首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Reduction of information redundancy in the ascending auditory pathway   总被引:2,自引:0,他引:2  
Information processing by a sensory system is reflected in the changes in stimulus representation along its successive processing stages. We measured information content and stimulus-induced redundancy in the neural responses to a set of natural sounds in three successive stations of the auditory pathway-inferior colliculus (IC), auditory thalamus (MGB), and primary auditory cortex (A1). Information about stimulus identity was somewhat reduced in single A1 and MGB neurons relative to single IC neurons, when information is measured using spike counts, latency, or temporal spiking patterns. However, most of this difference was due to differences in firing rates. On the other hand, IC neurons were substantially more redundant than A1 and MGB neurons. IC redundancy was largely related to frequency selectivity. Redundancy reduction may be a generic organization principle of neural systems, allowing for easier readout of the identity of complex stimuli in A1 relative to IC.  相似文献   

2.
The activity of 194 neurons was recorded in three subdivisions of the medial geniculate body (74 neurons in the ventral, 62 in the medial and 44 neurons in the dorsal subdivision, i.e. vMGB, mMGB and dMGB) of guinea pigs anesthetized with ketamine-xylazine. The discharge properties of neurons were evaluated by means of peristimulus time histograms (PSTHs), interval histograms (INTHs) and auto-correlograms (ACGs). In the whole MGB, the most frequent PSTH responses to pure tone stimuli were onset (43%) or chopper (32%). The onset responses were mostly present in the vMGB, whereas chopper responses dominated in the dMGB. In the whole MGB Poisson-like and bimodal INTHs were found in 46% and 40% of neurons, respectively. The mMGB revealed fewer bimodal and more symmetrical types of INTH. In the whole MGB, 60% of units were found to have ACGs typical for short bursts (<100 ms), 23% for long bursts (>100 ms) and 15% of units fired without bursts. Neurons in the vMGB were characterized by short bursting, whereas those in the mMGB and dMGB expressed more activity in the long bursts. The results demonstrate that the type of information processing in the vMGB, which belongs to the "primary" auditory system, is different from that in two other subdivisions of the MGB.  相似文献   

3.
Previous work has shown that neurons in the medial geniculate body (MGB) of the echolocating bat, Myotis lucifugus, display response properties that are distinguishable from those of their afferents in the inferior colliculus (IC). Specifically, MGB neurons display phasic temporal discharge patterns, poor entrainment to trains of constant-amplitude sound pulses, and facilitated responses to amplitude-modulated trains of sound pulses (Llano and Feng 1999). In this study we used a modeling approach to examine the relative contributions of different known sources of inhibition on the temporal response properties of auditory thalamocortical neurons. We found that GABAA-mediated post-excitatory inhibition resulting from coactivation of thalamocortical neurons and local inhibitory interneurons (in a triadic arrangement) is sufficient to reproduce many of the temporal response properties of MGB neurons. Addition of long-duration GABAB-mediated inhibition gave the thalamocortical neuron temporal response characteristics that more closely resemble those seen in the experimental data. Neither recurrent inhibition from the thalamic reticular nucleus nor post-synaptic nonlinear mechanisms were necessary to reproduce the temporal transformations between the IC and MGB. This work suggests that feed-forward inhibitory circuitry, coupled with slow GABAB-mediated inhibition, can emulate temporal information processing at the MGB. The transformation taking place in the MGB can be used to extract salient features from complex, time-varying stimuli, such as echoes returning from moving prey. Received: 11 August 1999 / Accepted in revised form: 5 April 2000  相似文献   

