首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Escherichia coli methylenetetrahydrofolate reductase (MTHFR) catalyzes the NADH-linked reduction of 5,10-methylenetetrahydrofolate (CH(2)-H(4)folate) to 5-methyltetrahydrofolate (CH(3)-H(4)folate) using flavin adenine dinucleotide (FAD) as cofactor. MTHFR is unusual among flavin oxidoreductases because it contains a conserved, negatively rather than positively charged amino acid (aspartate 120) near the N1-C2=O position of the flavin. At this location, Asp 120 is expected to influence the redox properties of the enzyme-bound FAD. Modeling of the CH(3)-H(4)folate product into the enzyme active site suggests that Asp 120 may also play crucial roles in folate binding and catalysis. We have replaced Asp 120 with Asn, Ser, Ala, Val, and Lys and have characterized the mutant enzymes. Consistent with a loss of negative charge near the flavin, the midpoint potentials of the mutants increased from 17 to 30 mV. A small kinetic effect on the NADH reductive half-reaction was also observed as the mutants exhibited a 1.2-1.5-fold faster reduction rate than the wild-type enzyme. Catalytic efficiency (k(cat)/K(m)) in the CH(2)-H(4)folate oxidative half-reaction was decreased significantly (up to 70000-fold) and in a manner generally consistent with the negative charge density of position 120, supporting a major role for Asp 120 in electrostatic stabilization of the putative 5-iminium cation intermediate during catalysis. Asp 120 is also intimately involved in folate binding as increases in the apparent K(d) of up to 15-fold were obtained for the mutants. Examining the E(red) + CH(2)-H(4)folate reaction at 4 degrees C, we obtained, for the first time, evidence for the rapid formation of a reduced enzyme-folate complex with wild-type MTHFR. The more active Asp120Ala mutant, but not the severely impaired Asp120Lys mutant, demonstrated the species, suggesting a connection between the extent of complex formation and catalytic efficiency.  相似文献   

2.
Trimmer EE  Ballou DP  Matthews RG 《Biochemistry》2001,40(21):6205-6215
The flavoprotein methylenetetrahydrofolate reductase (MTHFR) from Escherichia coli catalyzes the reduction of 5,10-methylenetetrahydrofolate (CH(2)-H(4)folate) to 5-methyltetrahydrofolate (CH(3)-H(4)folate) using NADH as the source of reducing equivalents. The enzyme also catalyzes the transfer of reducing equivalents from NADH or CH(3)-H(4)folate to menadione, an artificial electron acceptor. Here, we have determined the midpoint potential of the enzyme-bound flavin to be -237 mV. We have examined the individual reductive and oxidative half-reactions constituting the enzyme's activities. In an anaerobic stopped-flow spectrophotometer, we have measured the rate constants of flavin reduction and oxidation occurring in each half-reaction and have compared these with the observed catalytic turnover numbers measured under steady-state conditions. We have shown that, in all cases, the half-reactions proceed at rates sufficiently fast to account for overall turnover, establishing that the enzyme is kinetically competent to catalyze these oxidoreductions by a ping-pong Bi-Bi mechanism. Reoxidation of the reduced flavin by CH(2)-H(4)folate is substantially rate limiting in the physiological NADH-CH(2)-H(4)folate oxidoreductase reaction. In the NADH-menadione oxidoreductase reaction, the reduction of the flavin by NADH is rate limiting as is the reduction of flavin by CH(3)-H(4)folate in the CH(3)-H(4)folate-menadione oxidoreductase reaction. We conclude that studies of individual half-reactions catalyzed by E. coli MTHFR may be used to probe mechanistic questions relevant to the overall oxidoreductase reactions.  相似文献   

