首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Oxytocin, released in response to different physiological stimuli, could play a key role in reducing stress reaction. It was suggested that it has protective effect against inflammation and consequences of oxidative stress. Mechanisms how oxytocin effects mediated in the brain tissue are unclear. In this study, oxytocin effect on cell growth and neuronal viability was examined. Human neuroblastoma (SH-SY5Y and SK-N-SH) and glioblastoma (U87MG) cells were exposed to different concentrations of oxytocin for 12-96 h. Potential protective effect of oxytocin treatment was investigated after exposing cells to oxidative stress using hydrogen peroxide (50 mM, 2 h) or 6-hydroxydopamine (25 μM, 24 h). Cell proliferation was measured by cell counting and cell viability was examined by MTT assay. Protein expression of selected neurotrophic factors was measured as an additional parameter. Oxytocin (1 μM) significantly increased cell number in all three cell types. Viability of SH-SY5Y cells was increased in the presence of oxytocin without significant effect of dose (0.01-1 μM). Cell death induced by hydrogen peroxide was not prevented by incubation with oxytocin. Oxytocin pretreatment blunted neurotoxin 6-OHDA reduction of cell viability in SH-SY5Y cells. Oxytocin (1 μM, 12 h) elevated amount of total proteins without increasing levels of brain-derived neurotrophic factor and neurotrophic growth factor. In conclusion, oxytocin increases growth and viability of neuroblastoma and glioblastoma cells without activation of neurotrophic factors. Oxytocin does not have protective effect in oxidative stress; however, it might be important for neuroprotection to dopaminergic neurons. Its proliferative effect might be important in native cell life, euplastic processes, and tumor progression.  相似文献   

3.
4.
5.
Glioblastoma is the deadliest brain tumor in humans. High systemic toxicity of conventional chemotherapies prompted the search for natural compounds for controlling glioblastoma. The natural flavonoids luteolin (LUT) and silibinin (SIL) have anti-tumor activities. LUT inhibits autophagy, cell proliferation, metastasis, and angiogenesis and induces apoptosis; while SIL activates caspase-8 cascades to induce apoptosis. However, synergistic anti-tumor effects of LUT and SIL in glioblastoma remain unknown. Overexpression of tumor suppressor microRNA (miR) could enhance the anti-tumor effects of LUT and SIL. Here, we showed that 20 µM LUT and 50 µM SIL worked synergistically for inhibiting growth of two different human glioblastoma U87MG (wild-type p53) and T98G (mutant p53) cell lines and natural combination therapy was more effective than conventional chemotherapy (10 µM BCNU or 100 µM TMZ). Combination of LUT and SIL caused inhibition of growth of glioblastoma cells due to induction of significant amounts of apoptosis and complete inhibition of invasion and migration. Further, combination of LUT and SIL inhibited rapamycin (RAPA)-induced autophagy, a survival mechanism, with suppression of PKCα and promotion of apoptosis through down regulation of iNOS and significant increase in expression of the tumor suppressor miR-7-1-3p in glioblastoma cells. Our in vivo studies confirmed that overexpression of miR-7-1-3p augmented anti-tumor activities of LUT and SIL in RAPA pre-treated both U87MG and T98G tumors. In conclusion, our results clearly demonstrated that overexpression of miR-7-1-3p augmented the anti-tumor activities of LUT and SIL to inhibit autophagy and induce apoptosis for controlling growth of different human glioblastomas in vivo.  相似文献   

6.
L C Burgess  J O Hall 《Life sciences》2001,69(24):2819-2831
These studies investigated the effects of retinoic acids on endothelial cell proliferation. Three human neoplastic cell lines, U-373 MG glioblastoma, DU-145 prostate carcinoma, and TCCSUP bladder transitional cell carcinoma, were treated with all-trans, 9-cis, or 13-cis retinoic acids at 0.0001 to 10 microM. Hypoxia was used to ensure the expression of the angiogenic phenotype. Conditioned media (CM) were prepared by hypoxic culturing of the tumor cells with retinoic acids for 24 hours. Then CM were transferred to bovine capillary endothelial cells for 48 hours of normoxic culturing, counted and compared to controls. CM from U-373 MG and DU-145 cells, but not TCCSUP cells, treated with all-trans or 9-cis retinoic acids at several concentrations below 1 microM, caused significant (P<0.05) increases in endothelial cell proliferation of between 13 to 18%. Both nonconditioned and conditioned media, for retinoic acid concentrations above 1 microM, inhibited endothelial cell proliferation. All CM for 13-cis retinoic acid decreased endothelial cell proliferation. These results show that the cytotoxicity of retinoic acids and the growth promoting/inhibiting ability of the conditioned media is retinoic acid isoform, time, concentration, and cell type dependent. Most importantly, the conditioned media from tumor cells treated with low concentrations of all-trans or 9-cis retinoic acids significantly increased endothelial cell proliferation.  相似文献   

7.

