首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
蜘蛛抗菌肽研究进展   总被引:2,自引:0,他引:2  
唐兴  陈连水  李江 《生命科学》2014,(10):1090-1095
蜘蛛活性多肽研究主要集中于蜘蛛毒液中作用于离子通道的神经毒素多肽。但近年来,一些蜘蛛抗菌肽不断被分离纯化,其结构和抗菌活性也被广泛深入研究,这将成为蜘蛛活性多肽研究领域的一个新热点。在蜘蛛毒液和血液中,存在不同种类的抗菌肽,其多肽长度、结构、抗菌作用各不相同。而且,有些抗菌肽甚至具有抗肿瘤作用。概述了蜘蛛抗菌肽在结构和功能方面的研究进展。  相似文献   

2.
Analogues of latarcins Ltc1 and Ltc3b, antimicrobial peptides from the venom of the Central Asian spider Lachesana tarabaevi capable of formation of amphiphilic structures in membranes without involvement of disulfide bonds, were synthesized. The amino acid sequences of the analogues correspond to immature forms of these peptides, each of them containing an additional C-terminal amino acid residue. It is concluded from the study of the biological activity of the synthesized peptides that the posttranslational C-terminal amidation of Ltc3b is a functionally important modification that ensures a high activity of the mature peptide. The lipid composition was shown to affect the interaction of synthesized peptides with artificial membranes. The analogue of Ltc3b manifested the highest activity on cholesterol-containing membranes. The mechanism of action of the studied antimicrobial peptides on membranes is discussed.  相似文献   

3.
The defensin‐like antimicrobial peptides have been characterized from various other arthropods including insects, scorpions, and ticks. But no natural spider defensin‐like antimicrobial peptides have ever been isolated from spiders, except couple of cDNA and DNA sequences of five spider species revealed by previous genomic study. In this work, a defensin‐like antimicrobial peptide named Oh‐defensin was purified and characterized from the venoms of the spider, Ornithoctonus hainana. Oh‐defensin is composed of 52 amino acid (aa) residues including six Cys residues that possibly form three disulfide bridges. Its aa sequence is MLCKLSMFGAVLGV PACAIDCLPMGKTGGSCEGGVCGCRKLTFKILWDKKFG. By BLAST search, Oh‐defensin showed significant sequence similarity to other arthropod antimicrobial peptides of the defensin family. Oh‐defensin exerted potent antimicrobial activities against tested microorganisms including Gram‐positive bacteria, Gram‐negative bacteria, and fungi. The cDNA encoding Oh‐defensin precursor was also cloned from the cDNA library of O. hainana. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
Analogues of latarcins Ltc1 and Ltc3b, antimicrobial peptides from the venom of the Central Asian spider Lachesana tarabaevi capable of formation of amphiphilic structures in membranes without involvement of disulfide bonds, were synthesized. The amino acid sequences of the analogues correspond to immature forms of these peptides, each of them containing an additional C-terminal amino acid residue. It is concluded from the study of the biological activity of the synthesized peptides that the posttranslational C-terminal amidation of Ltc3b is a functionally important modification that ensures a high activity of the mature peptide. The lipid composition was shown to affect the interaction of synthesized peptides with artificial membranes. The analogue of Ltc3b manifested the highest activity on cholesterol-containing membranes. The mechanism of action of the studied antimicrobial peptides on membranes is discussed.  相似文献   

5.
Seven novel short linear antimicrobial and cytolytic peptides named latarcins were purified from the venom of the spider Lachesana tarabaevi. These peptides were found to produce lytic effects on cells of diverse origin (Gram-positive and Gram-negative bacteria, erythrocytes, and yeast) at micromolar concentrations. In addition, five novel peptides that share considerable structural similarity with the purified latarcins were predicted from the L. tarabaevi venom gland expressed sequence tag data base. Latarcins were shown to adopt amphipathic alpha-helical structure in membrane-mimicking environment by CD spectroscopy. Planar lipid bilayer studies indicated that the general mode of action was scaled membrane destabilization at the physiological membrane potential consistent with the "carpet-like" model. Latarcins represent seven new structural groups of lytic peptides and share little homology with other known peptide sequences. For every latarcin, a precursor protein sequence was identified. On the basis of structural features, latarcin precursors were split into three groups: simple precursors with a conventional prepropeptide structure; binary precursors with a typical modular organization; and complex precursors, which were suggested to be cleaved into mature chains of two different types.  相似文献   

