The assay was used to evaluate the antagonisms of diclofop-methyl and diclofop activity by 2,4-D, MCPA, 2,3,6-TBA and also related ‘non-auxins’ (3,5-dichloro-phenoxyacetic acid and 2,3,5-TIBA). Diclofop-methyl was compatible with the 1-methylheptyl ester of (4-amino-3,5-dichloro-6-fluoro-2-pyridyl)oxyacetic acid (Dowco 433). The test allows the simultaneous examination of herbicidal responses and related metabolic changes in the oat tissue. As the procedure uses small amounts of chemical, it is suitable for 14C tracer studies and other investigations for v/hich research chemicals are not freely available. The use of the test with other species and other herbicides is discussed, and possible applications for screening for crop safeners and investigations on crop tolerance are suggested.  相似文献   

10.
Plants utilize isoprene emission as a thermotolerance mechanism   总被引:1,自引:0,他引:1  
Isoprene is a volatile compound emitted from leaves of many plant species in large quantities, which has an impact on atmospheric chemistry due to its massive global emission rate (5 x 10(14) carbon g year(-1)) and its high reactivity with the OH radical, resulting in an increase in the half-life of methane. Isoprene emission is strongly induced by the increase in isoprene synthase activity in plastids at high temperature in the day time, which is regulated at its gene expression level in leaves, while the physiological meaning of isoprene emission for plants has not been clearly demonstrated. In this study, we have functionally overexpressed Populus alba isoprene synthase in Arabidopsis to observe isoprene emission from transgenic plants. A striking difference was observed when both transgenic and wild-type plants were treated with heat at 60 degrees C for 2.5 h, i.e. transformants revealed clear heat tolerance compared with the wild type. High isoprene emission and a decrease in the leaf surface temperature were observed in transgenic plants under heat stress treatment. In contrast, neither strong light nor drought treatments showed an apparent difference. These data suggest that isoprene emission plays a crucial role in a heat protection mechanism in plants.  相似文献   

11.
The effects of drought stress, abscisic acid (ABA), and four ABA analogues on diclofop-methyl and tralkoxydim efficacy were investigated in oat (Avenu sativa). Drought stress conditions (6% soil moisture content) reduced the efficacy of diclofop-methyl at 350 g ha–1, but not at 700 g ha–1. Similarly, tralkoxydim efficacy was reduced by drought stress at 62.5 and 125 g ha–1, but not at 250 g ha–1. ABA (100 m), applied as a root drench 2 days before the herbicide, protected oat plants against all rates of diclofop-methyl and against low rates of tralkoxydim. Two ABA analogues protected oat plants from diclofop-methyl injury, whereas two others had no effect. Foliage applications of ABA were much less effective than root applications in protecting against herbicide injury. Protection by ABA and the two active analogues was dependent on the relative time of application with respect to the herbicides. Optimal protection by ABA and analogue I was obtained when they were applied between 2 days before and 1 day after diclofop-methyl application. Analogue IV protected plants when applied between 3 days before and 1 day after diclofop-methyl application. Partial protection against tralkoxydim activity by ABA was observed when it was applied between 1 day before and 1 day after herbicide application. Analogue I did not afford any protection against tralkoxydim, and analogue IV afforded partial protection when applied the same day or 1 day after tralkoxydim. The results indicate that protection against these postemergence herbicides, similar to that conferred by water stress, can be induced by ABA and structural analogues that apparently mimic the action of ABA.Abbreviations SMC soil moisture content - ABA abscisic acid  相似文献   