3.
The flavoprotein Escherichia coli methylenetetrahydrofolate reductase (MTHFR) catalyzes the reduction of 5,10-methylenetetrahydrofolate (CH(2)-H(4)folate) to 5-methyltetrahydrofolate (CH(3)-H(4)folate). The X-ray crystal structure of the enzyme has revealed the amino acids at the flavin active site that are likely to be relevant to catalysis. Here, we have focused on two conserved residues, Asp 120 and Glu 28. The presence of an acidic residue (Asp 120) near the N1-C2=O position of the flavin distinguishes MTHFR from all other known flavin oxidoreductases and suggests an important function for this residue in modulating the flavin reactivity. Modeling of the CH(3)-H(4)folate product into the enzyme active site also suggests roles for Asp 120 in binding of folate and in electrostatic stabilization of the putative 5-iminium cation intermediate during catalysis. In the NADH-menadione oxidoreductase assay and in the isolated reductive half-reaction, the Asp120Asn mutant enzyme is reduced by NADH 30% more rapidly than the wild-type enzyme, which is consistent with a measured increase in the flavin midpoint potential. Compared to the wild-type enzyme, the mutant showed 150-fold decreased activity in the physiological NADH-CH(2)-H(4)folate oxidoreductase reaction and in the oxidative half-reaction involving CH(2)-H(4)folate, but the apparent K(d) for CH(2)-H(4)folate was relatively unchanged. Our results support a role for Asp 120 in catalysis of folate reduction and perhaps in stabilization of the 5-iminium cation. By analogy to thymidylate synthase, which also uses CH(2)-H(4)folate as a substrate, Glu 28 may serve directly or via water as a general acid catalyst to aid in 5-iminium cation formation. Consistent with this role, the Glu28Gln mutant was unable to catalyze the reduction of CH(2)-H(4)folate and was inactive in the physiological oxidoreductase reaction. The mutant enzyme was able to bind CH(3)-H(4)folate, but reduction of the FAD cofactor was not observed. In the NADH-menadione oxidoreductase assay, the mutant demonstrated a 240-fold decrease in activity.  相似文献   

4.
Smith AE  Matthews RG 《Biochemistry》2000,39(45):13880-13890
N5-Methyltetrahydrofolate (CH(3)-H(4)folate) donates a methyl group to the cob(I)alamin cofactor in the reaction catalyzed by cobalamin-dependent methionine synthase (MetH, EC 2.1.1.3). Nucleophilic displacement of a methyl group attached to a tertiary amine is a reaction without an obvious precedent in bioorganic chemistry. Activation of CH(3)-H(4)folate by protonation prior to transfer of the methyl group has been the favored mechanism. Protonation at N5 would lead to formation of an aminium cation, and quaternary amines such as 5,5-dimethyltetrahydropterin have been shown to transfer methyl groups to cob(I)alamin. Because CH(3)-H(4)folate is an enamine, protonation could occur either at N5 to form an aminium cation or on a conjugated carbon with formation of an iminium cation. We used (13)C distortionless enhancement by polarization transfer (DEPT) NMR spectroscopy to infer that CH(3)-H(4)folate in aqueous solution protonates at N5, not on carbon. CH(3)-H(4)folate must eventually protonate at N5 to form the product H(4)folate; however, this protonation could occur either upon formation of the binary enzyme-CH(3)-H(4)folate complex or later in the reaction mechanism. Protonation at N5 is accompanied by substantial changes in the visible absorbance spectrum of CH(3)-H(4)folate. We have measured the spectral changes associated with binding of CH(3)-H(4)folate to a catalytically competent fragment of MetH over the pH range from 5.5 to 8.5. These studies indicate that CH(3)-H(4)folate is bound in the unprotonated form throughout this pH range and that protonated CH(3)-H(4)folate does not bind to the enzyme. Our observations are rationalized by sequence homologies between the folate-binding region of MetH and dihydropteroate synthase, which suggest that the pterin ring is bound in the hydrophobic core of an alpha(8)beta(8) barrel in both enzymes. The results from these studies are difficult to reconcile with an S(N)2 mechanism for methyl transfer and suggest that the presence of the cobalamin cofactor is important for CH(3)-H(4)folate activation. We propose that protonation of N5 occurs after carbon-nitrogen bond cleavage, and we invoke a mechanism involving oxidative addition of Co(1+) to the N5-methyl bond to rationalize our results.  相似文献   

5.
Both extensive theoretical calculations and experimental data obtained during several decades leave little doubt that flavin adenine dinucleotide (FAD) exists in an open as well as in a closed conformation in aqueous solution. However, the knowledge about the intramolecularly stacked complex of FAD is constructed on indirect methods while direct structural evidence is lacking. Recently, dodecin was reported as an unspecific flavin binding protein which exhibits the unique binding mode of incorporating stacked dimers of flavins into a single binding pocket. Here, we show that FAD is not bound in this manner, but in monomers of intramolecularly stacked conformation. As resulting from the dodecin ligand binding characteristic, this FAD stacked conformation suggests to be directly sequestered from the aqueous solution and thus to be the first X-ray structural view on a FAD solution-stacked form. Moreover, in extraordinary FAD binding, dodecin serves as a model for studying bound monomeric (FAD) versus bound dimeric (e.g. riboflavin) flavin properties.  相似文献   