6.
Antimicrobial peptides are naturally produced by numerous organisms including insects, plants and mammals. Their non-specific mode of action is thought to involve the transient perturbation of bacterial membranes but the molecular mechanism underlying the rearrangement of the lipid molecules to explain the formation of pores and micelles is still poorly understood. Biological membranes mostly adopt planar lipid bilayers; however, antimicrobial peptides have been shown to induce non-lamellar lipid phases which may be intimately linked to their proposed mechanisms of action. This paper reviews antimicrobial peptides that alter lipid phase behavior in three ways: peptides that induce positive membrane curvature, peptides that induce negative membrane curvature and peptides that induce cubic lipid phases. Such structures can coexist with the bilayer structure, thus giving rise to lipid polymorphism induced upon addition of antimicrobial peptides. The discussion addresses the implications of induced lipid phases for the mode of action of various antimicrobial peptides.  相似文献   

7.
Antichlamydial activity of cyto-insectotoxin 1a (CIT 1a), representative of a unique class of antimicrobial peptides from the venom of the Central Asian spider Lachesana tarabaevi, was studied. A plasmid vector expressing the cit 1a gene controlled by a human cytomegalovirus tetracycline-dependent promoter was constructed. Impressive inhibition of Chlamydia trachomatis infection in HEK 293 cells transfected by the cit 1a-harboring vector was achieved. With the use of various schemes of cell infection and gene expression induction, it was shown for the first time that an antimicrobial peptide exerts its potent antichlamydial action at an early stage of the pathogen life cycle.  相似文献   

8.
We have purified a small size antimicrobial peptide, named gomesin, from the hemocytes of the unchallenged tarantula spider Acanthoscurria gomesiana. Gomesin has a molecular mass of 2270.4 Da, with 18 amino acids, including a pyroglutamic acid as the N terminus, a C-terminal arginine alpha-amide, and four cysteine residues forming two disulfide bridges. This peptide shows marked sequence similarities to antimicrobial peptides from other arthropods such as tachyplesin and polyphemusin from horseshoe crabs and androctonin from scorpions. Interestingly, it also shows sequence similarities to protegrins, antimicrobial peptides from porcine leukocytes. Gomesin strongly affects bacterial growth, as well as the development of filamentous fungi and yeast. In addition, we showed that gomesin affects the viability of the parasite Leishmania amazonensis.  相似文献   

9.
Five amphipathic peptides with antimicrobial, hemolytic, and insecticidal activity were isolated from the crude venom of the wolf spider Oxyopes kitabensis. The peptides, named oxyopinins, are the largest linear cationic amphipathic peptides from the venom of a spider that have been chemically characterized at present. According to their primary structure Oxyopinin 1 is composed of 48 amino acid residues showing extended sequence similarity to the ant insecticidal peptide ponericinL2 and to the frog antimicrobial peptide dermaseptin. Oxyopinins 2a, 2b, 2c, and 2d have highly similar sequences. At least 27 out of 37 amino acid residues are conserved. They also show a segment of sequence similar to ponericinL2. Circular dichroism analyses showed that the secondary structure of the five peptides is essentially alpha-helical. Oxyopinins showed disrupting activities toward both biological membranes and artificial vesicles, particularly to those rich in phosphatidylcholine. Electrophysiological recordings performed on insect cells (Sf9) showed that the oxyopinins produce a drastic reduction of cell membrane resistance by opening non-selective ion channels. Additionally, a new paralytic neurotoxin named Oxytoxin 1 was purified from the same spider venom. It contains 69 amino acid residue cross-linked by five disulfide bridges. Application of mixtures containing oxyopinins and Oxytoxin 1 to insect larvae showed a potentiation phenomenon, by which an increase lethality effect is observed. These results suggest that the linear amphipathic peptides in spider venoms and neuropeptides cooperate to capture insects efficiently.  相似文献   