The aim of the current study was to determine possible interaction of central oxytocin and opioidergic system on food intake regulation in neonatal layer-type chicken. In experiment 1, FD3 chicken ICV injected with control solution, oxytocin (10 µg), β-FNA (µ receptor antagonist, 5 µg) and oxytocin (10 µg)?+?β-FNA were injected. Experiments 2–6 were similar to experiments 1, except chicken injected with nor-BNI (κ receptor antagonist, 5 µg), NTI (δ receptor antagonist, 5 µg), DAMGO (µ receptor agonist, 62.25 pmol), U-50488H (κ receptor agonist, 10 nmol), DPDPE (δ receptor agonist, 20 pmol) instead of β-FNA. In experiment 7, control solution, DAMGO (125 pmol), d(CH2)5Tyr(Me)-[Orn8]-vasotocin (oxytocin antagonist, 5 µg) and DAMGO?+?d(CH2)5Tyr(Me)-[Orn8]-vasotocin were ICV injected to FD3 chicken. Experiments 8 and 9 were similar to experiments 7, except chicken injected with U-50488H (30 nmol) and DPDPE (40 pmol) instead of DAMGO. Then, cumulative food intake was recorded at 30, 60 and 120 min after injection. According to the results, ICV injection of the oxytocin (10 µg) significantly decreased food intake compared to control group (P?<?0.05). Co-injection of the oxytocin?+?β-FNA and oxytocin?+?U-50488H significantly decreased hypophagic effect of the oxytocin (P?<?0.05). While, co-injection of the oxytocin?+?nor-BNI or oxytocin?+?DAMGO significantly amplified hypophagic effect of the oxytocin in chicken (P?<?0.05). In addition, ICV injection of DAMGO (125 pmol) significantly decreased cumulative food intake compared to control group (P?<?0.05). However, co-addministration of the DAMGO?+?(CH2)5Tyr(Me)-[Orn8]-vasotocin significantly decreased hypophagic effect of the DAMGO (P?<?0.05) in chicken. These results suggested there are interconnection between oxytocin and opioidergic system on central food intake regulation, which mediates via µ and κ opioidergic receptors in neonatal layer-type chicken.

  相似文献   

8.
Developmentally regulated brain proteins (drebrins) are highly expressed in brain where they may regulate actin filament formation in dendritic spines. Recently, the drebrin E2 isoform was detected in certain epithelial cell types including the gastric parietal cell. In gastric parietal cells, activation of HCl secretion is correlated with actin filament formation and elongation within intracellular canaliculi, which are the sites of acid secretion. The aim of this study was to define the pattern of drebrin expression in gland units in the intact rabbit oxyntic gastric mucosa and to initiate approaches to define the functions of this protein in parietal cells. Drebrin E2 expression was limited entirely or almost entirely to parietal cells and depended upon the localization of parietal cells along the gland axis. Rabbit drebrin E2 was cloned and found to share 86% identity with human drebrin 1a and to possess a number of cross-species conserved protein-protein interaction and phosphorylation consensus sites. Two-dimensional Western blot and phosphoaffinity column analyses confirmed that drebrin is phosphorylated in parietal cells, and several candidate phosphorylation sites were identified by mass spectrometry. Overexpression of epitope-tagged drebrin E2 led to the formation of microspikes and F-actin-rich ring-like structures in cultured parietal cells and suppressed cAMP-dependent acid secretory responses. In Madin-Darby canine kidney cells, coexpression of epitope-tagged drebrin and the Rho family GTPase Cdc42, which induces filopodial extension, produced an additive increase in the length of microspike projections. Coexpression of dominant negative Cdc42 with drebrin E2 did not prevent drebrin-induced microspike formation. These findings suggest that 1) drebrin can induce the formation of F-actin-rich membrane projections by Cdc42-dependent and -independent mechanisms; and that 2) drebrin plays an active role in directing the secretagogue-dependent formation of F-actin-rich filaments on the parietal cell canalicular membrane. Finally, the differential distribution of drebrin in parietal cells along the gland axis suggests that drebrin E2 may be an important marker of parietal cell differentiation and functionality.  相似文献   