6.
The catabolism of toxic phenols in the thermophilic organism Bacillus thermoglucosidasius A7 is initiated by a two-component enzyme system. The smaller flavin reductase PheA2 component catalyzes the NADH-dependent reduction of free FAD according to a ping-pong bisubstrate-biproduct mechanism. The reduced FAD is then used by the larger oxygenase component PheA1 to hydroxylate phenols to the corresponding catechols. We have determined the x-ray structure of PheA2 containing a bound FAD cofactor (2.2 A), which is the first structure of a member of this flavin reductase family. We have also determined the x-ray structure of reduced holo-PheA2 in complex with oxidized NAD (2.1 A). PheA2 is a single domain homodimeric protein with each FAD-containing subunit being organized around a six-stranded beta-sheet and a capping alpha-helix. The tightly bound FAD prosthetic group (K(d) = 10 nm) binds near the dimer interface, and the re face of the FAD isoalloxazine ring is fully exposed to solvent. The addition of NADH to crystalline PheA2 reduced the flavin cofactor, and the NAD product was bound in a wide solvent-accessible groove adopting an unusual folded conformation with ring stacking. This is the first observation of an enzyme that is very likely to react with a folded compact pyridine nucleotide. The PheA2 crystallographic models strongly suggest that reactive exogenous FAD substrate binds in the NADH cleft after release of NAD product. Nanoflow electrospray mass spectrometry data indeed showed that PheA2 is able to bind one FAD cofactor and one FAD substrate. In conclusion, the structural data provide evidence that PheA2 contains a dual binding cleft for NADH and FAD substrate, which alternate during catalysis.  相似文献   

7.
5-DeazaFAD bound to a hydrophobic site in apophotolyase and formed a stable reconstituted enzyme, similar to that observed with FAD. Although stoichiometric incorporation was observed, the flavin ring modification in 1-deazaFAD interfered with normal binding, decreased protein stability, and prevented formation of a stable flavin radical, unlike that observed with FAD. The results suggest that an important hydrogen bond is formed between the protein and N (1) in FAD, but not N (5), and that there is sufficient space at the normal flavin binding site near N (5) to accommodate an additional hydrogen but not near N (1). Catalytic activity was observed with enzyme containing 5-deazaFADH2 (42% of native enzyme) or 1-deazaFADH2 (11% of native enzyme) as its only chromophore, but no activity was observed with the corresponding oxidized flavins, similar to that observed with FAD and consistent with a mechanism where dimer cleavage is initiated by electron donation from excited reduced flavin to substrate. The protein environment in photolyase selectively enhanced photochemical reactivity in the fully reduced state, as evidenced by comparison with results obtained in model studies with the corresponding free flavins. Phosphorescence was observed with free or photolyase-bound 5-deazaFADH2, providing the first example of a flavin that exhibits phosphorescence in the fully reduced state. Formation of an enzyme-substrate complex resulted in a nearly identical extent of quenching of 5-deazaFADH2 phosphorescence (85.1%) and fluorescence (87.5%). The data are consistent with a mechanism involving exclusive reaction of substrate with the excited singlet state of 5-deazaFADH2, analogous to that proposed for FADH2 in native enzyme. Direct evidence for singlet-singlet energy transfer from enzyme-bound 5-deazaFADH2 to 5,10-CH(+)-H4folate was provided by the fact that pterin fluorescence was observed upon excitation of 5-deazaFADH2, accompanied by a decrease in 5-deazaFADH2 fluorescence. On the other hand, the fluorescence of enzyme-bound pterin was quenched by 5-deazaFADox, consistent with energy transfer from pterin to 5-deazaFADox. In each case, the spectral properties of the chromophores were consistent with the observed direction of energy transfer and indicated that transfer in the opposite direction was energetically unlikely. Unlike 5-deazaFAD, energy transfer from pterin to FAD is energetically feasible with FADH2 or FADox. The results indicate that the direction of flavin-pterin energy transfer at the active site of photolyase can be manipulated by changes in the flavin ring or redox state which alter the energy level of the flavin singlet.  相似文献   