12.
To analyze the physiological mechanisms underlying the increased tolerance to drought and high temperature stress combination by overproduction of glycinebetaine (GB) in wheat, a transgenic wheat line T6 and its wild-type (WT) Shi4185 were used. The transgenic line was generated by introducing a gene encoding betaine aldehyde dehydrogenase (BADH) into a wheat line Shi4185. The gene was cloned from Garden Orache (Atriplex hortensis L.). Wheat plants were exposed to drought (withholding irrigation), high temperature stress (40 °C), and their combination at the flowering stage. Analyses of oxygen-evolving activity and photosystem II (PSII) photochemistry, modulated chlorophyll fluorescence, rapid fluorescence induction kinetics, and the polyphasic fluorescence transients (OJIP) were used to evaluate PSII photochemistry in wheat plants. The results suggest that the PSII in transgenic plants showed higher resistance than that in wild-type plants under the stresses studied here, this increased tolerance was associated with an improvement in stability of the oxygen-evolving complex and the reaction center of PSII; streptomycin treatment can impair the protective effect of overaccumulated GB on PSII. The overaccumulated GB may protect the PSII complex from damage through accelerating D1 protein turnover to alleviate photodamage. The results also suggest that the PSII under combined high temperature and drought stress shows higher tolerance than under high temperature stress alone in both transgenic and wild-type plants.  相似文献   

13.
The application of gibberellins (GA) reduces the difference in stem elongation observed under a low day (DT) and high night temperature (NT) combination (negative DIF) compared with the opposite regime, a high DT/low NT (positive DIF). The aim of this work was to investigate possible thermoperiodic effects on GA metabolism and tissue sensitivity to GA by comparing the response to exogenously applied GA (in particular, GA1 and GA3) in pea plants (Pisum sativum cv. Torsdag) grown under contrasting DIF. Control plants not treated with growth inhibitors or additional GA were 38% shorter under negative (DT/NT 13/21°C) than positive DIF (DT/NT 21/13°C) because of shorter internodes. Additional GA1 or GA3 decreased the difference between positive and negative DIF. In pea plants dwarfed with paclobutrazol, which inhibits GA biosynthesis at an early step, the response to GA1 was reduced more strongly by negative compared with positive DIF than the response to GA3. The induced stem elongation by GA19 and GA20 did not deviate significantly from the response to GA1. Plants treated with prohexadione-calcium, an inhibitor of both the production and the inactivation of GA1, grew equally tall under the two temperature regimes in response to both GA1 and GA3. We hypothesize that the reduced response to GA1 compared with GA3 in paclobutrazol-treated plants grown under negative DIF is caused by a higher rate of 2β-hydroxylation of GA1 into GA8 under negative than positive DIF. This contributes to lower levels of GA1 and consequently shorter stems and internodes in pea plants grown under negative than positive DIF. Differences in tissue sensitivity to GA alone cannot account for this specific thermoperiodic effect on stem elongation. Received May 28, 1998; accepted May 29, 1998  相似文献   

14.
Esters of substituted phenoxy-phenoxy propionic acid constitute a new class of herbicides that are effective against gramineous weed and crop species. Slight changes in chemical structure alter drastically the spectrum of weeds controlled by this class of herbicides. Wheat (Triticum aestivum L.) is resistant to diclofop-methyl (methyl 2-[4-(2′,4′-dichlorophenoxy)phenoxy] propanoate) (DM) and clofop-isobutyl (iso-butyl 2-[4-(4′-phenoxy)phenoxy] propanoate) (CI), oat (Avena sativa L.) and wild oat (Avena fatua L.) are susceptible to DM but resistant to CI, and corn (Zea mays L.) is susceptible to both compounds. The antagonism of IAA-induced elongation in the coleoptile straight growth test was determined to measure biological activity of the herbicides. The basis for the differential responses by gramineous species was related to the metabolism and deioxication of the herbicides in coleoptiles. Growth of wheat coleaptiles was relatively unaffected by both compounds, oat coleoptile growth was inhibited by DM but not by CI. but corn coleoptile growth was inhibited equally by both compounds. Coleoptiles and excised shoots of the three species rapidly hydrolyzed both compounds to their respective acids (diclofop, clofop). The acids were conjugated to a water-soluble ester conjugate or they were hydroxylated in the chlorine-substituted phenyl ring and conjugated as a phenolic conjugate. Aryl hydroxylation is a detoxication mechanism in resistant plants. Plants resistant to DM or CI contained low concentrations of the parent ester and the free or bound (ester conjugate) acid and a high concentration of free or bound (phenolic conjugate) aryl hydroxylated acid in coleoptile and shoot tissues, Differential responses by the three gramineous species to DM and CI axe due apparently to differences in their detoxication mechanism. The enzyme for aryl hydroxylation in oat appears to have a higher affinity for the 4-chloro- than for the 2,4-dichloro-substituted moiety. Therefore, oat hydroxylated clofop rapidly and was tolerant to CI but the limited ability of oat to hydroxylate diclofop resulted in oat being extremely susceptible to DM.  相似文献   