4.
Responses of 98 auditory cortical neurons to electrical stimulation of the medial geniculate body (MGB) were recorded (45 extracellulary, 53 intracellularly) in experiments on cats immobilized with tubocurarine. Responses of the same neurons to clicks were recorded for comparison. Of the total number of neurons, 75 (76%) responded both to MGB stimulation and to clicks, and 23 (24%) to MGB stimulation only. The latent period of extracellularly recorded action potentials of auditory cortical neurons in response to clicks varied from 7 to 28 msec (late responses were disregarded), and that to MGB stimulation varied from 1.5 to 12.5 msec. For EPSPs these values were 8–13 and 1–4 msec respectively. The latent period of IPSPs arising in response to MGB stimulation varied from 2.2 to 6.5 msec; for 34% of neurons it did not exceed 3 msec. The difference between the latent periods of responses to clicks and to MGB stimulation varied for different neurons from 6 to 21 msec. Responses of 11% of neurons to MGB stimulation, recorded intracellularly, consisted of sub-threshold EPSPs, while responses of 23% of neurons began with an EPSP which was either followed by an action potential and subsequent IPSP or was at once cut off by an IPSP; 66% of neurons responded with primary IPSPs. Neurons responding to MGB stimulation by primary IPSPs are distributed irregularly in the depth of the cortex: there are very few in layers III and IV and many more at a depth of 1.6–2 mm. Conversely, excited neurons are predominant in layer III and IV, and they are few in number at a depth of 1.6–2 mm. It is concluded that the afferent volley reaching the auditory cortex induces excitation of some neurons therein and, at the same time, by the principle of reciprocity, induces inhibition of others. This afferent inhibition takes place with the participation of inhibitory interneurons, and in some cells the inhibition is recurrent. The existence of reciprocal relationships between neurons in different layers of the auditory cortex is postulated.A. A. Bogomolets' Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 4, No. 1, pp. 23–31, January–February, 1972.  相似文献   

5.
Han L  Zhang Y  Lou Y  Xiong Y 《PloS one》2012,7(4):e34837
Auditory cortical plasticity can be induced through various approaches. The medial geniculate body (MGB) of the auditory thalamus gates the ascending auditory inputs to the cortex. The thalamocortical system has been proposed to play a critical role in the responses of the auditory cortex (AC). In the present study, we investigated the cellular mechanism of the cortical activity, adopting an in vivo intracellular recording technique, recording from the primary auditory cortex (AI) while presenting an acoustic stimulus to the rat and electrically stimulating its MGB. We found that low-frequency stimuli enhanced the amplitudes of sound-evoked excitatory postsynaptic potentials (EPSPs) in AI neurons, whereas high-frequency stimuli depressed these auditory responses. The degree of this modulation depended on the intensities of the train stimuli as well as the intervals between the electrical stimulations and their paired sound stimulations. These findings may have implications regarding the basic mechanisms of MGB activation of auditory cortical plasticity and cortical signal processing.  相似文献   

6.
The specific adaptation of neuronal responses to a repeated stimulus (Stimulus-specific adaptation, SSA), which does not fully generalize to other stimuli, provides a mechanism for emphasizing rare and potentially interesting sensory events. Previous studies have demonstrated that neurons in the auditory cortex and inferior colliculus show SSA. However, the contribution of the medial geniculate body (MGB) and its main subdivisions to SSA and detection of rare sounds remains poorly characterized. We recorded from single neurons in the MGB of anaesthetized rats while presenting a sequence composed of a rare tone presented in the context of a common tone (oddball sequences). We demonstrate that a significant percentage of neurons in MGB adapt in a stimulus-specific manner. Neurons in the medial and dorsal subdivisions showed the strongest SSA, linking this property to the non-lemniscal pathway. Some neurons in the non-lemniscal regions showed strong SSA even under extreme testing conditions (e.g., a frequency interval of 0.14 octaves combined with a stimulus onset asynchrony of 2000 ms). Some of these neurons were able to discriminate between two very close frequencies (frequency interval of 0.057 octaves), revealing evidence of hyperacuity in neurons at a subcortical level. Thus, SSA is expressed strongly in the rat auditory thalamus and contribute significantly to auditory change detection.  相似文献   

7.
Temporal cues are important for some forms of auditory processing, such as echolocation. Among odontocetes (toothed whales, dolphins, and porpoises), it has been suggested that porpoises may have temporal processing abilities which differ from other odontocetes because of their relatively narrow auditory filters and longer duration echolocation signals. This study examined auditory temporal resolution in two Yangtze finless porpoises (Neophocaena phocaenoides asiaeorientalis) using auditory evoked potentials (AEPs) to measure: (a) rate following responses and modulation rate transfer function for 100 kHz centered pulse sounds and (b) hearing thresholds and response amplitudes generated by individual pulses of different durations. The animals followed pulses well at modulation rates up to 1,250 Hz, after which response amplitudes declined until extinguished beyond 2,500 Hz. The subjects had significantly better hearing thresholds for longer, narrower-band pulses similar to porpoise echolocation signals compared to brief, broadband sounds resembling dolphin clicks. Results indicate that the Yangtze finless porpoise follows individual acoustic signals at rates similar to other odontocetes tested. Relatively good sensitivity for longer duration, narrow-band signals suggests that finless porpoise hearing is well suited to detect their unique echolocation signals.  相似文献   

