首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A rapid radiometric assay for epoxide hydratase activity has been developed using the highly mutagenic [3H]benzo(a)pyrene 4,5-(K-region-)oxide as substrate. By addition of dimethylsulfoxide after the incubation, conditions were found where the unreacted substrate could be separated from the product benzo(a)pyrene-4,5-dihydrodiol(trans) simply by extraction into petroleum ether. The product is then extracted into ethyl acetate and, radioactivity is measured by scintillation spectrometry. This assay allows a rapid measurement of epoxide hydratase activity with an epoxide derived from a carcinogenic polycyclic hydrocarbon as substrate and is at the same time sensitive enough for accurate determination of epoxide hydratase activity in preparations with extremely low enzyme levels such as rat skin homogenate (8–14 pmol of product/mg of protein/min).  相似文献   

2.
The potential of polycyclic aromatic hydrocarbons (PAHs) to modulate microsomal epoxide hydrolase activity, determined using benzo[a]pyrene 5-oxide as substrate, in human liver, was evaluated and compared to rat liver. Precision-cut liver slices prepared from fresh human liver were incubated with six structurally diverse PAHs, at a range of concentrations, for 24 h. Of the six PAHs studied, benzo[a]pyrene, dibenzo[a,h]anthracene and fluoranthene gave rise to a statistically significant increase in epoxide hydrolase activity, which was accompanied by a concomitant increase in epoxide hydrolase protein levels determined by immunoblotting. The other PAHs studied, namely dibenzo[a,l]pyrene, benzo[b]fluoranthene and 1-methylphenanthrene, influenced neither activity nor enzyme protein levels. When rat slices were incubated under identical conditions, only benzo[a]pyrene and dibenzo[a,h]anthracene elevated epoxide hydrolase activity, which was, once again accompanied by a rise in protein levels. At the mRNA level, however, all six PAHs caused an increase, albeit to different extent. In rat, epoxide hydroxylase activity in lung slices was much lower than in liver slices. In lung slices, epoxide hydrolase activity was elevated following exposure to benzo[a]pyrene and dibenzo[a,l]pyrene and, to a lesser extent, 1-methylphenanthrene; similar observations were made at the protein level. At both activity and protein levels extent of induction was far more pronounced in the lung compared with the liver. It is concluded that epoxide hydrolase activity is an inducible enzyme by PAHs, in both human and rat liver, but induction potential by individual PAHs varies enormously, depending on the nature of the compound involved. Marked tissue differences in the nature of PAHs stimulating activity in rat lung and liver were noted. Although in the rat basal lung epoxide hydrolase activity is much lower than liver, it is more markedly inducible by PAHs.  相似文献   

3.
Immunochemical techniques were used to investigate the biochemical properties of human lung epoxide hydrolases. Two epoxide hydrolases with different immunoreactive properties were identified. These two epoxide hydrolases were found in both cytosolic and microsomal cell fractions. Immunotitration of enzyme activity showed that enzymes that catalyze the hydration of benzo(a)pyrene 4,5-oxide react with antiserum to rat microsomal epoxide hydrolase; those that hydrate trans-stilbene oxide do not. Immunotitration and Western blot experiments showed that microsomal and cytosolic benzo(a)pyrene 4,5-oxide hydrolases have significant structural homology. Immunohistochemical staining of human lung benzo(a)pyrene 4,5-oxide hydrolase showed that the enzyme is localized primarily in the bronchial epithelium. No cell type-specific localization was observed. An enzyme-linked immunosorbent assay was developed which allows direct quantitation of benzo(a)pyrene 4,5-oxide hydrolase protein. Levels of enzyme protein detected by this assay correlated well with enzyme levels determined by substrate conversion assays.  相似文献   