15.
Foliar application of imazamethabenz at sublethal doses of 100 and 200 g a.i./ha to wild oat plants at the two-leaf stage without tillers greatly inhibited the growth of the main shoot but increased tillering. The near cessation of sheath and the main stem elongation indicated that the major effect of imazamethabenz on the main shoot was inhibition of intercalary growth. Low doses of imazameth-abenz treatment resulted in more leaves (including leaf primordia) in the main stem but did not affect mature first and second leaves. Sublethal doses of imazamethabenz only briefly inhibited tiller growth. A later increase in tillering in treated plants resulted from the stimulated resumed growth of tillers and the increased initiation of tiller buds. Such enhanced tillering mainly resulted from the release of apical dominance due to the inhibition or cessation of the main stem growth with imazamethabenz treatment. Both doses of imazamethabenz (100 and 200 g a.i./ha) significantly reduced the biomass of shoots and roots, but increased the ratio of roots/ shoots dry weight.  相似文献   

16.
To determine whether natural plant growth regulators (PGRs) can enhance drought tolerance and the competitive ability of transplanted seedlings, 1.5-year-old jack pine (Pinus banksana Lamb.) seedlings were treated with homobrassinolide, salicylic acid, and two polyamines, spermine and spermidine, triacontanol, abscisic acid (ABA), and the synthetic antioxidant, Ambiol. PGRs were fed into the xylem for 7 days and plants were droughted by withholding water for 12 days. ABA, Ambiol, spermidine, and spermine at a concentration of 10 μg L−1 stimulated elongation growth under drought, whereas ABA, Ambiol, and spermidine maintained higher photosynthetic rates, higher water use efficiency, and lower Ci/Ca ratio under drought compared with control plants. The damaging effects of drought on membrane leakage was reversed by Ambiol, ABA, triacontanol, spermidine, and spermine. Because ABA, Ambiol, and both polyamines enhanced elongation growth and also reduced membrane damage in jack pine under drought, they show promise as treatments to harden seedlings against environmental stress. The protective action of these compounds on membrane integrity was associated with an inhibition of ethylene evolution, with a reduction in transpiration rate and an enhancement of photosynthesis, which together increased water use efficiency under drought. Although most of the tested compounds acted as antitranspirants, the inhibition in membrane leakage in ABA-, Ambiol-, and polyamine-treated plants appeared more closely related to the antiethylene action. Received December 30, 1998; accepted October 14, 1999  相似文献   

17.
羊草叶片气体交换参数对温度和土壤水分的响应   总被引:19,自引:4,他引:15       下载免费PDF全文
 采用生长箱控制的方法研究了羊草(Leymus chinensis)幼苗叶片光合参数对5个温度和5个水分梯度的响应和适应。结果表明:轻度、中度土壤干旱并没有限制羊草叶片的生长,对气体交换参数亦无显著影响,反映了羊草幼苗对土壤水分胁迫的较高耐性。叶片生物量以26 ℃时最大,其它依次为23 ℃、20 ℃、29 ℃和32 ℃。温度升高使气孔导度和蒸腾速率增加, 却使光合速率和水分利用效率降低。水分和温度对叶片生物量、光合速率、气孔导度和蒸腾速率存在显著的交互作用,表明高温加强了干旱对叶片生长和气体交换的影响, 降低了羊草对土壤干旱的适应能力。高温和干旱的交互作用将显著减少我国半干旱地区草原的羊草生产力。  相似文献   

