首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
PKCα 由线粒体向细胞核转运与胃癌细胞凋亡诱导密切相关   总被引:7,自引:1,他引:6  
PKC在细胞生长、分化、凋亡和信号转导调节中具有重要作用.通过激光扫描共聚焦显微镜证实:在胃癌BGC-823细胞中,一部分PKCα 定位于线粒体,一部分定位在胞浆,细胞经TPA处理后,位于线粒体和胞浆的PKCα 向细胞核转运;Western blot检测则发现PKCα 蛋白表达水平在TPA处理前后没有发生变化.此外,应用凋亡诱导剂和特异性PKC抑制剂的实验结果进一步证实:胃癌细胞内PKCα由线粒体和胞浆向细胞核转运与细胞凋亡的诱导密切相关.提示PKCα在细胞内的定向转运可能是与细胞凋亡过程相关联的重要事件之一.  相似文献   

2.
Syntaxin 1A (Syn1A) 和 Munc18a 蛋白在囊泡转运和分泌中起着至关重要的作用,然而它们在细胞中分选和转运的分子机制目前尚不清楚 . 我们用绿色荧光蛋白 (EGFP) 和红色荧光蛋白 (TDimer2) 分别标记 Syn1A 和 Munc18a ,并用荧光显微技术观察它们在 BHK-21 和 HEK293 细胞中的转运和定位 . 实验结果表明 Syn1A 主要定位在细胞质膜上,而 Munc18a 主要分布在胞浆中,但是与 Syn1A 共表达时能定位到细胞质膜上 . 删除胞浆部分的 Syn1A 蛋白不能上膜,提示其胞浆结构域在分选和定位过程中起着重要的作用 .  相似文献   

3.
冯言  刘马峰  程安春 《微生物学报》2016,56(7):1061-1069
几乎所有细菌的生长都离不开铁元素。在有氧的环境中,三价铁离子几乎无法被细菌直接利用。但是在宿主胃肠道中,铁元素主要以可溶性的亚铁离子形式存在,它们可通过革兰氏阴性菌外膜直接进入胞周质,在周质通过亚铁离子转运系统,将铁离子转运至胞浆供细菌利用。绝大多数阴性菌主要是通过Feo转运系统利用亚铁离子,大肠杆菌的Feo转运系统由feoA、feoB和feoC3个基因组成。除Feo转运系统外,还发现Yfe转运系统、Efe转运系统、Sit转运系统等。本文重点介绍革兰氏阴性菌Feo转运系统的组成及作用机制,以期为进一步研究细菌亚铁离子的转运机制提供参考。  相似文献   

4.
在脂肪和骨骼肌细胞中,胰岛素可迅速刺激葡萄糖转运,即通常所说的GLUT4转运。 GLUT4转运是指Rabs与GTP结合时,促进囊泡与微管和微丝蛋白结合,并通过锚定和融合作用使GLUT4囊泡与目标膜结构融合。多数 Rab 家族成员广泛表达于各种组织细胞中,且在细胞内定位十分广泛,几乎存在于真核细胞所有的膜相关的细胞器的胞浆侧。 Rab 蛋白作为囊泡运输的分子开关,通过调节运输小泡的停泊和融合,在囊泡的形成、转运、粘附、锚定、融合等过程中起着重要的作用。 Rab蛋白受到多种上游调节蛋白的调节,同时调控着下游的多种效应蛋白,构成了复杂的调控网络:任何一个环节改变都可能会导致蛋白质转运的异常,进而引发疾病。本文系统阐述了Rab蛋白在葡萄糖转运过程中的作用及该领域的最新进展。  相似文献   

5.
大鼠心肌细胞核钙调素入核转运与核钙调节关系的探讨   总被引:4,自引:0,他引:4  
最近发现,钙调素作为细胞内钙受体,除了调节胞浆的多种功能之外,可能还参与胞浆信号向核内快速传递。本研究观察大鼠心肌细胞核对钙调素的入核转运与钙浓度的关系,并初步探讨其调节机制。大鼠心肌细胞核采用差速离心和密度梯度离心分离提纯。用荧光分光光度计测定荧光标记钙调素向细胞核转入量发现,大鼠心肌细胞核对核外的CaM向核孔转运量具有[Ca~(2+)]浓度依赖性,随核外[Ca~(2+)]浓度的增加而增加(P<0.001),在[Ca~(2+)]浓度为10~(-3)mol/L时,ryanodine受体的拮抗剂rutheniumred和cADP ribose受体拮抗剂8-Br cADP ribose显著抑制CaM的细胞核孔转运(分别降低20%和18%,P<0.05),而IP_3受体拮抗剂heparin和Ca~(2+)-ATPase抑制剂thapsigargin抑制CaM的细胞核孔转运更显著(分别降低90%和89%,P<0.001)。上述结果表明心肌细胞核对CaM的向核转运,受核外[Ca~(2+)]和核钙摄取、释放所调节。  相似文献   