4.
A simple, rapid and sensitive assay is described for benzo(a)pyrene-4,5-oxide hydratase, an enzyme converting benzo(a)pyrene-4,5-oxide to benzo(a)pyrene-4,5-dihydro-4, 5-diol. The amount of the diol formed is constant with time and protein concentration and is equal to the oxide consumed. The enzyme has no requirements for oxygen or NADPH and is inhibited by 1,1,1-trichloropropylene oxide. The intact enzyme is highly resistant to destruction by proteases, but becomes susceptible to pronase digestion after treatment with detergent. The enzyme is inducible by phenobarbital but not by 3-methylcholanthrene, both inducers of aryl hydrocarbon(benzo(a)pyrene)hydroxylase, which demonstrates the ability to alter the ratio of hydratase to the coupled mixed-function oxygenase. A changed ratio of these two activities may result in altered benzo(a)pyrene metabolism.  相似文献   

5.
1. The substrate specificity of membrane-bound and purified epoxide hydrase from rat liver microsomes has been studied. Both enzyme preparations catalyzed the hydration of a variety of alkene oxidase as well as arene oxides of several polycyclic aromatic hydrocarbons. 2. Unlike the membrane-bound enzyme, the rate of hydration for most of the substrates catalyzed by the purified epoxide hydrase was constant for only 1 or 2 min. The addition of dilauroyl phosphatidylcholine or heated microsomes to the incubation mixture extended the linearity of the reaction. 3. When rat liver microsomes were used as the source of the enzyme, the apparent Km values for many of the substrates were dependent on the amount of microsomes used. When purified epoxide hydrase was used as the enzyme source and benzo(a)pyrene 11,12-oxide as substrate, the apparent Km for benzo(a)pyrene 11,12-oxide was independent of enzyme concentration but dependent on added lipid concentration. Thus, in the absence of added dilauroyl phosphatidylcholine or in the presence of this lipid at a concentration below its critical micelle concentration, the observed Km for benzo(a)pyrene 11,12-oxide remained constant. However, when the lipid concentration was greater than the critical micelle concentration, the apparent Km value increased linearly with lipid concentration. These results are consistent with a model based on the partition of lipid-soluble substrate between the lipid micelle and the aqueous medium.  相似文献   

6.
The ability of rat liver microsomes to catalyze the formation of benzo(a)pyrene 7,8-diol-9,10-epoxide — DNA nucleoside adduct was increased threefold by feeding 0.5% ethoxyquin to the animals. Microsomal epoxide hydratase activity was enhanced i parallel by a factor of 3 while aryl hydrocarbon hydroxylase activity was not induced. Liver microsomes from rat pretreated with 3-methylcholanthrene produced an increased proportion of diol epoxide — DNA adduct when ethoxyquin had been fed to the animals. The main chromatographic peak formed by microsomes from 3-methylcholanthrene treated rats which contains DNA adducts of secondary benzo(a)pyrene phenol metabolites is reduced when the animals had received ethoxyquin.  相似文献   

7.
Activation of polycyclic aromatic hydrocarbons (PAHs) was examined in the Reuber H4-II-E established cell line without the use of exogenous enzyme preparations. Metabolism of PAHs to genotoxic products was determined by the induction of sister-chromatid exchanges (SCEs). The induction of SCEs followed a dose-response pattern with plateaus at high doses of PAH. The effects of metabolic enzyme inducers (3-methylcholanthrene, phenobarbital, Aroclor 1254) and the epoxide hydrase inhibitor 1,1,1-trichloropropylene oxide were assessed as changes in SCE induction and enhanced production of water-soluble metabolites. Results indicate that Reuber H4-II-E cells can be employed in the testing of carcinogens activated by the P1-450 monooxygenase system and would be a useful in vitro system for the study of mechanisms of metabolic induction and their effect on genetic toxicity.  相似文献   