8.
The methyltetrahydrofolate (CH(3)-H(4)folate) corrinoid-iron-sulfur protein (CFeSP) methyltransferase (MeTr) catalyzes transfer of the methyl group of CH(3)-H(4)folate to cob(I)amide. This key step in anaerobic CO and CO(2) fixation is similar to the first half-reaction in the mechanisms of other cobalamin-dependent methyltransferases. Methyl transfer requires electrophilic activation of the methyl group of CH(3)-H(4)folate, which includes proton transfer to the N5 group of the pterin ring and poises the methyl group for reaction with the Co(I) nucleophile. The structure of the binary CH(3)-H(4)folate/MeTr complex (revealed here) lacks any obvious proton donor near the N5 group. Instead, an Asn residue and water molecules are found within H-bonding distance of N5. Structural and kinetic experiments described here are consistent with the involvement of an extended H-bonding network in proton transfer to N5 of the folate that includes an Asn (Asn-199 in MeTr), a conserved Asp (Asp-160), and a water molecule. This situation is reminiscent of purine nucleoside phosphorylase, which involves protonation of the purine N7 in the transition state and is accomplished by an extended H-bond network that includes water molecules, a Glu residue, and an Asn residue (Kicska, G. A., Tyler, P. C., Evans, G. B., Furneaux, R. H., Shi, W., Fedorov, A., Lewandowicz, A., Cahill, S. M., Almo, S. C., and Schramm, V. L. (2002) Biochemistry 41, 14489-14498). In MeTr, the Asn residue swings from a distant position to within H-bonding distance of the N5 atom upon CH(3)-H(4)folate binding. An N199A variant exhibits only approximately 20-fold weakened affinity for CH(3)-H(4)folate but a much more marked 20,000-40,000-fold effect on catalysis, suggesting that Asn-199 plays an important role in stabilizing a transition state or high energy intermediate for methyl transfer.  相似文献   

9.
The methyltetrahydrofolate:corrinoid/iron-sulfur protein methyltransferase (MeTr) from Clostridium thermoacetium catalyzes transfer of the N5-methyl group of (6S)-methyltetrahydrofolate (CH3-H4folate) to the cob(I)amide center of a corrinoid/iron-sulfur protein (CFeSP), forming H4folate and methylcob(III)amide. We have investigated binding of 13C-enriched (6R,S)-CH3-H4folate and (6R)-CH3-H4folate to MeTr by 13C NMR, equilibrium dialysis, fluorescence quenching, and proton uptake experiments. The results described here and in the accompanying paper [Seravalli, J., Shoemaker, R. K., Sudbeck, M. J., and Ragsdale, S. W. (1999) Biochemistry 38, 5728-5735] constitute the first evidence for protonation of the pterin ring of CH3-H4folate. The pH dependence of the chemical shift in the 13C NMR spectrum for the N5-methyl resonance indicates that MeTr decreases the acidity of the N5 tertiary amine of CH3-H4folate by 1 pK unit in both water and deuterium oxide. Binding of (6R,S)-CH3H4folate is accompanied by the uptake of one proton. These results are consistent with a mechanism of activation of CH3-H4folate by protonation to make the methyl group more electrophilic and the product H4folate a better leaving group toward nucleophilic attack by cob(I)amide. When MeTr is present in excess over (6R,S)-13CH3-H4folate, the 13C NMR signal is split into two broad signals that reflect the bound states of the two diastereomers. This unexpected ability of MeTr to bind both isomers was confirmed by the observation of MeTr-bound (6R)-13CH3-H4folate by NMR and by the measurement of similar dissociation constants for (6R)- and (6S)-CH3-H4folate diastereomers by fluorescence quenching experiments. The transversal relaxation time (T2) of 13CH3-H4folate bound to MeTr is pH independent between pH 5.50 and 7.0, indicating that neither changes in the protonation state of bound CH3-H4folate nor the previously observed pH-dependent MeTr conformational change contribute to broadening of the 13C resonance signal. The dissociation constant for (6R,S)-CH3-H4folate is also pH independent, indicating that the role of the pH-dependent conformational change is to stabilize the transition state for methyl transfer, and not to favor the binding of CH3-H4folate.  相似文献   