10.
Recently, we designed a novel cell-selective antimicrobial peptide (TPk) with intracellular mode of action from Pro --> Nlys (Lys peptoid residue) substitution in a noncell-selective cathelicidin-derived Trp/Pro-rich antimicrobial peptide, tritrpticin-amide (TP; VRRFPWWWPFLRR-NH(2)) (Biochemistry 2006; 45: 13007-13017). In this study, to elucidate the effect of Pro --> Nlys substitution on therapeutic index and mode of action of other noncell-selective cathelicidin-derived Trp/Pro-rich antimicrobial peptides and develop novel short antimicrobial peptides with high cell selectivity/therapeutic index, we synthesized Nlys-substituted antimicrobial peptides, TPk, STPk and INk, in which all proline residues of TP, symmetric TP-analogue (STP; KKFPWWWPFKK-NH(2)) and indolicidin (IN; ILPWKWPWWPWRR-NH(2)) were replaced by Nlys, respectively. Compared to parent Pro-containing peptides (TP, STP and IN), Nlys substituted peptides (TPk, STPk and Ink) had 4- to 26-fold higher cell selectivity/therapeutic index. Parent Pro-containing peptides induced a significant depolarization of the cytoplasmic membrane of intact Staphylococcus aureus at their MIC, whereas Nlys-substituted antimicrobial peptides did not cause visible membrane depolarization at their MIC. These results suggest that the antibacterial action of Nlys-substituted peptides is probably not due to the disruption of bacterial cytoplasmic membranes but the inhibition of intracellular components. Taken together, our results showed that Pro --> Nlys substitution in other noncell-selective Trp/Pro-rich antimicrobial peptides such as STP and IN as well as TP can improve the cell selectivity/therapeutic index and change the mode of antibacterial action from membrane-disrupting to intracellular targeting. In conclusion, our findings suggested that Pro --> Nlys substitution in noncell-selective Trp/Pro-rich antimicrobial peptides is a promising method to develop cell-selective antimicrobial peptides with intracellular target mechanism.  相似文献   

11.
Diversity of antimicrobial peptides and their mechanisms of action   总被引:31,自引:0,他引:31  
Antimicrobial peptides encompass a wide variety of structural motifs. Many peptides have alpha-helical structures. The majority of these peptides are cationic and amphipathic but there are also hydrophobic alpha-helical peptides which possess antimicrobial activity. In addition, some beta-sheet peptides have antimicrobial activity and even antimicrobial alpha-helical peptides which have been modified to possess a beta-structure retain part of their antimicrobial activity. There are also antimicrobial peptides which are rich in a certain specific amino acid such as Trp or His. In addition, antimicrobial peptides exist with thio-ether rings, which are lipopeptides or which have macrocyclic Cys knots. In spite of the structural diversity, a common feature of the cationic antimicrobial peptides is that they all have an amphipathic structure which allows them to bind to the membrane interface. Indeed, most antimicrobial peptides interact with membranes and may be cytotoxic as a result of disturbance of the bacterial inner or outer membranes. Alternatively, a necessary but not sufficient property of these peptides may be to be able to pass through the membrane to reach a target inside the cell. The interaction of these peptides with biological membranes is not just a function of the peptide but is also modulated by the lipid components of the membrane. It is not likely that this diverse group of peptides has a single mechanism of action, but interaction of the peptides with membranes is an important requirement for most, if not all, antimicrobial peptides.  相似文献   

12.
《Process Biochemistry》2008,43(8):882-886
Antimicrobial peptides have potential to be a high-value product purified from waste ovine blood. Previous work characterised antimicrobial peptides isolated from ovine neutrophils and determined the mechanisms of action. Here it is shown that the crude antimicrobial extract can be produced on a pilot-scale while retaining the antimicrobial activity. This crude extract could be used as a biopreservative for chilled lamb meat products or in a topical cream for treating cuts and grazes.  相似文献   

13.
昆虫抗菌肽是由昆虫细胞特定基因编码、由细胞核糖体合成的,具有体液免疫功能的一类碱性多肽,对细菌、真菌、病毒和原虫,甚至癌细胞都具有杀伤作用,有望开发成为新一代的抗菌药物。随着抗菌肽家族的不断扩大,其各方面的研究也日益深入。简要综述了昆虫抗菌肽的种类及结构特点、作用机制、生物活性、构效关系、药物开发情况。  相似文献   

14.
Structure and pharmacology of spider venom neurotoxins   总被引:16,自引:0,他引:16  
Escoubas P  Diochot S  Corzo G 《Biochimie》2000,82(9-10):893-907
Spider venoms are complex mixtures of neurotoxic peptides, proteins and low molecular mass organic molecules. Their neurotoxic activity is due to the interaction of the venom components with cellular receptors, in particular ion channels. Spider venoms have proven to be a rich source of highly specific peptide ligands for selected subtypes of potassium, sodium and calcium channels, and these toxins have been used to elucidate the structure and physiological roles of the channels in excitable and non-excitable cells. Spider peptides show great variability in their pharmacological activity and primary structure but relative homogeneity in their secondary structure. Following diverse molecular evolution mechanisms, and in particular selective hypermutation, short spider peptides appear to have functionally diversified while retaining a conserved molecular scaffold. This paper reviews the composition and pharmacology of spider venoms with emphasis on polypeptide toxin structure, mode of action and molecular evolution.  相似文献   