8.
A number of highly toxic environmental pollutants including certain polychlorinated dibenzo-p-dioxins (PCDD), polychlorinated dibenzofurans (PCDF), and 'dioxin-like' polychlorinated biphenyls (PCB) are among the most potent agonists of the aryl hydrocarbon receptor (AHR). Induction of cytochrome P4501A1 (CYP1A1) in mammalian cell culture is widely used as a functional parameter for AHR activation providing an estimate for 'dioxin-like' inducing equivalents in extracts from environmental samples. Since a number of polycyclic aromatic hydrocarbons (PAHs) also act as AHR-agonists, the CYP1A1-inducing potencies, measured as induction of 7-ethoxyresorufin O-deethylase (EROD) activity in rat hepatocyte cultures were analyzed for 16 PAHs frequently present in environmental samples. Among these, seven PAHs including benzo[a]pyrene were relatively potent inducers allowing the determination of Induction Equivalency Factors (IEF). For three PAHs including benzo[k]fluoranthene which acted as weak inducers, IEFs were estimated, while six PAHs including acenaphthylene were classified as inactive. Based on different efficacies the concentration-response characteristics of CYP1A1 induction were analyzed in more detail for benzo[a]pyrene, benzo[k]fluoranthene, and acenaphthylene. Benzo[k]fluoranthene was markedly less effective than benzo[a]pyrene as inducer of EROD activity but even more effective than benzo[a]pyrene as inducer of CYP1A1 protein and mRNA. Acenaphthylene was highly more effective on the level of mRNA than on the levels of protein or EROD activity. Further analysis revealed that the low efficacy of acenaphthylene as inducer of CYP1A1 protein and EROD activity is due to its marked cytotoxicity while no clear-cut explanation was found for the differences in efficacy between benzo[k]fluoranthene and benzo[a]pyrene. The EROD-inducing potency of a mixture of 16 PAH was about 2-fold higher than that calculated on the basis of IEFs of the individual constituents of the mixture.  相似文献   

9.
The effects of neonatal exposure to diethylstilbestrol (DES) on hepatic activation/detoxication enzyme levels in the adult rat were investigated. Neonatal exposure of male rats to DES (DES males) decreased the endogenous levels of UDP-glucuronyltransferase as compared to control males. Female rats exposed neonatally to DES (DES females) had higher endogenous epoxide hydrolase and glutathione transferase activity levels than control females. Adult animals treated neonatally with DES also had altered metabolic potential following exposure to 3-methylcholanthrene and phenobarbital. The DES males treated in adulthood with 3-methylcholanthrene had higher benzo(a)pyrene hydroxylase activities and lower UDP-glucuronyltransferase activity levels than did control males treated in adulthood with 3-methylcholanthrene. The DES males exposed in adulthood to phenobarbital had reduced cytochrome P-450 and glutathione transferase activity levels as compared with respective controls. The DES females treated in adulthood with 3-methylcholanthrene had lower benzo(a)pyrene hydroxylase and epoxide hydrolase activity levels than control females receiving 3-methylcholanthrene. The DES females challenged in adulthood with phenobarbital also had decreased benzo(a)pyrene hydroxylase, epoxide hydrolase, UDP- glucuronyltransferase, and glutathione transferase activity levels as compared with respective controls. Our results demonstrated that neonatal exposure to DES changed the endogenous levels of specific hepatic enzymes and altered the metabolic response of these adult animals to a carcinogen and a drug.  相似文献   

10.
The effect of peroxidized soybean oil in the diet of male Wistar rats was studied on hepatic drug metabolizing enzymes and their phenobarbital induction and compared to that of natural soybean diet in the same conditions. No hepatomegaly or increase in serum transaminases occurred, however growth was inhibited after ingestion of peroxidized soybean oil. In addition, the protein biosynthesis of epoxide hydrase determined by immunochemistry was largely stimulated by this treatment; but the corresponding activity measured with benzo(a)pyrene 4-5 oxide as a substrate was increased in weaker proportions. This induction was limited to epoxide hydrolase only, since the enzymes of phase one were not affected and UDP glucuronosyltransferase activities toward group I substrates were randomly activated. The induction of epoxide hydrolase may affect only one or several isoforms of the membrane enzyme which are not necessarily specific to benzo(a)pyrene 4-5 oxide activity determination of the enzyme.  相似文献   

