首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 638 毫秒
1.
The induction and substrate specificity of cinnamyl alcohol dehydrogenase (CAD, EC 1.1.1.195) was investigated in relation to the deposition of a defensive, syringyl-rich lignin at wound margins in wheat (Triticum aestivum L. cv. Brigadier). Column chromatography of untreated, wounded and elicitor-treated tissues revealed three major CAD forms (CAD-A, -B and -C) of which only CAD-C was responsive to elicitors. Examination of the substrate preference of these fractions indicated p-coumaryl alcohol to be the preferred substrate of CAD-A and CAD-B, whereas sinapyl alcohol was favoured by CAD-C. Activity-stained isoelectric focussing gels revealed in untreated and wounded leaves four CAD isoenzymes with isoelectric points of 4.59 (i), 4.67 (ii), 4.81 (iii), 4.93 (iv). Elicitor treatment generally enhanced the staining of all isoenzymes and resulted in the appearance of two new isoenzymes of 5.22 (v) and pI 5.31 (vi). In activity stained non-denaturing PAGE gels, CAD-C further resolved into two distinct zones of CAD activity. Cinnamyl alcohol dehydrogenase-C was purified to apparent homogeneity and characterisation revealed a 45-kDa subunit peptide which in its native form demonstrated a marked substrate preference for sinapyl alcohol. Overall, the differential induction and substrate preference of CAD-C are consistent with a defensive role during defensive lignification at wound margins in wheat. Received: 20 September 1998 / Accepted: 22 October 1998  相似文献   

2.
Winter wheat (Triticum aestivum L.) cv. Hereward was grown inthe field in two double-walled polyethylene-covered tunnelswithin each of which a temperature gradient was superimposedon diurnal and seasonal fluctuations in temperature. The meantemperature between anthesis and harvest maturity varied from14.3 to 18.4C among plots within these tunnels. The CO2 concentrationwas controlled at different values in each tunnel; seasonalmean concentrations were 380 and 684 µmol CO2 mol–1air. Crops were also grown outside the tunnels at ambient temperaturesand CO2. Samples of seeds were harvested sequentially from eachplot between anthesis and harvest maturity. Seed germinationand seed survival during subsequent air-dry storage were determinedfor each sample. The onset of both ability to germinate anddesiccation tolerance (ability to germinate after rapid desiccationto 10–15% moisture content and subsequent rehydration)coincided in all environments. Full germination capacity (>97%, determined at 10C) was reached 4–18 d before theend of the seed-filling phase (mass maturity) in most cases.There was little or no decline in germination capacity duringsubsequent seed development and maturation. Differences in seedquality were evident, however, throughout seed development andmaturation when seed survival curves during subsequent storagewere compared. Potential longevity in air-dry storage (assessedby the value K1 of the seed viability equation) improved consistentlyboth before and after mass maturity. There was a significantpositive relation between the rate of increase in potentiallongevity (dK1Idt) and temperature (the minimum temperaturefor seed quality development was 4.8 C), but neither CO2 concentrationnor production within the polyethylene tunnels affected thisrelation. Key words: Wheat, Triticum aestivum L., seed development, seed longevity, carbon dioxide, temperature  相似文献   

3.
Differences in isoenzyme pattern of aromatic alcohol dehydrogenase, NADP-AADH or CAD, were found in the Triticum aestivum L. winter bread wheat cultivars by the method of electrophoresis in the starch gel. A standard three-component spectrum is present in the cv. Zitnica (former Yugoslavia); additional fact-migrating isoenzymes appear in the cv. Novosibirskaya 9 (Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Russia). The presence of fast-migrating CAD isoenzymes is designated as FF phenotype; their absence, as 00 phenotype. Hybridological analysis was carried out; the excess of “null” genotypes was found in F2 progenies. Hybridization with nulli-tetrasomic lines of the chromosomes of the fifth homeologous group was conducted for the gene localization. The segregation analysis demonstrated the most probable localization of the CAD1-F gene in the chromosome 5A. The plants with FF and 00 genotypes differed in a number of chemical and anatomical traits, as well as in grain productivity. The results obtained are discussed in connection with the function of this enzyme in the wheat plant tissues.  相似文献   