10.
BACKGROUND: Methyltetrahydrofolate, corrinoid iron-sulfur protein methyltransferase (MeTr), catalyzes a key step in the Wood-Ljungdahl pathway of carbon dioxide fixation. It transfers the N5-methyl group from methyltetrahydrofolate (CH3-H4folate) to a cob(I)amide center in another protein, the corrinoid iron-sulfur protein. MeTr is a member of a family of proteins that includes methionine synthase and methanogenic enzymes that activate the methyl group of methyltetra-hydromethano(or -sarcino)pterin. We report the first structure of a protein in this family. RESULTS: We determined the crystal structure of MeTr from Clostridium thermoaceticum at 2.2 A resolution using multiwavelength anomalous diffraction methods. The overall architecture presents a new functional class of the versatile triose phosphate isomerase (TIM) barrel fold. The MeTr tertiary structure is surprisingly similar to the crystal structures of dihydropteroate synthetases despite sharing less than 20% sequence identity. This homology permitted the methyl-H4folate binding site to be modeled. The model suggests extensive conservation of the pterin ring binding residues in the polar active sites of the methyltransferases and dihydropteroate synthetases. The most significant structural difference between these enzymes is in a loop structure above the active site. It is quite open in MeTr, where it can be modeled as the cobalamin binding site. CONCLUSIONS: The MeTr structure consists of a TIM barrel that embeds methyl-H4folate and cobamide. All related methyltransferases are predicted to fold into a similar TIM barrel pattern and have a similar pterin and cobamide binding site. The observed structure is consistent with either a 'front' (N5) or 'back' (C8a) side protonation of CH3-H4folate, a key step that enhances the electrophilic character of the methyl group, activating it for nucleophilic attack by Co(I).  相似文献   

11.
Escherichia coli general NAD(P)H:flavin oxidoreductase (Fre) does not have a bound flavin cofactor; its flavin substrates (riboflavin, FMN, and FAD) are believed to bind to it mainly through the isoalloxazine ring. This interaction was real for riboflavin and FMN, but not for FAD, which bound to Fre much tighter than FMN or riboflavin. Computer simulations of Fre.FAD and Fre.FMN complexes showed that FAD adopted an unusual bent conformation, allowing its ribityl side chain and ADP moiety to form an additional 3.28 H-bonds on average with amino acid residues located in the loop connecting Fbeta5 and Falpha1 of the flavin-binding domain and at the proposed NAD(P)H-binding site. Experimental data supported the overlapping binding sites of FAD and NAD(P)H. AMP, a known competitive inhibitor with respect to NAD(P)H, decreased the affinity of Fre for FAD. FAD behaved as a mixed-type inhibitor with respect to NADPH. The overlapped binding offers a plausible explanation for the large K(m) values of Fre for NADH and NADPH when FAD is the electron acceptor. Although Fre reduces FMN faster than it reduces FAD, it preferentially reduces FAD when both FMN and FAD are present. Our data suggest that FAD is a preferred substrate and an inhibitor, suppressing the activities of Fre at low NADH concentrations.  相似文献   

12.
The flavin prosthetic group (FAD) of p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens was replaced by a stereochemical analog, which is spontaneously formed from natural FAD in alcohol oxidases from methylotrophic yeasts. Reconstitution of p-hydroxybenzoate hydroxylase from apoprotein and modified FAD is a rapid process complete within seconds. Crystals of the enzyme-substrate complex of modified FAD-containing p-hydroxybenzoate hydroxylase diffract to 2.1 A resolution. The crystal structure provides direct evidence for the presence of an arabityl sugar chain in the modified form of FAD. The isoalloxazine ring of the arabinoflavin adenine dinucleotide (a-FAD) is located in a cleft outside the active site as recently observed in several other p-hydroxybenzoate hydroxylase complexes. Like the native enzyme, a-FAD-containing p-hydroxybenzoate hydroxylase preferentially binds the phenolate form of the substrate (pKo = 7.2). The substrate acts as an effector highly stimulating the rate of enzyme reduction by NADPH (kred > 500 s-1). The oxidative part of the catalytic cycle of a-FAD-containing p-hydroxybenzoate hydroxylase differs from native enzyme. Partial uncoupling of hydroxylation results in the formation of about 0.3 mol of 3,4-dihydroxybenzoate and 0.7 mol of hydrogen peroxide per mol NADPH oxidized. It is proposed that flavin motion in p-hydroxybenzoate hydroxylase is important for efficient reduction and that the flavin "out" conformation is associated with the oxidase activity.  相似文献   