11.
Summary Polycyclic aromatic hydrocarbon-inducible monooxygenase directed toward the substrate benzo(a)pyrene, i.e., aryl hydrocarbon hydroxylase, was monitored in cell hybrids formed from mouse RAG cells and several human fibroblasts lines. In RAG cells no aryl hydrocarbon hydroxylase activity was detectable; however, these cells exhibited relatively high levels of NADPH cytochrome C (P-450) reductase (EC. 1.6.2.4). In 12 hybrids lines, induced aryl hydrocarbon hydroxylase segregated with human chromosome 2. The results indicate that the structural gene of the polycyclic aromatic hydrocarbon-inducible monooxygenase or gene(s) involved in the induction of the enzyme is located on human chromosome 2.Abbreviations AHH aryl hydrocarbon hydroxylase - IDH isocitrate dehydrogenase - MDH malate dehydrogenase - PAH polycyclic aromatic hydrocarbons  相似文献   

12.
The in vitro activation of benzo(a)pyrene was studied in amniotic fluid from ten 4-month pregnant women. Benzo(a)pyrene monooxygenase and epoxide hydrolase activities were in the same range in amniotic fluid as in human liver. Glutathione epoxide transferase activity was markedly lower than in hepatocytes. Human amniotic fluid also catalyzed the formation of hydrocarbon metabolites mutagenic to Salmonella typhimurium TA98 (Ames system). Profiles of amniotic fluid aromatic hydrocarbons from non smokers exhibited low benzo(a)pyrene concentration (less than 0.1 ng/ml).  相似文献   

13.
Styrene monooxygenase activity was measured in intact nuclear preparations from rat liver by means of a gas chromatographic method. Styrene epoxide formation is NADPH-dependent although it is enhanced when NADH is added with NADPH. This activity is inhibited by microsomal monooxygenase inhibitors SKF 525A and metyrapone and by microsomal epoxide hydrase inhibitors 1,2-epoxy-3,3,3-trichloropropene oxide and cyclohexene oxide. The percentage of inhibition is quantitatively dffferent for the four compounds. Known inducers of liver microsomal monooxygenase show different patterns of induction on nuclear preparations. Phenobarbital induces nuclear monooxygenase activity more than the respective microsomal activity, whereas the contrary holds true for β-naphthoflavone.  相似文献   

14.
The microsomal oxidation of 12 frequently occurring environmental polycyclic aromatic hydrocarbons after incubation with rat-liver microsomes has been studied and their metabolites characterized by means of gas-liquid chromatography/mass spectrometry. The method enables the detection and characterisation of phenols, diols, triols, and tetrols as trimethylsilyl ethers beside the original hydrocarbons. Moreover, the induction properties of some carcinogenic and non-carcinogenic hydrocarbons (benz[a]anthracene, pyrene, chrysene, benzo[a]-pyrene, benzo[e]pyrene, benzo[b]fluoranthene, benzo[j]fluoranthene, benzo[k]fluoranthene) have been studied. Except pyrene and benzo[e]pyrene, all compounds investigated significant but different induction factors. The relevance of the induction for an estimation of the biological effect of environmental polycyclic aromatic hydrocarbons is discussed.  相似文献   

15.
The activity of cytochrome P-450 dependent monooxygenase system from rat liver microsomes after induction by phenobarbital and 3-methylcholantrene in early neonatal period (3-16 days after birth) was studied. It was found that the total amount of cytochrome P-450 increases after injection of these inducers in neonatal rats of all age groups. In parallel, in the case of 3-methylcholantrene induction the benz(a)pyrene hydroxylase and 7-ethoxyresorufin deethylase activities increase; phenobarbital induction causes a rise in the benzphetamine-N-demethylase and benz(a)pyrene hydroxylase activities. Immunochemical analysis involving the use of antibodies specifically directed against cytochrome P-450 of adult rats revealed that the level of cytochrome P-450 in the case of 3-methylcholantrene induction increases from 5 to 50%, whereas that of cytochrome P-450 upon phenobarbital induction increases from 5 to 40% in liver microsomes of 3- and 16-day-old rats. The mode of inhibition of various substrates metabolism by antibodies in neonatal rat microsomes suggests that the 3-methylcholantrene-induced cytochrome P-448, like in adult rats, participates in the hydroxylation of benz(a)pyrene and O-deethylation of 7-etoxyresorufin. The participation of phenobarbital-induced cytochrome P-450 in the metabolism of benzphetamine and aldrin in neonatal rats is much lower than in the adult ones. The metabolism of benz(a)pyrene in phenobarbital-induced neonatal rat microsomes in all age groups is not inhibited by antibodies. The age-dependent differences in inhibition of metabolism and the increase in the benz(a)pyrene hydroxylase activity in phenobarbital-induced rats suggest that the spectrum of inducible forms of cytochrome P-450 in neonatal rats differ from that in adult animals.  相似文献   