4.
Mixed Nitrogen Nutrition and Productivity of Wheat Grown in Hydroponics   总被引:12,自引:1,他引:11  
The objective of this study was to study the effects of nitrogen(N) supplied as either mixtures of NO3 and NH4 or as all NO3on the final yield of spring wheat. Two separate greenhouseexperiments evaluated the durum spring wheat (Triticum durumL.) cultivar ‘Inbar’ in 1986, and the hard red springwheat (Triticum aestmum L.) cultivar ‘Len’ in 1987.Nitrogen treatments consisted of all NO, or mixtures (75/25or 50/50) of NO3 and NH4. At maturity, plants were harvested,separated into leaves, stems, roots, and grain, and each partanalysed for dry matter and chemical composition Compared to plants receiving only NO3 as the source of N, mixedN nutrition resulted in greater accumulation of whole plantreduced-N (49 to 108% more), phosphorus (38 to 69% more), andpotassium (25% more) for both cultivars. In all cases, plantsproduced higher grain yields (28% for Len to 78% for Inbar)when grown with mixed N nutrition than with only NO3. The yieldincrease was not associated with heavier grains or more grainsper ear, but rather with an increase in the number of ear-bearingtillers per plant. For both cultivars, the higher yields withmixed N resulted from the production of more total biomass (36to 76%) as the partitioning of dry matter between plant partswas not altered by N treatment. Under the hydroponic conditionsof this experiment, the utilization of both NO3 and NH4 resultedin greater growth, nutrient absorption, and yield than NO3 alone,which was primarily associated with an enhancement in tillerdevelopment Triticum aestivum L., Triticum durum L., spring wheat, hydroponics, ammonium nutrition, nitrate nutrition, tillering, yield components, partitioning  相似文献   

5.
C4 cereals (Zea maya L. and Sorghum bicolor L. Moench) and C3cereals (Triticum aestivum L. and Hordeum vulgare L) were grownin nutrient solutions with constant, interrupted, or absentpotassium supply. The lack of potassium retarded shoot growthand depressed the chlorophyll accumulation in all species ina similar way. After the renewal of potassium, the differencesin the compensation for growth retardation were not correlatedwith the photosynthetic system, but with the recovery of chlorophyllaccumulation in younger leaves. As important for the compensationof shoot growth retardation was a slower senescence of old leavescompared to plants with a constant potassium supply. This wasshown by the chlorophyll content and PEP carboxylase activity.In contrast to C3 cereals, the C4 cereals did not react withhigher chlorophyll contents to the same extent after the renewalof the postassium supply. The PEP carboxylase activity, however,was immediately raised higher than in control leaves. Chlorophylland PEP carboxylase activity increased simultaneously only inless aged leaves.  相似文献   

6.
The effect of heat stress on photosynthetic electron transportwas investigated in thylakoids isolated from the wheat (Triticumaestivum L.) varieties APU (Finland) and K65 (India) grown underboth cool (13 °C day, 10 °C night) and warm (30 °Cday, 25 °C night) regimes which gave rise to varietal differencesin photosynthetic temperature acclimation. The responses ofthe uncoupled activities of both whole-chain electron transportand photosystem II to heat stress were similar. Both activitiesexhibited higher rates in thylakoids isolated from warm-grownplants and were more resistant to high temperature pretreatmentthan in those isolated from cool-grown plants, but varietaldifferences were not observed. Uncoupled photosystem I activity driven by either reduced 2,6-dichlorophenol indophenol (DCPIPH2) or N,N,N',N'-tetramethyl-p-phenylenediamine (TMPDH2) showed a stimulation following high temperaturepretreatment which was more marked in thylakoids isolated fromwarm-grown plants, followed by inhibition at extreme high temperatures.This stimulation was due largely to an increase in Vmax butdid not occur when reduced diaminodurene, which is highly lipophilic,was used as the electron donor. It appears that stimulationof PS I activity may involve increased accessibility of someartificial electron donors to the native acceptor sites withinthe thylakoid membrane in a process which is influenced by growthtemperature. Key words: Photosynthetic electron transport, heat stress, Triticum aestivum  相似文献   

