首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 90 毫秒
1.
2.
3.
4.
5.
6.
Overexpression of steroid receptor coactivator 3 (SRC-3) is associated with an increased incidence of breast cancer. A recent study shows that SRC-3 is protected from proteasomal degradation by atypical protein kinase C (aPKC)-mediated phosphorylation in an estrogen receptor alpha (ERalpha)-dependent manner. This finding provides a novel mechanism for coupling increased SRC-3 expression with enhanced estrogen-dependent cellular proliferation.  相似文献   

7.
8.
9.
10.
The antiestrogen tamoxifen has been widely used for decades as selective estrogen receptor (ER) modulator for ERalpha-positive breast tumors. Tamoxifen significantly reduces tumor recurrence by binding to the activation function-2 (AF-2) domain of the ER. Acquired resistance to tamoxifen in breast cancer patients is a serious therapeutic problem. Antiestrogen-resistant breast cancer often shows increased expression of the epidermal growth factor receptor (EGFR) family members, EGFR and ErbB2. In this report we now show that overexpression of EGFR or activated AKT-2 in MCF-7 cells leads to phosphorylation of Ser167 in the AF-1 domain of ERalpha, enhanced ER-amplified in breast cancer 1 (ER:AIB1) interaction in the presence of tamoxifen, and resistance to tamoxifen. In contrast, transfection of activated MAPK kinase, an immediate upstream activator of MAPK (ERK 1 and 2) into MCF-7 cells leads to phosphorylation of Ser118 in the AF-1 domain of ERalpha, inhibition of ER-amplified in breast cancer 1 (ER:AIB1) interaction in the presence of Tam, and maintenance of sensitivity to tamoxifen. Inhibition of AKT by short inhibitory RNA blocked Ser167 phosphorylation in ER and restored tamoxifen sensitivity. However, maximum sensitivity to tamoxifen was observed when both AKT and MAPK were inhibited. Taken together, these data demonstrate that different phosphorylation sites in the AF-1 domain of ERalpha regulate the agonistic and antagonistic actions of tamoxifen in human breast cancer cells.  相似文献   

11.
12.
Elevation of intracellular 8-bromo-cyclic AMP (cAMP) can activate certain steroid receptors and enhance the ligand-dependent activation of most receptors. During ligand-independent activation of the chicken progesterone receptor (cPR(A)) with the protein kinase A (PKA) activator, 8-bromo-cAMP, we found no alteration in cPR(A) phosphorylation (W. Bai, B. G. Rowan, V. E. Allgood, B. W. O'Malley, and N. L. Weigel, J. Biol. Chem. 272:10457-10463, 1997). To determine if other receptor-associated cofactors were targets of cAMP-dependent signaling pathways, we examined the phosphorylation of steroid receptor coactivator 1 (SRC-1). We detected a 1.8-fold increase in SRC-1 phosphorylation in transfected COS-1 cells incubated with 8-bromo-cAMP. Phosphorylation was increased on two mitogen-activated protein kinase (MAPK) sites, threonine 1179 and serine 1185. PKA did not phosphorylate these sites in vitro. However, blockage of PKA activity in COS-1 cells with the PKA inhibitor (PKI) prevented the 8-bromo-cAMP-mediated phosphorylation of these sites. Incubation of COS-1 cells with 8-bromo-cAMP resulted in activation of the MAPK pathway, as determined by Western blotting with antibodies to the phosphorylated (active) form of Erk-1/2, suggesting an indirect pathway to SRC-1 phosphorylation. Mutation of threonine 1179 and serine 1185 to alanine in COS-1 cells coexpressing cPR(A) and the GRE(2)E1bCAT reporter resulted in up to a 50% decrease in coactivation during both ligand-independent activation and ligand-dependent activation. This was due, in part, to loss of functional cooperation between SRC-1 and CREB binding protein for coactivation of cPR(A). This is the first demonstration of cross talk between a signaling pathway and specific phosphorylation sites in a nuclear receptor coactivator that can regulate steroid receptor activation.  相似文献   

13.
14.
15.
16.
17.
18.
19.
In endothelial cells (ECs) beta1 integrin function-blocking antibodies inhibit alphavbeta3 integrin-mediated adhesion to a recombinant alpha4-laminin fragment (ralpha4LN fragment). beta1 integrin sequestration of talin is not the mechanism by which beta1 integrin modulates alphavbeta3 integrin ligand binding. Rather, treatment of the ECs with beta1 integrin function-blocking antibodies enhances cAMP-dependent protein kinase (PKA) activity and increases beta3 integrin serine phosphorylation. The PKA inhibitor H-89 abrogates the effect of beta1 integrin function-blocking antibodies on beta3 integrin serine phosphorylation and EC-ralpha4LN fragment binding. beta3 integrin contains a serine residue at position 752. To confirm the importance of this residue in alphavbeta3 integrin-ralpha4LN fragment binding, we mutated it to alanine (beta3S752A) or aspartic acid (beta3S752D). Chinese hamster ovary (CHO) cells expressing wild type or beta3S752A integrin attach robustly to ligand. CHO cells expressing beta3S752D integrin do not. Because the beta3 cytoplasmic tail lacks a PKA consensus site, it is unlikely that PKA acts directly on beta3 integrin. Instead, we have tested an hypothesis that PKA regulates beta3 integrin serine phosphorylation indirectly through phosphorylation of inhibitor-1, which, when phosphorylated, inhibits protein phosphatase 1 (PP1). Treatment of ECs with beta1 integrin function-blocking antibodies significantly increases phosphorylation of inhibitor-1. Furthermore, blocking PP1 activity pharmacologically inhibits alphavbeta3-mediated cell adhesion to the ralpha4LN fragment when both PKA and beta1 integrin function are inhibited. Concomitantly, there is an increase in serine phosphorylation of the beta3 integrin cytoplasmic tail. These results indicate a novel mechanism by which beta1 integrin negatively modulates alphavbeta3 integrin-ligand binding via activation of PKA and inhibition of PP1 activity.  相似文献   

20.
MUC1 oncoprotein stabilizes and activates estrogen receptor alpha   总被引:6,自引:0,他引:6  
Wei X  Xu H  Kufe D 《Molecular cell》2006,21(2):295-305
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号