16.
Activation of aryl hydrocarbon receptor (AhR) by 30 polycyclic aromatic hydrocarbons (PAHs) was determined in the chemical-activated luciferase expression (CALUX) assay, using two exposure times (6 and 24h), in order to reflect the metabolization of PAHs. AhR-inducing potencies of PAHs were expressed as induction equivalency factors (IEFs) relative to benzo[a]pyrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In 24h exposure assay, the highest IEFs were found for benzo[k]fluoranthene, dibenzo[a,h]anthracene and dibenzo[a,k]fluoranthene (approximately three orders of magnitude lower than TCDD) followed by dibenzo[a,j]anthracene, benzo[j]fluoranthene, indeno[1,2,3-cd]pyrene, and naphtho[2,3-a]pyrene. The 6h exposure to PAHs led to a significantly higher AhR-mediated activity than the 24h exposure (generally by two orders of magnitude), probably due to the high rate of PAH metabolism. The strongest AhR inducers showed IEFs approaching that of TCDD. Several PAHs, including some strong mutagens, such as dibenzo[a,l]pyrene, cyclopenta[cd]pyrene, and benzo[a]perylene, elicited only partial agonist activity. Calculation of IEFs based on EC25 values and/or 6h exposure data is suggested as an alternative approach to estimation of toxic potencies of PAHs with high metabolic rates and/or the weak AhR agonists. The IEFs, together with the recently reported relative mutagenic potencies of PAHs [Mutat. Res. 371 (1996) 123; Mutat. Res. 446 (1999) 1] were combined with data on concentrations of PAHs in extracts of model environmental samples (river sediments) to calculate AhR-mediated induction equivalents and mutagenic equivalents. The highest AhR-mediated induction equivalents were found for benzo[k]fluoranthene and benzo[j]fluoranthene, followed by indeno[1,2,3-cd]pyrene, dibenzo[a,h]anthracene, benzo[a]pyrene, dibenzo[a,j]anthracene, chrysene, and benzo[b]fluoranthene. High mutagenic equivalents in the river sediments were found for benzo[a]pyrene, dibenzo[a,e]pyrene, and naphtho[2,3-a]pyrene and to a lesser extent also for benzo[a]anthracene, benzo[b]fluoranthene, indeno[1,2,3-cd]pyrene, benzo[j]fluoranthene, dibenzo[a,e]fluoranthene and dibenzo[a,i]pyrene. These data illustrate that AhR-mediated activity of PAHs, including the highly mutagenic compounds, occurring in the environment but not routinely monitored, could significantly contribute to their adverse effects.  相似文献   

17.
The effects of tetrachlorodibenzofuran pretreatment was studied in microsomes from adult Drosophila of the Karsn?s 60w strain. Pretreatment for 18 h with 0.2 or 1 mg TCDBF did not increase benzo[alpha]pyrene monooxygenase activity, 7-ethyoxyresorufin deethylase activity or the formation of 2-, 3- or 4-hydroxylated metabolites from biphenyl, in accordance with previous results with alpha-naphthoflavone pretreatment. The results suggest that adult Drosophila is non-responsive to induction by polycyclic aromatic hydrocarbons. The role of the TCDD receptor, which has been reported to be present in Drosophila, is obscure against this background. The implications for mutagenicity testing in Drosophila is discussed.  相似文献   

