首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
2.
The Notch signaling pathway has been shown to control cell-fate decisions during mouse development. To study the role of Notch1 in epidermal differentiation and the development of the various cell types within the mouse hair follicle, we generated transgenic mice that express a constitutive activated form of Notch1 under the control of the involucrin promoter. Transgenic animals express the transgene in the suprabasal epidermal keratinocytes and inner root sheath of the hair follicle, and develop both skin and hair abnormalities. Notch1 overexpression leads to an increase of the differentiated cell compartment in the epidermis, delays inner root sheath differentiation, and leads to hair shaft abnormalities and alopecia associated with the anagen phase of the hair cycle.  相似文献   

3.
In order to characterize connexin expression and regulation in the epidermis, we have characterized a rat epidermal keratinocyte (REK) cell line that is phenotypically similar to basal keratinocytes in that they have the ability to differentiate into organotypic epidermis consisting of a basal cell layer, 2-3 suprabasal cell layers, and a cornified layer. RT-PCR revealed that REK cells express mRNA for Cx26, Cx31, Cx31.1, Cx37, and Cx43, which mimics the reported connexin profile for rat tissue. In addition, we report the expression of Cx30, Cx30.3, Cx40, and Cx45 in rat keratinocytes, highlighting the complexity of the connexin complement in rat epidermis. Furthermore, 3-dimensional analysis of organotypic skin revealed that Cx26 and Cx43 are exquisitely regulated during the differentiation process. The life-cycle of these connexins including their expression, transport, assembly into gap junctions, internalization, and degradation are elegantly depicted in organotypic epidermis as keratinocytes proceed from differentiation to programmed cell death.  相似文献   

4.
In order to characterize connexin expression and regulation in the epidermis, we have characterized a rat epidermal keratinocyte (REK) cell line that is phenotypically similar to basal keratinocytes in that they have the ability to differentiate into organotypic epidermis consisting of a basal cell layer, 2-3 suprabasal cell layers, and a cornified layer. RT-PCR revealed that REK cells express mRNA for Cx26, Cx31, Cx31.1, Cx37, and Cx43, which mimics the reported connexin profile for rat tissue. In addition, we report the expression of Cx30, Cx30.3, Cx40, and Cx45 in rat keratinocytes, highlighting the complexity of the connexin complement in rat epidermis. Furthermore, 3-dimensional analysis of organotypic skin revealed that Cx26 and Cx43 are exquisitely regulated during the differentiation process. The life-cycle of these connexins including their expression, transport, assembly into gap junctions, internalization, and degradation are elegantly depicted in organotypic epidermis as keratinocytes proceed from differentiation to programmed cell death.  相似文献   

5.
The hormonal form of vitamin D appears to be a physiological regulator of the epidermogenesis. While its differentiation-promoting effect is well accepted, there are conflicting reports of its action on keratinocyte proliferation. This study evaluates the specific changes induced by vitamin D treatment in the epidermis of rats nutritionally deprived of vitamin D by cell size analysis, acridine orange flowcytometry, and the immunohistochemical detection of proteins related to the different stages of differentiation (epidermal calcium binding protein and suprabasal keratins recognized by KL1 antibody) The total keratinocyte and isolated keratinocyte subpopulations were studied. Vitamin D deficiency was associated in the total population with a lower percentage of actively proliferating cells and with a lack of differentiation markers. Study of the isolated cell populations demonstrated, however, that small cells were actively proliferating, whereas they were mainly in the resting stage in the normal epidermis. Treatment with vitamin D dramatically increased cell proliferation and stimulated the appearance of differentiation markers. Some of the observed effects, such as an increase in proliferation and the appearance of epidermal calcium binding protein, were due to the normalisation of the vitamin D deficiency-induced hypocalcemia, whereas the expression of suprabasal keratins was directly dependent on vitamin D. We conclude that the action of vitamin D on the epidermis is associated with increases in both proliferation and differentiation of keratinocytes. Vitamin D itself and its resulting action on calcium homeostasis appear to contribute to the observed effects. © 1996 Wiley-Liss, Inc.  相似文献   