9.
Tumor necrosis factor receptor-associated factor 6 (TRAF6), which plays an important role in inflammation and immune response, is an essential adaptor protein for the NF-κB (nuclear factor κB) signaling pathway. Recent studies have shown that TRAF6 played an important role in tumorigenesis and invasion by suppressing NF-κB activation. However, up to now, the biologic role of TRAF6 in glioma has still remained unknown. To address the expression of TRAF6 in glioma cells, four glioma cell lines (U251, U-87MG, LN-18, and U373) and a non-cancerous human glial cell line SVG p12 were used to explore the protein expression of TRAF6 by Western blot. Our results indicated that TRAF6 expression was upregulated in human glioma cell lines, especially in metastatic cell lines. To investigate the role of TRAF6 in cell proliferation, apoptosis, invasion, and migration of glioma, we generated human glioma U-87MG cell lines in which TRAF6 was either overexpressed or depleted. Subsequently, the effects of TRAF6 on cell viability, cell cycle distribution, apoptosis, invasion, and migration in U-87MG cells were determined with 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyl tetrazolium bromide (MTT) assay, flow cytometry analysis, transwell invasion assay, and wound-healing assay. The results showed that knockdown of TRAF6 could decrease cell viability, suppress cell proliferation, invasion and migration, and promote cell apoptosis, whereas overexpression of TRAF6 displayed the opposite effects. In addition, the effects of TRAF6 on the expression of phosphor-NF-κB (p-p65), cyclin D1, caspase 3, and MMP-9 were also probed. Knockdown of TRAF6 could lower the expression of p-p65, cyclin D1, and MMP-9, and raise the expression of caspase 3. All these results suggested that TRAF6 might be involved in the potentiation of growth, proliferation, invasion, and migration of U-87MG cell, as well as inhibition of apoptosis of U-87MG cell by abrogating activation of NF-κB.  相似文献   

10.
Newcastle disease virus (NDV) is a member of genus Avulavirus within the family Paramyxoviridae. Interest of using NDV as an anticancer agent has arisen from its ability to kill tumor cells with limited toxicity to normal cells. In this investigation, the cytotolytic properties of NDV strain AF2240 were evaluated on brain tumor cell line, anaplastic astrocytoma (U-87MG), by using MTT assay. Cytological observations were studied using fluorescence microscopy and transmission electron microscopy to show the apoptogenic features of NDV on U-87MG. DNA laddering in agarose gel electrophoresis and terminal deoxyribonucleotide transferase-mediated dUTP-X nick end-labeling staining assay confirmed that the mode of cell death was by apoptosis. However, analysis of the cellular DNA content by flowcytometery showed that there was a loss of treated U-87MG cells in all cell cycle phases (G1, S and G2/M) accompanied with increasing in sub-G1 region (apoptosis peak). Early apoptosis was observed 6 h post-inoculation by annexin-V flow-cytometry method. It could be concluded that NDV strain AF2240 is a potent antitumor agent that induce apoptosis and its cytotoxicity increasing while increasing of time and virus titer.  相似文献   

11.
In human neuroblastoma cell lines (LAN5, SHEP and IMR32), mycophenolic acid (MPA) at concentrations (10? 7–10? 6 M) readily attainable during immunosuppressive therapy with mycophenolate mofetil (Cellcept), induces guanine nucleotide depletion leading to cell cycle arrest and apoptosis through a p53 mediated pathway (up‐regulation of p53, p21 and bax and down‐regulation of bcl‐2 and survivin). MPA‐induced apoptosis is also associated to a marked decrease of p27 protein. In the same cell lines MPA, at lower concentrations (50 nM), corresponding to the plasma levels of the active free drug during Cellcept therapy, induces differentiation toward the neuronal phenotype by causing a partial chronic guanine nucleotide depletion. MPA‐induced differentiation is not associated to p27 accumulation as occurs using retinoic acid. At a fixed concentration of MPA a higher percentage of apoptotic or differentiated cells is obtained when non dialysed serum substitutes for the dialysed one, due to the higher hypoxanthine concentration in the former (about 10 µM) leading to competition on HPRT‐mediated salvage of guanine. At hypoxanthine or oxypurinol concentrations higher than 1 µM (up to 100 µM) no further enhancement of MPA effects was obtained, in agreement with the recently described safety of the allopurinol‐mycophenolate mofetil combination in the treatment of hyperuricemia of kidney transplant recipients. The apoptotic effects of MPA do not appear to be significantly increased by the UDP‐glucuronosyltransferase inhibitor niflumic acid.  相似文献   