18.
The characterisation of metabolites formed from benzo(a)pyrene (BP) by Aspergillus ochraceus TS and effect of inducers on BP metabolism are reported. The high pressure liquid chromatographic profile of BP metabolites was similar to that of mammalian microsomes furnishing diols, quinones and phenols. The production of BP-4,5-dihydrodiol (K-region diol) by Aspergillus ochraceus TS seems to be novel and provides first report on BP metabolism by eukaryotic fungi. In control, phenols and quinones were produced in excess over dihydrodiols while the induced preparation showed the reverse order. Presumably the induction effecting production of excess dihydrodiols influenced the synthesis of epoxide hydrolase. In addition, a differential increase in BP metabolism was observed with inducers of narrow and broad specificity.  相似文献   

19.
J B Hook  C R Elcombe  M S Rose  E A Lock 《Life sciences》1982,31(11):1077-1084
Few studies have been designed to quantify the response of the mammalian kidney to agents known to induce monooxygenase activity of renal monooxygenase response to three agents representing different classes of inducers: 2,4,2',4'-tetrachlorobiphenyl (2,4,2',4',-TCB), representative of the barbiturate class, beta-naphthoflavone (BNF), representative of the polycyclic aromatic hydrocarbon class and isosafrole (ISO) as a novel class of inducing agent. Studies were carried out using adult rats and mice of both sexes. Treatment with BNF and ISO stimulated ethoxycoumarin and ethoxyresorufin deethylase activities in renal microsomes from male and female rats and mice, whereas treatment with 2,4,2',4',-TCB had no effect on either enzyme in rats of either sex. NADPH-cytochrome-c-reductase activity was unaffected by any treatment. In rat renal microsomes, cytochromes P-450 and b5 were increased by treatment with BNF and ISO but were not altered by 2,4,2',4'-TCB. Sodium dodecyl sulphate-polyacrylamide gel treated with BNF showed the appearance of a protein band in the 50-60000 dalton range which is similar to that observed in liver microsomes following BNF treatment. These studies confirm and extend previous observations that rat kidney is refractory to induction by inducers of the phenobarbital class, but responds to ISO and the polycyclic aromatic class of inducers. In addition, the studies have demonstrated the presence of a protein in renal microsomes after pretreatment of rats with BNF that was not apparent in microsomes from control rat kidneys.  相似文献   

20.
The polycyclic aromatic hydrocarbon (PAH) benzo[ghi]perylene (BghiP) lacks a "classic" bay-region and is therefore unable to form vicinal dihydrodiol epoxides thought to be responsible for the genotoxicity of carcinogenic PAHs like benzo[a]pyrene. The bacterial mutagenicity of BghiP increases considerably after inhibition of the microsomal epoxide hydrolase (mEH) indicating arene oxides as genotoxic metabolites. Two K-region epoxides of BghiP, 3,4-epoxy-3,4-dihydro-BghiP (3,4-oxide) and 3,4,11,12-bisepoxy-3,4,11,12-tetrahydro-BghiP (3,4,11,12-bisoxide) identified in microsomal incubations of BghiP are weak bacterial mutagens in strain TA98 of Salmonella typhimurium with 5.5 and 1.5 his+-revertant colonies/nmol, respectively. After microsomal activation of BghiP in the presence of calf thymus DNA three DNA adducts were detected using 32P-postlabeling. The total DNA binding of 2.1 fmol/microg DNA, representing 7 adducts in 10(7) nucleotides, was raised 3.6-fold when mEH was inhibited indicating arene oxides as DNA binding metabolites. Co-chromatography revealed the identity between the main adduct of metabolically activated BghiP and the main adduct of the 3,4-oxide. DNA adducts of BghiP originating from the 3,4,11,12-bisoxide were not found. Therefore, a K-region epoxide is proposed to be responsible for the genotoxicity of BghiP and possibly of other PAHs without a "classic" bay-region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号