6.
By incubating multilayered primary cultures of human keratinocytes in low-calcium medium the suprabasal cell layers can be stripped off leaving a basal cell monolayer. When this monolayer is re-fed normal calcium medium a reproducible series of cell kinetic, morphological, and biochemical changes takes place resulting in the reestablishment of a multilayered tissue. Analysis of cell-cycle-specific proteins indicated that, during regeneration, a large cohort of cells became synchronized undergoing DNA replication after 3 days. Examination of culture morphology at the ultrastructural level confirmed the capacity of the basal cell monolayer to gradually reestablish a multilayered, differentiated epithelium. The ultrastructural appearance at 7 days poststripping was similar to that of unstripped cultures and was indicative of a tissue in steady state. Quantitation of cornified envelope formation at different times during regeneration showed that an increasing proportion of the cells were able to undergo terminal differentiation. In general, the pattern of keratin synthesis in the original epidermal explant labelled in vitro was similar to the pattern observed in human epidermis in vivo; however, in contrast to epidermis in vivo the explant also synthesized the hyperproliferative keratins 6 and 16. The in vitro differentiated keratinocytes showed underexpression of several proteins identified as differentiation markers, whereas several basal cell markers were overexpressed compared to the original explant. In addition, the in vitro differentiated keratinocytes synthesized some new proteins, notably keratins 7, 15 and 19. The basal layer remaining after stripping mainly expressed basal cell markers; however, during recovery, some of the differentiation-specific markers (e.g. keratin 10 and 15) were again expressed together with keratin no. 19, which is also expressed during wound healing in vivo. It is suggested that the present system of regenerating epidermal tissue cultures may serve as an experimental model to investigate certain aspects of the regulation of epidermal tissue homeostasis.  相似文献   

7.
During tail regeneration in lizards, the epidermis forms new scales comprising a hard beta‐layer and a softer alpha‐layer. Regenerated scales derive from a controlled folding process of the wound epidermis that gives rise to epidermal pegs where keratinocytes do not invade the dermis. Basal keratinocytes of pegs give rise to suprabasal cells that initially differentiate into a corneous wound epidermis and later in corneous layers of the regenerated scales. The immunodetection of a putative p53/63 protein in the regenerating tail of lizards shows that immunoreactivity is present in the nuclei of basal cells of the epidermis but becomes mainly cytoplasmic in suprabasal and in differentiating keratinocytes. Sparse labelled cells are present in the regenerating blastema, muscles, cartilage, ependyma and nerves of the growing tail. Ultrastructural observations on basal and suprabasal keratinocytes show that the labelling is mainly present in the euchromatin and nucleolus while labelling is more diffuse in the cytoplasm. These observations indicate that the nuclear protein in basal keratinocytes might control their proliferation avoiding an uncontrolled spreading into other tissues of the regenerating tail but that in suprabasal keratinocytes the protein moves from the nucleus to the cytoplasm, a process that might be associated to keratinocyte differentiation.  相似文献   

8.
Adult dorsal mouse epidermis (strain NMRI) was separated from dermis in thin-split sections by cold trypsinization. From the isolated keratinocytes four cell fractions (F1-F4) were obtained using discontinuous Percoll density gradient centrifugation. The fractions were characterized by light microscopy, by indirect immunofluorescence using specific lectins (Bandeirea simplicifolia and Ulex europaeus) and an antibody against the spinous 67-kDa keratin polypeptides, and by electrophoretic analysis of the keratin polypeptide patterns. The heavy fractions, F3 and F4, were identified as being derived from the basal cell layer, whereas the light fractions, F1 and F2, consisted mainly of suprabasal cells. The basal cells (F3 and F4) could be cultivated on plastic substratum coated with rat-tail collagen (4 X MEM, 10% FCS at 34 degrees C; plating efficiency 70-85%). Labeling of DNA with [3H]thymidine indicated that during the first 5 days of cultivation, basal cells ran through two cell cycles, after which the proliferative activity ceased due to terminal differentiation. The addition of the tumor promoter TPA led to a stimulation of DNA synthesis in confluent cultures of both F3 and F4 cells.  相似文献   

9.
Transforming growth factor-beta 1 (TGF beta 1) is a potent inhibitor of epithelial cell proliferation and its effects on growth and differentiation have been extensively characterized in cultured keratinocytes. We used two TGF beta 1-specific polyclonal antibodies (anti-LC and anti-CC) to determine the presence of TGF beta 1 peptide in keratinocytes in sections of normal human skin in situ and in both plaque and nonplaque skin from individuals with psoriasis. In contrast to the differentiation phenotype expressed by keratinocytes in normal epidermis, keratinocytes in the psoriatic plaque exhibit a hyperproliferative/regenerative differentiation phenotype. Anti-TGF beta 1 staining was observed primarily in the epidermis. Anti-LC TGF beta 1 antibody stained nonproliferating, differentiated suprabasal keratinocytes intracellularly in normal skin but did not stain psoriatic plaques from five of seven patients. In contrast, anti-CC TGF beta 1 antibody stained suprabasal keratinocytes extracellularly in psoriatic plaques, but did not stain normal skin. Both anti-LC and anti-CC stained suprabasal keratinocytes intracellularly in nonplaque psoriatic skin. Thus, the conformation or structure of TGF beta 1 and its localization vary in keratinocytes with distinct differentiation phenotypes suggesting that TGF beta 1 is a potential modulator of keratinocyte differentiation in vivo. Selective association of TGF beta 1 with nonproliferating keratinocytes in the suprabasal layers of the epidermis and its exclusion from the proliferating keratinocytes in the basal layer suggest that it may be a physiological regulator of keratinocyte proliferation. In addition, the intracellular localization of TGF beta 1 peptide in both normal and psoriatic keratinocytes suggests that it is constitutively synthesized by epidermal keratinocytes in vivo.  相似文献   