7.
Modern wheat (Triticum aestivum L.) is one of the most ozone(O3)-sensitive crops. However, little is known about its geneticbackground of O3 sensitivity, which is fundamental for breedingO3-resistant cultivars. Wild and cultivated species of winterwheat including donors of the A, B and D genomes of T. aestivumwere exposed to 100 ppb O3 or charcoal-filtered air in opentop chambers for 21 d. Responses to O3 were assessed by visibleO3 injury, gas exchange, chlorophyll fluorescence, relativegrowth rate, and biomass accumulation. Ozone significantly decreasedlight-saturated net photosynthetic rate (–37%) and instantaneoustranspiration efficiency (–42%), but increased stomatalconductance (+11%) and intercellular CO2 concentration (+11%).Elevated O3 depressed ground fluorescence (–8%), maximumfluorescence (–26%), variable fluorescence (–31%),and maximum photochemical efficiency (–7%). Ozone alsodecreased relative growth rate and the allometric coefficient,which finally reduced total biomass accumulation (–54%),but to a greater extent in roots (–77%) than in the shoot(–44%). Winter wheat exhibited significant interspeciesvariation in the impacts of elevated O3 on photosynthesis andgrowth. Primitive cultivated wheat demonstrated the highestrelative O3 tolerance followed by modern wheat and wild wheatshowed the lowest. Among the genome donors of modern wheat,Aegilops tauschii (DD) behaved as the most O3-sensitive followedby T. monococcum (AA) and Triticum turgidum ssp. durum (AABB)appeared to be the most O3-tolerant. It was concluded that thehigher O3 sensitivity of modern wheat was attributed to theincreased O3 sensitivity of Aegilops tauschii (DD), but notto Triticum turgidum ssp. durum (AABB) during speciation. Key words: Biomass, Chl a fluorescence, genome, ozone sensitivity, relative growth rate, stomatal conductance, winter wheat Received 20 September 2007; Revised 30 November 2007 Accepted 16 January 2008  相似文献   

8.
This work aimed to study the impacts of acquisition and assimilationof various nitrogen sources, i.e. NO3, NH4+ or NH4NO3,in combination with gaseous NH3 on plant growth and acid-basebalance in higher plants. Plants of C3 Triticum aestivum L.and C4 Zea mays L. grown with shoots in ambient air in hydroponicculture solutions with 2 mol m–3 of nitrogen source asNO3, NH4+ or NH4NO3 for 21 d and 18 d, respectively,had their shoots exposed either to 320 µg m–3 NH3or to ambient air for 7 d. Variations in plant growth (leaves,stubble and roots), and OH and H+ extrusions as wellas the relative increases in nitrogen, carbon and carboxylatewere determined. These data were computed as H+/N, H+/C, (C-A)/N,and (C-A)/C to analyse influences of different nitrogen sourceson acid-base balance in C3 Triticum aestivum and C4 Zea maysplants. Root growth in dry weight gain was significantly reduced bytreatment with 320 µg m–3 NH3 in Triticum aestivumand Zea mays growing with different N-forms, whereas leaf growthwas not significantly affected by NH3. In comparison with C3Triticum aestivum, non-fumigated C4 Zea mays had low ratiosof OH/N in NO3–3-grown plants and of H+/N in NH4+- and NH 4NO3-grown plants. Utilization of NH3 from the atmospherereduced both the OHN ratios in NO3 -grown plantsand the H+/N ratio in NH4+ - and NH4NO3 -grown plants of bothspecies. Furthermore, Zea mays had higher ratios of (C-A)/Nin NH4+ - and NH4NO3-grown plants than Triticum aestivum. Thismeans that C4 Zea mays had synthesized more organic anion perunit increase in organic N than C3 Triticum aestivum plants.Within both species, different nitrogen sources altered theratios of (C-A)/N in the order: NH4NO3>NH4+>NO3.Fumigation with NH3 increased organic acid synthesis in NO3- and NH4+ - grown plants of Triticum aestivum, whereas it decreasedorganic acid synthesis in Zea mays plants under the same conditions.Furthermore, these differences in acid-base regulation betweenC3 Triticum aestivum and C4 Zea mays plants growing with differentnitrogen sources are discussed. Key words: Acid-base balance, ammonia, ammonium, nitrate, ammonium nitrate, C3 Triticum aestivum L., C4 Zea mays L.  相似文献   