12.
Desert truffles are seasonal and important edible fungi that grow wild in many countries around the world. Truffles are natural food sources that have significant compositions. In this work, the antioxidant, chemical composition, anticancer, and antiangiogenesis properties of the Terfezia claveryi truffle were investigated. Solvent extractions of the T. claveryi were evaluated for antioxidant activities using (DPPH, FRAP and ABTS methods). The extracts cytotoxicity on the cancer cell lines (HT29, MCF-7, PC3 and U-87 MG) was determined by MTT assay, while the anti-angiogenic efficacy was tested using ex-vivo assay. All extracts showed moderate anticancer activities against all cancer cells (p < 0.05). The hexane extract inhibited the brain cell line (U-87 MG) with an IC50 of 50 μg/ml and significantly promoted cell apoptosis through the mitochondrial pathway and DNA fragmentation p < 0.001. The ethanol extract demonstrated potent antioxidants; DPPH, FRAP, and ABTS with an IC50 value of 52, 48.5 and 64.7 μg/ml, respectively. In addition, the hexane and ethyl acetate extract significantly (p < 0.001) inhibited the sprouting of microvessels by 100% and 81.2%, at 100 μg/ml, respectively. The GC analysis of the most active extract (hexane) showed the presence of several potent phytochemicals such as stigmasterol, beta-Sitosterol, squalene, lupeol, octadecadienoic acid, and oleic acid.  相似文献   

13.
In this study, we investigated the antitumor effects of the tricyclic antidepressant 3-(10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl)-N,N-dimethylpropan-1-amine (imipramine) on glioma cells. We found that exposure of U-87MG cells to imipramine resulted in the inhibition of PI3K/Akt/mTOR signaling, reduction of clonogenicity, and induction of cell death. Imipramine stimulated the formation of acidic vesicular organelles, the conversion of LC3-I to LC3-II, and the redistribution of LC3 to autophagosomes, suggesting that it stimulates the progression of autophagy. It did not, however, induce apoptosis. We further showed that knockdown of Beclin-1 using siRNA abrogated imipramine-induced cell death. These results suggest that imipramine exerts antitumor effects on PTEN-null U-87MG human glioma cells by inhibiting PI3K/Akt/mTOR signaling and by inducing autophagic cell death.  相似文献   

14.
C Gespach  H Cost  J P Abita 《FEBS letters》1985,184(2):207-213
Histamine H2 receptor activity (cAMP generation) has been characterized in U-937 cells before and after retinoic acid-induced differentiation into monocyte-/macrophage-like cells. The differentiation is associated with a decreased capacity of U-937 monocytes to generate cAMP under basal conditions or after cell surface receptor stimulation by histamine, isoproterenol and PGE1. In contrast, the potencies of the hormones are unchanged during monocytic maturation (EC50 values = 3.2-4.6 X 10(-6) M histamine, 4.6-7 X 10(-9) M isoproterenol, 2-4.6 X 10(-6) M PGE1). The data support the view that histamine and cAMP-inducing agents may control the proliferation and differentiation of normal and leukemic cells committed to monocytic maturation in man. They also raise the possibility that normal human monocytes also possess functional H2 receptors and that histamine may be implicated in the regulation of monocyte/macrophage functions.  相似文献   

15.
16.
Oxytocin has been implicated in the regulation of prostate growth. However, the cellular localisation of oxytocin in the normal and diseased human prostate is not known. Oxytocin, oxytocin-associated neurophysin and oxytocin receptor were detected by immunohistochemistry in tissues from patients undergoing routine prostatectomy and in normal human prostate epithelial and stromal cell lines. Western blot analysis detected a single band at 14 kDa with neurophysin antiserum and a 66-kDa band with oxytocin receptor antiserum in epithelial and stromal cell lines. Similar sized bands were also detected in extracts of hyperplastic and adenocarcinomic prostate tissues. Oxytocin, oxytocin-associated neurophysin and oxytocin receptor were present in stromal and epithelial cell lines and in tissue from patients with benign prostatic hyperplasia. The peptides were localised predominantly to the epithelial cells, although discrete areas of stromal staining were also observed. There was a significant difference in the intensity of oxytocin-staining between tissue displaying benign prostatic hyperplasia and invasive carcinoma, with less immunoreactivity being present in the malignant epithelial cells. Thus, oxytocin and its neurophysin and receptor are present in epithelial and stromal cells of the human prostate. Oxytocin expression is reduced with tumour progression and may provide a marker for invasive disease.This work was supported by a Project Grant (007756) from the Wellcome Trust and from Lottery Health Research  相似文献   