10.
Human keratinocytes grown on deepidermized dermis (DED) are able to reconstruct a morphologically normal stratified and keratinized epidermis. This culture system is suitable for studying in vitro the effects of various hormones and factors on epidermal differentiation, and the goal of the present work was to study the effect of vitamin D. We found that the hormonal form of vitamin D3, 1,25-dihydroxyvitamin D3, produced very specific alterations in epidermal architecture in a dose-dependent manner, consisting of significant reduction of the nucleated layers of the epithelium, but not of the stratum corneum, which was instead slightly thickened. The study of stage-specific differentiation markers showed that the two extreme layers of epidermis, i.e. the basal layer and the stratum corneum, were unaffected by the hormone, but that the reduction involved specifically the intermediate differentiation compartment, i.e. the spinous and granular layers. It was shown that the reduction of the intermediate compartment provoked by 1,25-dihydroxyvitamin D3 is not due to a block in the proliferation of basal cells or to inhibition of their differentiation into suprabasal cells, but to stimulation of the terminal differentiation of suprabasal cells into corneocytes.  相似文献   

11.
BACKGROUND: The epidermis is maintained throughout adult life by pluripotential stem cells that give rise, via daughter cells of restricted self-renewal capacity and high differentiation probability (transit-amplifying cells), to interfollicular epidermis, hair follicles, and sebaceous glands. In vivo, transit-amplifying cells are actively cycling, whereas stem cells divide infrequently. Experiments with cultured human keratinocytes suggest that c-Myc promotes epidermal-stem cell differentiation. However, Myc is a potent oncogene that suppresses differentiation and causes reversible neoplasia when expressed in the differentiating epidermal layers of transgenic mice. To investigate the effects of c-Myc on the stem cell compartment in vivo, we targetted c-MycER to the basal layer of transgenic mouse epidermis. RESULTS: The activation of c-Myc by the application of 4-hydroxy-tamoxifen caused progressive and irreversible changes in adult epidermis. Proliferation was stimulated, but interfollicular keratinocytes still underwent normal terminal differentiation. Hair follicles were abnormal, and sebaceous differentiation was stimulated at the expense of hair differentiation. The activation of c-Myc by a single application of 4-hydroxy-tamoxifen was as effective as continuous treatment in stimulating proliferation and sebocyte differentiation, and the c-Myc-induced phenotype continued to develop even after the grafting of treated skin to an untreated recipient. CONCLUSIONS: We propose that transient activation of c-Myc drives keratinocytes from the stem to the transit-amplifying compartment and thereby stimulates proliferation and differentiation along the epidermal and sebaceous lineages. The ability, demonstrated here for the first time, to manipulate exit from the stem cell compartment in vivo will facilitate further investigations of the relationship between stem cells and cancer.  相似文献   

12.
Summary Several members of the CD44 family of hyaluronan receptors are expressed on keratinocytes. To identify factors that might be important in regulating CD44 expression, we studied CD44 expression on keratinocytes growing in vitro under a variety of conditions and on cells isolated directly from epidermis. Using Western immunoblots and metabolic labeling, we showed that the pattern of CD44 proteins expressed by keratinocytes was strongly influenced by growth and differentiation. Many protein forms of CD44 are expressed on proliferating keratinocytes in preconfluent cultures, whereas only a few forms are expressed on differentiated cells and in confluent cultures. In preconfluent monolayers, at least four splice variants were identified, including epican, CD44H, CD44E, and a 180-kDa variant. In differentiated cells or in confluent cultures, by contrast, only epican and the 180-kDa protein variant were found. Synthesis of all variants is strongly downregulated when keratinocytes become confluent or when they differentiate. Epican is the predominant form of CD44 on keratinocytes under all conditions and is expressed as a heparan, chondroitin, or keratan sulfate proteoglycan. Preconfluent basal keratinocytes, but not confluent or differentiated keratinocytes, also express chondroitin sulfate proteoglycan forms of CD44E and of the 180-kDa core protein. The modal size of the epican expressed on differentiated keratinocytes is smaller than the size of the epican expressed on basal keratinocytes. Thus, cell confluence and differentiation regulate several aspects of CD44 expression on keratinocytes, suggesting nuances in function for the different protein forms.  相似文献   