9.
Embryoless half-seeds of Triticum aestivum L. contain at leastnine acid phosphatase isozymes of isoelectric pH ranging from4.0 to 7.2. Treatment with GA3 resulted in activation of a particularisozyme of pI 4.0. Three major isozymes (pi 4.0, 4.9 and 6.2)differed in their relative specificities. A similar increaseof the pI 4 isozyme was also observed in the endosperm of germinatingwheat seeds. (Received April 7, 1981; Accepted July 1, 1981)  相似文献   

10.
Kinetic parameters of Zn uptake were determined for wheat plants(Triticum aestivum cvs Excalibur and Gatcher, and Triticum turgidumconv. durum cv. Durati) pre-grown at deficient or sufficientZn supply and with 0 or 4 mg m-3 sulphonylurea herbicide chlorsulfuron(2-chloro-N-(((4-methoxy-6-methyl-1,3,5-triazin-2-yl) amino)carbonyl)-benzenesulphonamide].Net Zn uptake generally showed a saturable response to increasingsolution Zn concentrations; this response fitted a modifiedMichaelis-Menten equation incorporating the Cmin term (solutionconcentration when net uptake is  相似文献   

11.
At low nitrogen (N) supply, it is well known that rye has ahigher biomass production than wheat. This study investigateswhether these species differences can be explained by differencesin dry matter and nitrogen partitioning, specific leaf area,specific root length and net assimilation rate, which determineboth N acquisition and carbon assimilation during vegetativegrowth. Winter rye (Secale cereale L.), wheat (Triticum aestivumL.) and triticale (X Triticosecale) were grown in solution cultureat relative addition rates (RN) of nitrate-N supply rangingfrom 0.03–0.18 d-1and at non-limiting N supply under controlledconditions. The relative growth rate (RW) was closely equalto RNin the range 0.03–0.15 d-1. The maximalRW at non-limitingnitrate nutrition was approx. 0.18 d-1. The biomass allocationto the roots showed a considerable plasticity but did not differbetween species. There were no interspecific differences ineither net assimilation rate or specific leaf area. Higher accumulationof N in the plant, despite the same relative growth rate atnon-limiting N supplies, suggests that rye has a greater abilityto accumulate reserves of nitrogen. Rye had a higher specificroot length over a wide range of sub-optimal N rates than wheat,especially at extreme N deficiency (RN=0.03–0.06 d-1).Triticale had a similar specific root length as that of wheatbut had the ability to accumulate N to the same amount as ryeunder conditions of free N access. It is concluded that thebetter adaptation of rye to low N availability compared to wheatis related to higher specific root length in rye. Additionally,the greater ability to accumulate nitrogen under conditionsof free N access for rye and triticale compared to wheat maybe useful for subsequent N utilization during plant growth.In general, species differences are explained by growth componentsresponsible for nitrogen acquisition rather than carbon assimilation.Copyright 1999 Annals of Botany Company Growth analysis, nitrogen, nitrogen productivity, partitioning, specific root length, Secale cereale L.,Triticum aestivum L., X Triticosecale, winter rye, winter wheat, winter triticale.  相似文献   

12.
Two varieties of wheat (Triticum aestivum L.) a winter (Kharkov)and a spring (Glenlea), were acclimated under controlled conditionsat 5 °C and 25 °C (12 h photoperiod). Kinetic properties(Km1 Vmax/Km ratio and Q10 as a function of reduction of substrateconcentration) were investigated for enzymatic systems involvedin two pathways of proline metabolism: the glutamic acid andthe ornithine pathways. Four enzymes were studied, namely prolinedehydrogenase (PDH, EC 1.5.1.2 [EC] ), glutamate dehydrogenase (GDH,EC 1.4.1.2 [EC] -4), glutamine synthetase (GS, EC 6.3.1.2 [EC] ) and ornithinetransaminase (OT, EC 2.6.1.13 [EC] ). Kinetic properties of thesefour enzymes proved to be modulated by cold acclimation, especiallyin Kharkov, the winter cultivar, which accumulates proline.Firstly, the synthesis of precursors of proline may be augmentedand the degradation of proline lessened by either decreasingthe Km values of OT or increasing the Km values of PDH. Secondly,the catalytic efficiency (Vmax ratio) of GDH, GS, and OT isincreased. Thirdly, the lower values of Q10 indicate a highcapacity of reaction of GS and OT.  相似文献   