18.
1 The effect of drought stress and temperature on the dispersal of wingless aphids Rhopalosiphum padi (L.) and the pattern of spread of BYDV (barley yellow dwarf virus) within wheat plants in controlled environment chambers was quantified. Combinations of three different drought stress levels, unstressed, moderate and high stress level, and three different temperatures, 5 ± 1 °C, 10 ± 1 °C, and 15 ± 1 °C, were investigated. 2 With increased temperature there was an increase in the mean distance of visited plants from the point of release and in the number of plants visited and infected with BYDV. Drought stress had no effect on mean distance moved by aphids at any temperature or on plants infected with virus at 10 °C and 5 °C. When plants were drought stressed, the numbers of plants visited and infected were greater at 15 °C than at 10 °C and 5 °C. 3 A greater proportion of plants visited by aphids was infected with BYDV when plants were stressed than when not stressed. At 15 °C a greater proportion of these plants was infected than at lower temperatures. There was no difference between treatments in the numbers of aphids present at the end of the experiment. 4 It is concluded that drought stress and temperature are of considerable importance in virus spread.  相似文献   

19.
The experiments were carried out with maize (Zea mays L.) seedlings, hybrid Kneja 530, grown hydroponically in a growth chamber. Twelve-day-old plants were foliar treated with putrescine, N1-(2-chloro-4-pyridyl)-N2-phenylurea (4-PU-30), and abscisic acid (ABA) at concentrations of 10−5 m. Twenty-four hours later the plants were subjected to a water deficit program, induced by 15% polyethylene glycol (PEG; molecular weight, 6,000). Three days after drought stress half of the plants were transferred to nutrient solution for the next 3 days. The effects of the water shortage, rewatering, and plant growth regulator (PGR) treatment on the fresh and dry weights, leaf pigment content, proline level, relative water content (RWC), transpiration rate, activities of catalase and guaiacol peroxidase, hydrogen peroxide content, and level of the products of lipid peroxidation were studied. It was established that the application of PGRs alleviated to some extent the plant damage provoked by PEG stress. At the end of the water shortage program the plants treated with these PGRs possessed higher fresh weight than drought-subjected control seedlings. It was found also that putrescine increased the dry weight of plants. Under drought, the RWC and transpiration rate of seedlings declined, but PGR treatment reduced these effects. The accumulation of free proline, malondialdehyde, and hydrogen peroxide was prevented in PGR-treated plants compared with the water stress control. The results provided further information about the influence of putrescine, 4-PU-30, and ABA on maize plants grown under normal, drought, and rewatering conditions. Received September 25, 1997; accepted August 10, 1998  相似文献   

20.
Diclofop-methyl (DM) (ester) was readily absorbed by peeled and unpeeled coleoptiles of wheat, Triticum aestivum L. cv. Waldron, and oat, Avena sativa L. cv. Garry. Substantial absorption of diclofop (acid) occurred only in peeled coleoptiles of the two species. IAA-induced acidification in peeled coleoptiles of both species was inhibited by 100 μ M DM or diclofop (acid) during a 3 to 4 h period. There was no recovery of acidification after DM or diclofop inhibition in oat coleoptiles; however, acidification in wheat coleoptiles recovered from inhibition by DM but not from diclofop. The recovery from DM inhibition may be due to a reduction in the diclofop pool derived from DM by efflux and metabolism (detoxification) in peeled wheat coleoptiles. Diclofop was not detoxified in oat coleoptiles. IAA-induced elongation of unpeeled oat coleoptiles was inhibited totally by 100 μ M DM but not by 100 μ M diclofop after 3.3 h of treatment. Wheat coleoptile elongation was relatively unaffected by either DM or diclofop. Basal elongation (no IAA) of both wheat and oat coleoptiles was inhibited by DM and diclofop. The inhibition by DM appeared to be irreversible, whereas the inhibition by diclofop was overcome by the addition of 10 μ M IAA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号