13.
Based on the similarity in both structure and function of the reductase domain of neuronal nitric oxide synthase (nNOSred) to that of NADPH-cytochrome P450 reductase (CPR), we determined whether the characteristics of hydride transfer from NADPH to flavin adenine dinucleotide (FAD) were similar for both proteins. Secondly, we questioned whether hydride transfer from NADPH to either nNOSred or holo-nNOS was rate limiting for reactions catalyzed by these two proteins. Utilizing 500 MHz proton NMR and deuterated substrate, we determined that the stereospecificity of hydride transfer from NADPH and the conformation of the nicotinamide ring around the glycosidic bond were similar between CPR and nNOSred. Specifically, nNOSred abstracts the A-side hydrogen from NADPH, and the nicotinamide ring is in the anti conformation. We determined that the rate of hydride transfer to FAD appears to become partially rate limiting only for exceptionally good electron acceptors such as cytochrome c. Hydride transfer is not rate limiting for NO. production under any conditions used in this study. Interestingly, the deuterium isotope effect was decreased in the cytochrome c reductase assay with both nNOS and nNOSred when the assays were conducted in high ionic strength buffer, suggesting an increase in the rate of hydride transfer to FAD. These results are in stark contrast to results obtained with CPR (D. S. Sem and C. B. Kasper, 1995, Biochemistry 34, 3391-3398) whereby hydride transfer is partially rate limiting at high, but not at low, ionic strength. The seemingly opposite results in deuterium isotope effect observed with CPR and nNOSred, under conditions of high and low ionic strength, suggest differences in structure and/or regulation of these important flavoproteins.  相似文献   

14.
Kim SH  Hisano T  Iwasaki W  Ebihara A  Miki K 《Proteins》2008,70(3):718-730
The two-component enzyme, 4-hydroxyphenylacetate 3-monooxygenase, catalyzes the conversion of 4-hydroxyphenylacetate to 3,4-dihydroxyphenylacetate. In the overall reaction, the oxygenase component (HpaB) introduces a hydroxyl group into the benzene ring of 4-hydroxyphenylacetate using molecular oxygen and reduced flavin, while the reductase component (HpaC) provides free reduced flavins for HpaB. The crystal structures of HpaC from Thermus thermophilus HB8 in the ligand-free form, the FAD-containing form, and the ternary complex with FAD and NAD(+) were determined. In the ligand-free form, two large grooves are present at the dimer interface, and are occupied by water molecules. A structural analysis of HpaC containing FAD revealed that FAD has a low occupancy, indicating that it is not tightly bound to HpaC. This was further confirmed in flavin dissociation experiments, showing that FAD can be released from HpaC. The structure of the ternary complex revealed that FAD and NAD(+) are bound in the groove in the extended and folded conformation, respectively. The nicotinamide ring of NAD(+) is sandwiched between the adenine ring of NAD(+) and the isoalloxazine ring of FAD. The distance between N5 of the isoalloxazine ring and C4 of the nicotinamide ring is about 3.3 A, sufficient to permit hydride transfer. The structures of these three states are essentially identical, however, the side chains of several residues show small conformational changes, indicating an induced fit upon binding of NADH. Inactivity with respect to NADPH can be explained as instability of the binding of NADPH with the negatively charged 2'-phosphate group buried inside the complex, as well as a possible repulsive effect by the dipole of helix alpha1. A comparison of the binding mode of FAD with that in PheA2 from Bacillus thermoglucosidasius A7, which contains FAD as a prosthetic group, reveals remarkable conformational differences in a less conserved loop region (Gly83-Gly94) involved in the binding of the AMP moiety of FAD. These data suggest that variations in the affinities for FAD in the reductases of the two-component flavin-diffusible monooxygenase family may be attributed to difference in the interaction between the AMP moiety of FAD and the less conserved loop region which possibly shows structural divergence.  相似文献   