13.
Stathmokinetic analysis of human epidermal cells in vitro   总被引:1,自引:0,他引:1  
Proliferation kinetics of cultured human epidermal cells is characterized in quantitative terms. Three distinct subpopulations of keratinocytes, two of which are cycling, have been discriminated by two parameter DNA/RNA flow cytometry. Based on mathematical modelling, the cell cycle parameters of the cycling subpopulations have been assessed from stathmokinetic data collected at different time points after initiation of cultures (7-15 days). The first subpopulation is composed of low-RNA cells which resemble basal keratinocytes of epidermis and which show some characteristics of stem cells; these cells have a mean generation time of approximately 100 hr. The second subpopulation consists of high-RNA cells, resembling stratum spinosum cells of epidermis, which have an average generation time of approximately 40 hr. The third subpopulation consists of non-cycling cells with G0/G1 DNA content, with cytochemical features similar to those of cells in granular layer of epidermis. The results based on modelling can reproduce with acceptable accuracy the actual growth curve of the cultured cell population. Analysis of kinetics and differentiation of human keratinocytes is of interest in view of the recent application of cultured epidermal cell sheets for transplantation onto burn wounds. The results of this study also reveal the existence of regulatory mechanisms associated with proliferation and differentiation in the cultured epidermal cell population.  相似文献   

14.
Three species of human keratins are shown to have specific localizations within the epidermis. Using an immunohistochemical technique with rabbit antisera prepared against purified human keratins, two distinct epidermal domains were defined. The 45K and 46K MW keratins occur predominantly in the basal epidermal layer, whereas 55K keratin protein occurs chiefly in the suprabasal, differentiated squamous cells. Commitment of proliferating basal cells to terminal differentiation is accompanied by changes in the proportions of keratin species.  相似文献   

15.
《The Journal of cell biology》1996,135(6):1879-1887
The Distal-less-related homeodomain gene Dlx3 is expressed in terminally differentiated murine epidermal cells. Ectopic expression of this gene in the basal cell layer of transgenic skin results in a severely abnormal epidermal phenotype and leads to perinatal lethality. The basal cells of affected mice ceased to proliferate, and expressed the profilaggrin and loricrin genes which are normally transcribed only in the latest stages of epidermal differentiation. All suprabasal cell types were diminished and the stratum corneum was reduced to a single layer. These data indicate that Dlx3 misexpression results in transformation of basal cells into more differentiated keratinocytes, suggesting that this homeoprotein is an important regulator of epidermal differentiation.  相似文献   

16.
Correlated measurements of total cellular RNA and DNA of cultured human keratinocytes by flow cytometry, followed by multivariate analysis, discriminate three distinct subpopulations of cells differing in RNA content. The first subpopulation is comprised of small cells resembling basal cells of epidermis, with low RNA content and long (100-300 h) generation times. The second subpopulation consists of keratinocytes resembling cells in the spinous layer of epidermis, characterized by increased RNA content and shorter (35-40 h) generation times. The third subpopulation consists of the largest, keratinohyalin-containing cells which remain in G1 and undergo terminal differentiation. In contrast to total cellular RNA, correlated measurements of DNA and nuclear RNA reveal that: (1) entrance of all cultured cells from G1 into S phase occurs only after accumulation of the same, threshold amount of nuclear RNA; hence there is only a single population of S + G2 + M-phase cells; (2) there are two distinct subpopulations in G1, one with minimal nuclear RNA content and another with increased RNA. Stathmokinetic experiments indicate that the G1-phase cells with low nuclear RNA have distinctly longer residence times in G1 compared to cells with high nuclear RNA content. Thus, measurements of the total cellular RNA versus nuclear RNA content reveal kinetically distinct cell subpopulations. Whereas total cellular RNA content correlates more with differentiation, nuclear RNA content reflects primarily the kinetic properties of the cell.  相似文献   