6.
胞浆囊泡转运的包被复合体与蛋白分拣   总被引:1,自引:0,他引:1  
在胞浆囊泡转运体系中囊泡包被复合体对于蛋白的分拣与定向转运有重要意义。目前较明确的囊泡包被复合体有:笼形蛋白被复合体,COPⅠ、COPⅡ,囊泡相关肌球蛋白。这些复合体各有其特定识别序列,彼此分工又相互协同,维持着转运系统的协调有序。  相似文献   

7.
X-连锁肾上腺 脑白质营养不良基因(ALD基因)编码的ALD蛋白(ALDP)是4种人类ABCD转运蛋白之一,为一种半ABC转运蛋白,既有ABC(ATP binding cassette)转运蛋白的共有特征,又有过氧化物酶体膜蛋白的特点. 其功能可能是将胞浆中极长链饱和脂肪酸(VLCFA)或其衍生物转运到过氧化物酶体内,并在其中进行β氧化. 已报道的ALD基因突变有900多个,其后果多种多样,但最终都使VLCFA或其衍生物无法进入过氧化物酶体,从而使VLCFA在体内蓄积. 作者认为,ALDP是研究ABCD转运蛋白,乃至所有ABC转运蛋白的一个极好模型.  相似文献   

8.
目的:建立稳定表达EGFP标记的葡萄糖转运蛋白4的CHO细胞系,为研究GLUT4在CHO细胞中的转运调节机制奠定基础。方法:采用分子克隆方法构建GLUT4-EGFP的融合蛋白,在FLP-in的CHO细胞系中表达,潮霉素筛选后得到稳定的细胞系。结果:通过共聚焦显微镜的检测,证明了此稳定细胞系的阳性率达到了99%。定位研究表明大部分GLUT4以囊泡形式分布在CHO细胞胞浆内,但是质膜上也有少量的GLUT4。结论:建立了一个稳定表达GLUT4-EGFP的CHO细胞系,为进一步研究GLUT4的转运提供了一个很好的细胞模型。  相似文献   

9.
RNA的核质转运蒋诗平(中国科学技术大学国家同步辐射实验室,合肥230029)李振刚(中国科学技术大学生物系,合肥230026)关键词核质转运转运信号介质前言RNA转运是真核生物细胞核质转运的重要过程之一。核孔复合物(nuclearporecompl...  相似文献   

10.
腺苷酸转运蛋白(ANT)是32kDa的线粒体内膜蛋白。ANT有双重功能,一方面它能作为一个反向转运载体介导胞浆ADP和线粒体ATP的交换,另一方面,ANT能参与线粒体非特异性PTP的形成而调控细胞凋亡。现就ANT的结构、特性、功能以及ANT活性对细胞凋亡的调控进行综述。  相似文献   

11.
Aging in the sciatic nerve of the rat is characterized by various alterations, mainly cytoskeletal impairment, the presence of residual bodies and glycogen deposits, and axonal dystrophies. These alterations could form a mechanical blockade in the axoplasm and disturb the axoplasmic transports. However, morphometric studies on the fiber distribution indicate that the increase of the axoplasmic compartment during aging could obviate this mechanical blockade. Analysis of the axoplasmic transport, using acetylcholinesterase (AChE) molecular forms as markers, demonstrates a reduction in the total AChE flow rate, which is entirely accounted for by a significant bidirectional 40-60% decrease in the rapid axonal transport of the G4 molecular form. However, the slow axoplasmic flow of G1 + G2 forms, as well as the rapid transport of the A12 form of AChE, remain unchanged. Our results support the hypothesis that the alterations observed in aged nerves might be related either to the impairment in the rapid transport of specific factor(s) or to modified exchanges between rapidly transported and stationary material along the nerves, rather than to a general defect in the axonal transport mechanisms themselves.  相似文献   