15.
D S Sem  C B Kasper 《Biochemistry》1992,31(13):3391-3398
The stereospecificity of hydride abstraction from NADPH and the conformation of the nicotinamide ring around the glycosidic bond have been determined for the flavoprotein NADPH-cytochrome P-450 oxidoreductase (P-450R). The A-side (pro-R) hydrogen is abstracted from NADPH, and the nicotinamide ring is in the anti conformation. These results are consistent with the apparently strong correlation between A-side stereospecificity and anti conformation and between B-side stereospecificity and syn conformation [You, K. (1985) CRC Crit. Rev. Biochem. 17, 313]. This correlation reveals how the flavin and nicotinamide rings are oriented relative to each other. In P-450R, the flavin is then "on top of" (on the exo side of) the nicotinamide ring. In another flavoprotein dehydrogenase, glutathione reductase, which is a B-side/anti enzyme [Pai, E. F., & Schulz, G. E. (1983) J. Biol. Chem. 258, 1752], the flavin is "underneath" (on the endo side of) the nicotinamide ring. We argue that all enzymes that are evolutionarily related to these two flavoproteins should have their respective overall configurations. The overall configuration is defined by the following five properties: (1) relative orientation of the isoalloxazine and nicotinamide rings, (2) stereospecificity of hydride transfer to/from the nicotinamide ring, (3) conformation of the nicotinamide ring around the glycosidic bond, (4) stereospecificity of hydride transfer to/from the flavin, and (5) conformation of the flavin around its N5-N10 axis. There are only eight possible overall configurations, and a knowledge of only three of the five properties is needed to determine which one is present (as long as the combination of properties is not 1, 2, 3 or 1, 4, 5).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Cobalamin-independent methionine synthase (MetE) catalyzes the synthesis of methionine by a direct transfer of the methyl group of N5-methyltetrahydrofolate (CH3-H2PteGlun) to the sulfur atom of homocysteine (Hcy). We report here the first crystal structure of this metalloenzyme under different forms, free or complexed with the Hcy and folate substrates. The Arabidopsis thaliana MetE (AtMetE) crystals reveal a monomeric structure built by two (betaalpha)8 barrels making a deep groove at their interface. The active site is located at the surface of the C-terminal domain, facing the large interdomain cleft. Inside the active site, His647, Cys649, and Cys733 are involved in zinc coordination, whereas Asp605, Ile437, and Ser439 interact with Hcy. Opposite the zinc/Hcy binding site, a cationic loop (residues 507-529) belonging to the C-terminal domain anchors the first glutamyl residue of CH3-H4PteGlu5. The pterin moiety of CH3-H4PteGlu5 is stacked with Trp567, enabling the N5-methyl group to protrude in the direction of the zinc atom. These data suggest a structural role of the N-terminal domain of AtMetE in the stabilization of loop 507-529 and in the interaction with the poly-glutamate chain of CH3-H4PteGlun. Comparison of AtMetE structures reveals that the addition of Hcy does not lead to a direct coordination of the sulfur atom with zinc but to a reorganization of the zinc binding site with a stronger coordination to Cys649, Cys733, and a water molecule.  相似文献   

17.
The dinucleotide carbanicotinamide adenine dinucleotide (carba-NAD), in which a 2,3-dihydroxycyclopentane ring replaces the beta-D-ribonucleotide ring of the nicotinamide ribonucleoside moiety of NAD, has been synthesized and characterized enzymologically. The synthesis begins with the known 1-aminoribose analogue (+/-)-4 beta-amino-2 alpha,3 alpha-dihydroxy-1 beta-cyclopentanemethanol. The pyridinium ring is first introduced and the resultant nucleoside analogue specifically 5'-phosphorylated. Coupling the racemic carbanicotinamide 5'-mononucleotide with adenosine 5'-monophosphate produces two diastereomeric carba-NAD analogues which are chromatographically separable. Only one diastereomer is a substrate for alcohol dehydrogenase and on this basis is assigned a configuration analogous to D-ribose. The reduced dinucleotide carba-NADH was characterized by fluorescence spectroscopy and found to adopt a "stacked" conformation similar to that of NADH. The analogue is reduced by both yeast and horse liver alcohol dehydrogenase with Km and Vmax values for the analogue close to those observed for NAD. Carba-NAD is resistant to cleavage by NAD glycohydrolase, and the analogue has been demonstrated to noncovalently inhibit the soluble NAD glycohydrolase from Bungarus fasciatus venom at low concentrations (less than or equal to 100 microM).  相似文献   