15.
With the steady rise in the number of antibiotic-resistant Gram-positive pathogens, it has become increasingly important to find new antibacterial agents which are highly active and have novel and diversified mechanisms of action. Two classes will be discussed here: the cationic antimicrobial peptides, which are amphiphilic in nature, targeting membranes and increasing their permeability; and lipopeptides, which consist of linear or cyclic peptides with an N-terminus that is acylated with a fatty acid side chain. One member of the cyclic lipopeptide family, the anionic molecule daptomycin, has been extensively studied and is the major focus of this review. Models will be presented on its mode of action and comparisons will be made to the known modes of action of cationic antimicrobial peptides and other lipopeptides.  相似文献   

16.
With the steady rise in the number of antibiotic-resistant Gram-positive pathogens, it has become increasingly important to find new antibacterial agents which are highly active and have novel and diversified mechanisms of action. Two classes will be discussed here: the cationic antimicrobial peptides, which are amphiphilic in nature, targeting membranes and increasing their permeability; and lipopeptides, which consist of linear or cyclic peptides with an N-terminus that is acylated with a fatty acid side chain. One member of the cyclic lipopeptide family, the anionic molecule daptomycin, has been extensively studied and is the major focus of this review. Models will be presented on its mode of action and comparisons will be made to the known modes of action of cationic antimicrobial peptides and other lipopeptides.  相似文献   

17.
Shai Y  Oren Z 《Peptides》2001,22(10):1629-1641
Living organisms of all types produce a large repertoire of gene-encoded, net positively charged, antimicrobial peptides as part of their innate immunity to microbial invasion. Despite significant variations in composition, length and secondary structure most antimicrobial peptides are active in micromolar concentrations, suggesting a common general mechanism for their mode of action. Many antimicrobial peptides bind bacterial phospholipid membranes up to a threshold concentration, followed by membrane permeation/disintegration (the "carpet" mechanism). Recent data suggest that the details of the permeation pathways may vary for different peptides and are assigned to different modes of action. Accumulating data reveal that the molecular basis for cell selectivity is the ability of peptides to specifically bind the negatively charged bacterial membrane, as well as their oligomeric state in solution and in the membrane. Based on the "carpet" mechanism and the role of the peptide oligomeric state, a novel group of diastereomeric (containing D- and L-amino acids) antimicrobial peptides were developed. These peptides may serve as promising templates for the future designs of antimicrobial peptides.  相似文献   

18.
Antimicrobial peptides exhibit high levels of antimicrobial activity against a broad range of spoilage and pathogenic microorganisms. Compared with bacteriocins produced by lactic acid bacteria, antimicrobial peptides from the genus Bacillus have been relatively less recognized despite their broad antimicrobial spectra. These peptides can be classified into two different groups based on whether they are ribosomally (bacteriocins) or nonribosomally (polymyxins and iturins) synthesized. Because of their broad spectra and high activity, antimicrobial peptides from Bacillus spp. may have great potential for applications in the food, agricultural, and pharmaceutical industries to prevent or control spoilage and pathogenic microorganisms. In this review, we introduce ribosomally synthesized antimicrobial peptides, the lantibiotic bacteriocins produced by members of Bacillus. In addition, the biosynthesis, genetic organization, mode of action, and regulation of subtilin, a well-investigated lantibiotic from Bacillus subtilis, are discussed.  相似文献   

19.
Antimicrobial peptides are present in all walks of life, from plants to animals, and they are considered to be endogenous antibiotics. In general, antimicrobial peptides are determinants of the composition of the microbiota and they function to fend off microbes and prevent infections. Antimicrobial peptides eliminate micro-organisms through disruption of their cell membranes. Their importance in human immunity, and in health as well as disease, has only recently been appreciated. The present review provides an introduction to the field of antimicrobial peptides in general and discusses two of the major classes of mammalian antimicrobial peptides: the defensins and the cathelicidins. The review focuses on their structures, their main modes of action and their regulation.  相似文献   

20.
We report the molecular basis for the differences in activity of cyclic and linear antimicrobial peptides. We iteratively performed atomistic molecular dynamics simulations and biophysical measurements to probe the interaction of a cyclic antimicrobial peptide and its inactive linear analogue with model membranes. We establish that, relative to the linear peptide, the cyclic one binds stronger to negatively charged membranes. We show that only the cyclic peptide folds at the membrane interface and adopts a β-sheet structure characterised by two turns. Subsequently, the cyclic peptide penetrates deeper into the bilayer while the linear peptide remains essentially at the surface. Finally, based on our comparative study, we propose a model characterising the mode of action of cyclic antimicrobial peptides. The results provide a chemical rationale for enhanced activity in certain cyclic antimicrobial peptides and can be used as a guideline for design of novel antimicrobial peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号