12.
Chick collapsin-1, a member of the semaphorin family, has been implicated in axonal pathfinding as a repulsive guidance cue. Collapsin-1 induces growth cone collapse via a pathway which may include CRMP-62 and heterotrimeric G proteins. CRMP-62 protein is related to UNC-33, a nematode neuronal protein required for appropriately directed axonal extension. Mutations in unc-33 affect neural microtubules, the basic cytoskeletal elements for axoplasmic transport. Using computer-assisted video-enhanced differential interference contrast microscopy, we now demonstrate that collapsin-1 potently promotes axoplasmic transport. Collapsin-1 doubles the number of antero- and retrograde-transported organelles but not their velocity. Collapsin-1 decreases the number of stationary organelles, suggesting that the fraction of time during which a particle is moving is increased. Collapsin-1-stimulated transport occurs by a mechanism distinct from that causing growth cone collapse. Pertussis toxin (PTX) but not its B oligomer blocks collapsin-induced growth cone collapse. The holotoxin does not affect collapsin-stimulated axoplasmic transport. Mastoparan and a myelin protein NI-35 induce PTX-sensitive growth cone collapse but do not stimulate axoplasmic transport. These results provide evidence that collapsin has a unique property to activate axonal vesicular transport systems. There are at least two distinct pathways through which collapsin exerts its actions in developing neurons. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 316–328, 1997  相似文献   

13.
G. W. Gross  D. G. Weiss 《Protoplasma》1983,114(3):198-209
Summary The microtubule is a highly efficient vectorial structure that could orient a transport force generating mechanism and also absorb the recoil produced by vectorial force generation. We have assumed that a nonspecific shear force is generated in a narrow annulus around the microtubule and have calculated the velocity profiles in the shear flow and drag flow regions that result from such a mechanism. This circumtubular flow of low visocosity cytoplasm is thought to be the basic carrier stream that produces the observed axoplasmic transport phenomena. These carrier streams are devoid of neurofilaments and form the halos or exclusion zones seen around microtubules in electron micrographs. Individual carrier streams may merge hydrodynamically to produce transport domains that are capable of moving large organelles in a saltatory manner. Exchange of material between the low viscosity transport domains and the high macroviscosity neurofilament regions produces mass fluxes akin to those found in chromatographic columns. Calculations of energy required to maintain streaming and of the energy available to the transport system show a close correspondence and demonstrate that a continuous carrier stream activity is energetically feasible.  相似文献   

14.
脑源性神经营养因子(brain-derived neurotrophic factor,BDNF)在发育及成熟的中枢神经系统(central nervoussystem,CNS)中起到举足轻重的调节作用,而其中绝大部分作用由其B型酪氨酸激酶受体(tyrosine kinase receptortype B,TrkB)介导,因此TrkB在神经元中的轴浆转运过程显得尤为重要。本文从动力蛋白、潜在调节分子、细胞骨架蛋白等方面对TrkB轴浆转运分子机制的研究进展进行综述,并就其进一步研究提出一系列的问题与展望。  相似文献   

15.
Transduction mechanism for modulation of axoplasmic transport by neurotransmitters was studied using cultured mouse superior cervical ganglion cells. The transported particles were analyzed with a computer-assisted video-enhanced differential interference contrast microscope system. Acetylcholine depressed and adrenaline increased axoplasmic transport. GTP-binding proteins linked with both receptors activate or inactivate adenylyl cyclase, thereby altering the intracellular concentration of cyclic AMP. The cyclic AMP activates protein kinase A, which phosphorylates certain enzymes and the enzymes in turn phosphorylate motor proteins. An inhibitor of protein kinase A, KT5720, decreases the number of the transported particles. In a stable state the cyclic AMP level stays at a normal level. Treatment with neurotransmitters causes a change in this level, which changes the activity of protein kinase A and thus decreases or enhances the phosphorylation of motor proteins. These changes are involved in the modulation of axoplasmic transport. In honor of Dr. Sidney Ochs.  相似文献   

16.
K Kawamoto  K Shimizu 《Human cell》1991,4(3):197-203
Axoplasmic flow is essential to the regeneration of peripheral nerves. We observed a mean of 12 mm/day for the slow axoplasmic flow and a mean of 410mm/day for the fast axoplasmic flow. In the process of regeneration of peripheral nerves, however, slow transport increased to 14.7mm/day and fast transport to 572mm/day on day 7. We reviewed the relevant literature on the axoplasmic flow and described the topics in this report. Some central nerves may show poor regeneration but it has been confirmed that nerve cells grow and survive by intracerebral nerve transplantation, and this technique has been applied to the treatment of Parkinson's disease. Further development can be expected for the regeneration of central nerves through transplantation.  相似文献   