18.
The cyclobutane pyrimidine dimer (CPD) and (6-4) photoproduct, two major types of DNA damage caused by UV light, are repaired under illumination with near UV-visible light by CPD and (6-4) photolyases, respectively. To understand the mechanism of DNA repair, we examined the resonance Raman spectra of complexes between damaged DNA and the neutral semiquinoid and oxidized forms of (6-4) and CPD photolyases. The marker band for a neutral semiquinoid flavin and band I of the oxidized flavin, which are derived from the vibrations of the benzene ring of FAD, were shifted to lower frequencies upon binding of damaged DNA by CPD photolyase but not by (6-4) photolyase, indicating that CPD interacts with the benzene ring of FAD directly but that the (6-4) photoproduct does not. Bands II and VII of the oxidized flavin and the 1398/1391 cm(-1) bands of the neutral semiquinoid flavin, which may reflect the bending of U-shaped FAD, were altered upon substrate binding, suggesting that CPD and the (6-4) photoproduct interact with the adenine ring of FAD. When substrate was bound, there was an upshifted 1528 cm(-1) band of the neutral semiquinoid flavin in CPD photolyase, indicating a weakened hydrogen bond at N5-H of FAD, and band X seemed to be downshifted in (6-4) photolyase, indicating a weakened hydrogen bond at N3-H of FAD. These Raman spectra led us to conclude that the two photolyases have different electron transfer mechanisms as well as different hydrogen bonding environments, which account for the higher redox potential of CPD photolyase.  相似文献   

19.
Okai M  Kudo N  Lee WC  Kamo M  Nagata K  Tanokura M 《Biochemistry》2006,45(16):5103-5110
4-Hydroxyphenylacetate (4-HPA) is oxidized as an energy source by two component enzymes, the large component (HpaB) and the small component (HpaC). HpaB is a 4-HPA monooxygenase that utilizes FADH(2) supplied by a flavin reductase HpaC. We determined the crystal structure of HpaC (ST0723) from the aerobic thermoacidophilic crenarchaeon Sulfolobus tokodaii strain 7 in its three states [NAD(P)(+)-free, NAD(+)-bound, and NADP(+)-bound]. HpaC exists as a homodimer, and each monomer was found to contain an FMN. HpaC preferred FMN to FAD because there was not enough space to accommodate the AMP moiety of FAD in its flavin-binding site. The most striking difference between the NAD(P)(+)-free and the NAD(+)/NADP(+)-bound structures was observed in the N-terminal helix. The N-terminal helices in the NAD(+)/NADP(+)-bound structures rotated ca. 20 degrees relative to the NAD(P)(+)-free structure. The bound NAD(+) has a compact folded conformation with nearly parallel stacking rings of nicotinamide and adenine. The nicotinamide of NAD(+) stacked the isoalloxazine ring of FMN so that NADH could directly transfer hydride. The bound NADP(+) also had a compact conformation but was bound in a reverse direction, which was not suitable for hydride transfer.  相似文献   

20.
Cobalamin-independent methionine synthase (MetE) catalyzes the transfer of the N5-methyl group of methyltetrahydrofolate (CH(3)-H(4)folate) to the sulfur of homocysteine (Hcy) to form methionine and tetrahydrofolate (H(4)folate) as products. This reaction is thought to involve a direct methyl transfer from one substrate to the other, requiring the two substrates to interact in a ternary complex. The crystal structure of a MetE.CH(3)-H(4)folate binary complex shows that the methyl group is pointing away from the Hcy binding site and is quite distant from the position where the sulfur of Hcy would be, raising the possibility that this binary complex is nonproductive. The CH(3)-H(4)folate must either rearrange or dissociate before methyl transfer can occur. Therefore, determining the order of substrate binding is of interest. We have used kinetic and equilibrium measurements in addition to isotope trapping experiments to elucidate the kinetic pathway of substrate binding in MetE. These studies demonstrate that both substrate binary complexes are chemically and kinetically competent for methyl transfer and suggest that the conformation observed in the crystal structure is indeed on-pathway. Additionally, the substrates are shown to bind synergistically, with each substrate binding 30-fold more tightly in the presence of the other. Methyl transfer has been determined to be slow compared to ternary complex formation and dissociation. Simulations indicate that nearly all of the enzyme is present as the ternary complex under physiological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号