13.
Physiology and Growth of Wheat Across a Subambient Carbon Dioxide Gradient   总被引:5,自引:0,他引:5  
Two cultivars of wheat (Triticum aestivum L.), 'Yaqui 54' and'Seri M82', were grown along a gradient of daytime carbon dioxideconcentrations ([CO2]) from near 350-200 µmol CO2 mol-1air in a 38 m long controlled environment chamber. Carbon dioxidefluxes and evapotranspiration were measured for stands (plantsand soil) in five consecutive 7·6-m lengths of the chamberto determined potential effects of the glacial/interglacialincrease in atmospheric [CO2] on C3 plants. Growth rates andleaf areas of individual plants and net assimilation per unitleaf area and daily (24-h) net CO2 accumulation of wheat standsrose with increasing [CO2]. Daytime net assimilation (PD, mmolCO2 m-2 soil surface area) and water use efficiency of wheatstands increased and the daily total of photosynthetic photonflux density required by stands for positive CO2 accumulation(light compensation point) declined at higher [CO2]. Nighttimerespiration (RN, mmol CO2 m-2 soil surface) of wheat, measuredat 369-397 µmol mol-1 CO2, apparently was not alteredby growth at different daytime [CO2], but RN /PD of stands declinedlinearly as daytime [CO2] and PD increased. The responses ofwheat to [CO2], if representative of other C3 species, suggestthat the 75-100% increase in [CO2] since glaciation and the30% increase since 1800 reduced the minimum light and waterrequirements for growth and increased the productivity of C3plants.Copyright 1993, 1999 Academic Press Atmospheric carbon dioxide, carbon accumulation, evapotranspiration, light compensation point, net assimilation, respiration, Triticum aestivum, water use efficiency, wheat  相似文献   

14.
15.
16.
17.
To investigate root respiration and carbohydrate status in relationto waterlogging or hypoxia tolerance, root respiration rateand concentrations of soluble sugars in leaves and roots weredetermined for two wheat (Triticum aestivum L.) genotypes differingin waterlogging-tolerance under hypoxia (5% O2) and subsequentresumption of full aeration. Root and shoot growth were reducedby hypoxia to a larger extent for waterlogging-sensitive Coker9835. Root respiration or oxygen consumption rate declined withhypoxia, but recovered after 7 d of resumption of aeration.Respiration rate was greater for sensitive Coker 9835 than fortolerant Jackson within 8 d after hypoxia. The concentrationsof sucrose, glucose and fructose decreased in leaves for bothgenotypes under hypoxia. The concentration of these sugars inroots, however, increased under hypoxia, to a greater degreefor Jackson. An increase in the ratio of root sugar concentrationto shoot sugar concentration was found for Jackson under hypoxicconditions, suggesting that a large amount of carbohydrate waspartitioned to roots under hypoxia. The results indicated thatroot carbohydrate supply was not a limiting factor for rootgrowth and respiration under hypoxia. Plant tolerance to waterloggingof hypoxia appeared to be associated with low root respirationor oxygen consumption rate and high sugar accumulation underhypoxic conditions.Copyright 1995, 1999 Academic Press Oxygen consumption rate, sugar accumulation, Triticum aestivum L., waterlogging tolerance  相似文献   