17.
Axoplasmic transport along the optic axons was studied after intraocular injections of kainic acid (KA). Transport of labeled material did not initiate from the eye when KA was injected simultaneously with the protein precursor [3H]proline. When KA was injected after axoplasmic transport of labeled proteins had begun, no additional radioactive material moved out of the retinal ganglion cells. However, the labeled material already present in the optic nerve at the time of KA injection continued to move, and accumulated at the nerve endings. Although KA reduces the incorporation of precursor, this effect of KA on axoplasmic transport appears to be more than a consequence of inhibition on precursor uptake or protein synthesis. Recovery from this KA action began 6 h after exposure to KA and was about 50% recovered by 36 h. The extent of the recovery remained at this level for as long as a week, which suggested a partial recovery of the ganglion cells. A second exposure to KA after the inner plexiform layer had virtually disappeared was as effective as the first exposure in preventing the appearance of transported protein in the optic nerve, suggesting a direct action of KA on the ganglion cells. We interpreted the results to indicate that KA interferes with the initiation phase of axoplasmic transport in ganglion cells and this effect is partially reversible.  相似文献   

18.
Collapsin‐1/SemaIII, a member of the semaphorin family, has been implicated in axonal pathfinding as a repulsive guidance cue. Cellular and molecular mechanisms by which collapsin‐1 exerts its action are not fully understood. Collapsin‐1 induces growth cone collapse via a pathway which may include neuropilin‐1, a cell‐surface collapsin‐1 binding protein, as well as intracellular CRMP‐62 and heterotrimeric G proteins. We previously identified a second action of collapsin‐1, the facilitation of antero‐ and retrograde axoplasmic transport. This response occurs via a mechanism distinct from that causing growth cone collapse. To investigate the possible involvement of neuropilin‐1 in the action of collapsin‐1 on axoplasmic transport, we produced a soluble neuropilin‐1 (sNP‐1) lacking the transmembrane and intracellular region. sNP‐1 progressively displaced the dose–response curve for collapsin‐1 to induce growth cone collapse to higher concentrations. sNP‐1 also inhibited collapsin‐1‐induced augmentation of both antero‐ and retrograde axoplasmic transport. Furthermore, an anti‐neuropilin‐1 antibody blocked the collapsin‐induced axoplasmic transport. These results together indicate that neuropilin‐1 mediates collapsin‐1 action on axoplasmic transport. To visualize collapsin‐1 binding to endogenous neuropilin‐1, we used a truncated collapsin‐1–alkaline phosphatase fusion protein (CAP‐4). CAP‐4 stains the growth cone, neurite, and cell body. However, local application of collapsin‐1 to growth cone but to neither neurite nor cell body promotes axoplasmic transport. Thus, growth cone NP‐1 mediates the facilitatory action of collapsin‐1 on antero‐ and retrograde axoplasmic transport. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 579–589, 1999  相似文献   

19.
Reduced Axoplasmic Somatostatin Transport in Hypothyroid Rats   总被引:1,自引:1,他引:0  
The effect of hypothyroidism on neuronal function was studied by measuring axoplasmic transport of immunoreactive somatostatin in rat sciatic nerve by the ligation technique. Accumulation of immunoreactive somatostatin proximal to a ligature was linear up to 8 h in normal, in thyroidectomized, and in parathyroidectomized rats. The transport rate was decreased by 38% in thyroidectomized rats as compared to normal rats and was unchanged in parathyroidectomized rats. Sciatic nerve content of somatostatin in hypothyroid rats did not differ from control. Reduced accumulation of immunoreactive somatostatin in hypothyroid rats may be due to a decrease in somatostatin synthesis or in axoplasmic transport, or to an increase in the degradation rate of the peptide.  相似文献   

20.
A new technique was devised for the dynamic detection of the axoplasmic transport of beta-radioactively labeled materials in which a semiconductor radiation detector was used as the beta-ray counter. The detector element is a silicon p-n junction diode and has a diameter of 2.0 mm. With this detector, the beta-radioactive distribution of axoplasmic transport could be measured in a axon maintained physiologically without cutting nerves. This method makes possible determination of the transport rate using one bundle of peripheral nerves. The rate in the bullfrog was 6.4 mm per hour at 24.0 degrees D. Temperature effects on the bullfrog axoplasmic transport were also observed at different temperatures, ranging from 5.0 to 24.0 degrees C. At these temperatures the rate increased as an exponential function of temperature from 1.1 to 6.4 mm per hour. Within this temperature range, the Q10 is 2.5 and an Arrhenius plot of the natural logarithm of velocity versus the reciprocal of absolute temperature yielded an apparent activation energy of 14.8 Kcal. this technique offers great advantages in permitting direct study of the axoplasmic flow of the axon in a physiological condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号