17.
18.
BackgroundA-kinase interacting protein 1 (AKIP1) is recently implicated in the pathogenesis of several solid tumors, while its role in glioblastoma multiforme (GBM) is largely unknown. Therefore, the current study aimed to investigate the effect of AKIP1 on GBM cell malignant behaviors, stemness, and its underlying molecular mechanisms.MethodsU-87 MG and A172 cells were transfected with control or AKIP1 overexpression plasmid; control or AKIP1 siRNA plasmid. Then cell proliferation, apoptosis, invasion, CD133+ cell proportion, and sphere formation assays were performed. Furthermore, RNA-Seq was performed in U-87 MG cells. Besides, AKIP1 expression was detected in 25 GBM and 25 low-grade glioma (LGG) tumor samples.ResultsAKIP1 was increased in several GBM cell lines compared to the control cell line. After transfections, it was found that AKIP1 overexpression increased cell invasion, CD133+ cell proportion, and sphere formation ability while less affecting cell proliferation or cell apoptosis in U-87 MG and A172 cells. Moreover, AKIP1 siRNA achieved the opposite effect in these cells, except that it inhibited cell proliferation but induced cell apoptosis to some extent. Subsequent RNA-Seq assay showed several critical carcinogenetic pathways, such as PI3K/AKT, Notch, EGFR tyrosine kinase inhibitor resistance, Ras, ErbB, mTOR pathways, etc. were potentially related to the function of AKIP1 in U-87 MG cells. Clinically, AKIP1 expression was higher in GBM tissues than in LGG tissues, which was also correlated with the poor prognosis of GBM to some degree.ConclusionsAKIP1 regulates the malignant behaviors and stemness of GBM via regulating multiple carcinogenetic pathways.  相似文献   

19.
Diseases such as atherosclerosis, arthritis and cancer have been related with imbalance in ROS production and failures in regulation of the MMPs. Authors suggested a relationship between MPP activity and ROS. Our research group has demonstrated that retinol 7µM induced changes in Sertoli cell metabolism linking retinol treatment and oxidative stress. We verified MMP activity in Sertoli cells treated with vitamin A using gelatin zymography. We found that retinol (7µM) and retinoic acid (1nM) induced MMP-2 activity in Sertoli cells. Antioxidants reversed retinol-induced but not retinoic acid-induced MMP-2 activity. Moreover, retinol but not retinoic acid increased ROS production quantified by DCFH-DA oxidation. We found that retinol and retinoic acid induced ERK1/2 phosphorylation, but only retinol-increased MMP-2 activity was inhibited by UO126, an ERK1/2 phosphorylation inhibitor. Our findings suggested that retinol-induced MMP-2 activity, but not retinoic acid-induced MMP-2 activity, was related to ERK1/2 phosphorylation and ROS production.  相似文献   

20.
Ceropegia bulbosa is an endangered medicinal plant used traditionally in the treatment of various diseases. Our aim is to develop a rapid and a competent procedure for direct and indirect organogenesis from transverse thin cell layer (tTCL) explants of C. bulbosa. Optimum response to direct adventitious shoot bud induction from tTCLs was observed on medium augmented with 8.8 µM 6-benzyladenine (BA) producing 15.6 ± 0.31 shoots per responsive explant. Best callusing response (95 %) was observed with tTCL explants in medium containing 4.5 µM 2,4-dichlorophenoxyacetic acid and 2.2 µM BA. High frequency shoot regeneration (75 %) was observed from tTCL derived calli. Medium containing 8.8 µM BA and 0.27 µM α-naphthalene acetic acid produced 22.2 ± 0.64 shoots with shoots acquiring an average length of 4.6 ± 0.12 cm. In vitro rooting was recorded on ½ strength Murashige and Skoog medium, producing 10.9 ± 0.23 roots with a length of 4.24 ± 0.16 cm. Plants were successfully transferred to the field with a survival rate of 89 %. The clonal nature of the regenerants was assessed using Inter-simple sequence repeat markers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号