18.
Rates of net photosynthesis of the flag leaves of 15 genotypesof wheat and related species were measured throughout theirlife, using intact leaves on plants grown in the field. At thestage when rates were maximal, they were in general highestfor the diploid species, intermediate for the tetraploidspeciesand lowest for Triticum aestivum (means of 38, 32 and 28 mgCO2 dm–2 h–1 respectively). Rates were stronglynegatively correlated with leaf area, leaf width and the meanplan area per mesophyll cell and positvely correlated with stomatalfrequency and number of veins per mm of leaf width. The differencesamong species in these attributes were mainly related to ploidylevel. It was not possible to determine the relative importanceof each anatomical feature, though the changes in stomatal frequencyhad only slight effects on stomatal conductance and the observeddifferences in rates of photosynthesis were much greater thanwould be expected from those in stomatal conductance alone. There was genetic variation in rates of light dependent oxygenevolution of isolated protoplasts and intact chloroplasts butno difference attributable to ploidy. The mean rate, 91 µmolO2 mg–1 chlorophyll h–1, equivalent to 3.9 mg CO2mg-1chlorophyll h-1 was considerably less than the rate of photosynthesisin comparable intact leaves, which was 7.2 mg CO2 mg–1chlorophyll h–1. The total above-ground dry matter yields were least for thewild diploids T. urartu and T. thauodar and the wild tetraploidT. dicoccoides, but the other wild diploids produced as muchdry matter as the hexaploids. The prospects of exploiting differences in photosynthetic ratein the breeding of higher yielding varieties are discussed. Triticum aestivum L., wheat, Aegilops spp, photosynthesis, stomatal conductance, stomatal frequency, polyploidy  相似文献   

19.
The relationship between high temperature stress injury andtemperature dependence of the transverse relaxation time (T2)of leaf water was examined using NMR in four cultivars of wheatdiffering in their sensitivity to high temperature stress. TheT2declined with increasing temperature between 25 and 35 °C.A comparison of relative injury based on electrolyte leakageand T2, between 40 and 50 °C, indicated that while membranepermeability increased with increasing temperature there wasan increase in T2until 44 and 48 °C in susceptible and tolerantcultivars respectively, followed by a sharp decline. This patternof change in T2with increasing temperature was consistent whetherthe same or different samples were used for each treatment temperature.Loss of temperature dependence of T2after heat killing indicatedirreversible changes in T2, probably due to the loss of membraneintegrity. Heat tolerant varieties, which suffered less membraneinjury, had a higher T2compared to susceptible varieties. Tolerantvarieties also maintained the T2of leaf water protons to highertemperatures than did sensitive varieties. This NMR-based, non-invasive,rapid technique could be used to efficiently detect heat injuryin leaf tissues. Copyright 1999 Annals of Botany Company Membrane integrity, transverse relaxation time, high temperature stress, Triticum aestivum L.  相似文献   

20.
Effect of Sudden Salt Stress on Ion Fluxes in Intact Wheat Suspension Cells   总被引:4,自引:0,他引:4  
Although salinity is one of the major problems limiting agriculturalproduction around the world, the underlying mechanisms of highNaCl perception and tolerance are still poorly understood. Theeffects of different bathing solutions and fusicoccin (FC),a known activator of plasma membrane ATPase, on plasma membranepotential (Em) and net fluxes of Na+, K+and H+were studied inwheat suspension cells (Triticum aestivum) in response to differentNaCl treatments. Emof cells in Murashige and Skoog (MS) mediumwas less negative than in cells exposed to a medium containing10 mM KCl + 0.1 m M CaCl2(KSM) and to a basic salt medium (BSM),containing 1 m M KCl and 0.1 m M CaCl2. Multiphasic Na+accumulationin cells was observed, peaking at 13 min after addition of 120m M NaCl to MS medium. This time scale was in good agreementwith net Na+flux changes measured non-invasively by moving ion-selectivemicroelectrodes (the MIFE system). When 120 m M NaCl was addedto all media studied, a quick rise of Na+influx was reversedwithin the first 20 min. In both 120 and 20 m M NaCl treatmentsin MS medium, net Na+efflux was observed, indicating that activeNa+transporters function in the plant cell response to saltstress. Lower external K+concentrations (KSM and BSM) and FCpre-treatment caused shifts in Na+fluxes towards net influxat 120 m M NaCl stress. Copyright 2000 Annals of Botany Company Sodium, potassium, proton, membrane potential, fusicoccin, salt stress, wheat, Triticum aestivum  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号