17.
sAPP, the secretory domain of the beta-amyloid precursor protein (APP), exerts a growth promoting and motogenic activity on keratinocytes. Here we report on the expression of APP and its homologue, the amyloid precursor like protein 2 (APLP2), during cutaneous wound repair using a full-thickness excisional wound healing model in mice. In unwounded skin APP was predominantly expressed in the basal cell layer. During wound healing increased suprabasal expression of APP was observed in all cell layers of the hyperproliferative epithelium at the wound margin. APP mRNA was increased up to 2.3-fold, whereas the APLP2 mRNA was decreased. Immunocytochemically, all proliferation competent keratinocytes of the normal as well as the wound site epidermis showed increased expression of APP but not of APLP2. Using culture models of keratinocyte differentiation the release of sAPP was found to be significantly higher in proliferating cells, i.e., when cultured at subconfluency or at low [Ca(2+)], than in quiescent, partially differentiated keratinocytes cultured at confluency or at high [Ca(2+)]. Our results suggest that sAPP secretion is presumably also increased in proliferation competent keratinocytes of the wound margin and that sAPP due to its growth promoting and motogenic function might participate in the control of epidermal wound repair.  相似文献   

18.
Summary The internal epithelium of mouse forestomach represents a fully keratinized tissue that has many morphological aspects in common with the integumental epidermis. In the present study we have, therefore, analyzed keratin expression in the total epithelium, in subfractions of basal cells and in living and dead suprabasal cells that were obtained by Percoll density gradient centrifugation of trypsin-dissociated forestomach keratinocytes. The keratin analysis revealed that basal forestomach keratinocytes synthesize the same keratin types as basal epidermal cells (60 000, 52 000 and 47 000 daltons), whereas differentiating cells contain both the epidermal suprabasal keratin pair (67 000 and 59 000 daltons) and the suprabasal keratin pair characteristic for other internal squamous epithelia (57 000 and 47 000 daltons). Indirect immunofluorescence using an antibody recognizing the members of the epidermal-type suprabasal keratin pair and in-situ-hybridization experiments using specific cDNA probes for the members of the internal-type keratin pair showed that the two keratin pairs are uniformly coexpressed in living suprabasal forestomach keratinocytes. Furthermore, it could be shown that distinct cells in the basal cell layer acquire the ability to express both the 67 000/59 000 dalton and the 57 000/47 000 dalton keratin pair and that some basal cells apparently lose the ability to synthesize mRNAs for basal keratins.  相似文献   

19.
The epidermal keratinocytes express two major pairs of keratin polypeptides. One pair (K5/K14) expressed specifically in basal generative compartment and the other (K1/K10) expressed specifically in the differentiating suprabasal compartment. The switch in the expression of the keratins from proliferating to differentiating compartment indicates the changes that occur in the keratin filament organization which in turn influences the functional properties of the epidermis. Proper regulation of keratin gene expression and the filament organization are absolutely necessary for normal functioning of the skin. Keratin gene mutations can influence the filament integrity thereby causing several heritable blistering disorders of the skin such as epidermolysis bullosa, bullous icthyosiform erythroderma, etc. Changes in the keratin gene expression may lead to incomplete differentiation of the epidermal keratinocyte, causing hyperproliferative diseases of the skin such as psoriasis, carcinomas, etc. This review briefly describes the changes in keratin structure or gene expression that are known to result in various disorders of the skin.  相似文献   

20.
Abstract Correlated measurements of total cellular RNA and DNA of cultured human keratinocytes by flow cytometry, followed by multivariate analysis, discriminate three distinct subpopulations of cells differing in RNA content. The first subpopulation is comprised of small cells resembling basal cells of epidermis, with low RNA content and long (100–300 h) generation times. The second subpopulation consists of keratinocytes resembling cells in the spinous layer of epidermis, characterized by increased RNA content and shorter (35–40 h) generation times. The third subpopulation consists of the largest, keratinohyalin-containing cells which remain in G1 and undergo terminal differentiation. In contrast to total cellular RNA, correlated measurements of DNA and nuclear RNA reveal that: (1) entrance of all cultured cells from G1 into S phase occurs only after accumulation of the same, threshold amount of nuclear RNA; hence there is only a single population of S + G2+ M-phase cells; (2) there are two distinct subpopulations in G1, one with minimal nuclear RNA content and another with increased RNA. Stathmokinetic experiments indicate that the G1-phase cells with low nuclear RNA have distinctly longer residence times in G1 compared to cells with high nuclear RNA content. Thus, measurements of the total cellular RNA versus nuclear RNA content reveal kinetically distinct cell subpopulations. Whereas total cellular RNA content correlates more with differentiation, nuclear RNA content reflects primarily the kinetic properties of the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号