8.
Yang L  Feng MZ  Lu XY  Zhou SC 《生理学报》1999,51(3):333-337
在23只三碘季铵酚麻痹的新西兰兔上记录细胞外放电,观察短纯音诱发的内膝体神经元onof反应的特性及电刺激边缘系统杏仁外侧核(Lateralamygdaloidnucleus,LAm)对反应的影响。实验发现,内膝体神经元的onof反应与纯音刺激的强度、频率及作用时程有关;刺激LAm,可以抑制onof反应,或是使onof反应放电构型发生变化。onof反应是神经元对声音信号作用时程及声音的起止进行编码的方式之一,LAm对onof反应的影响表明,边缘系统杏仁体的活动可以调控听觉中枢对声音时间信息的编码。  相似文献   

9.
Extra- and intracellular reactions of 280 neurons of the pars principalis of the medial geniculate body (MGB) and of 408 auditory cortical neurons in area AI to stimulation of the inferior brachium of the midbrain and geniculocortical fibers were studied in cats immobilized with D-tubocurarine. Single electrical stimulation of the inferior brachium was shown to evoke a long and complex neuronal response in MGB in the form of excitation of some and inhibition of other neurons. The initial component of this response lasted 13 msec. Excitation of 72% of neurons participating in the response took place during the first 3 msec after the beginning of stimulation. In the same period 84% of IPSP arose. The inferior brachium was shown to contain a certain number of descending fibers. Some of them are axons of MGB neurons. Many fibers of the inferior brachium reach the auditory cortex without synaptic relay in MGB. Of all cells of MGB excited by stimulation of the inferior brachium monosynaptically, 76% are thalamocortical relay neurons; the rest are interneurons. Of the relay neurons of MGB 90% are excited monosynaptically, the rest by impulses passing through two or three synaptic relays in MGB. During stimulation of the inferior brachium, responses consisting of EPSP-IPSP and primary IPSP are recorded in many neurons of MGB. About 20% of primary IPSP arise monosynaptically, evidently in response to stimulation of inhibitory fibers of the inferior brachium. Most IPSP arise disynaptically, with the participation of an inhibitory interneuron located at the entrance to MGB. Inhibition observed in this case is direct afferent in nature.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 11, No. 6, pp. 515–523, November–December, 1979.  相似文献   

10.

Background

Recent research has addressed the suppression of cortical sensory responses to altered auditory feedback that occurs at utterance onset regarding speech. However, there is reason to assume that the mechanisms underlying sensorimotor processing at mid-utterance are different than those involved in sensorimotor control at utterance onset. The present study attempted to examine the dynamics of event-related potentials (ERPs) to different acoustic versions of auditory feedback at mid-utterance.

Methodology/Principal findings

Subjects produced a vowel sound while hearing their pitch-shifted voice (100 cents), a sum of their vocalization and pure tones, or a sum of their vocalization and white noise at mid-utterance via headphones. Subjects also passively listened to playback of what they heard during active vocalization. Cortical ERPs were recorded in response to different acoustic versions of feedback changes during both active vocalization and passive listening. The results showed that, relative to passive listening, active vocalization yielded enhanced P2 responses to the 100 cents pitch shifts, whereas suppression effects of P2 responses were observed when voice auditory feedback was distorted by pure tones or white noise.

Conclusion/Significance

The present findings, for the first time, demonstrate a dynamic modulation of cortical activity as a function of the quality of acoustic feedback at mid-utterance, suggesting that auditory cortical responses can be enhanced or suppressed to distinguish self-produced speech from externally-produced sounds.  相似文献   

11.
Neural encoding of temporal speech features is a key component of acoustic and phonetic analyses. We examined the temporal encoding of the syllables /da/ and /ta/, which differ along the temporally based, phonetic parameter of voice onset time (VOT), in primary auditory cortex (A1) of awake monkeys using concurrent multilaminar recordings of auditory evoked potentials (AEP), the derived current source density, and multiunit activity. A general sequence of A1 activation consisting of a lamina-specific profile of parallel and sequential excitatory and inhibitory processes is described. VOT is encoded in the temporal response patterns of phase-locked activity to the periodic speech segments and by “on” responses to stimulus and voicing onset. A transformation occurs between responses in the thalamocortical (TC) fiber input and A1 cells. TC fibers are more likely to encode VOT with “on” responses to stimulus onset followed by phase-locked responses during the voiced segment, whereas A1 responses are more likely to exhibit transient responses both to stimulus and voicing onset. Relevance to subcortical speech processing, the human AEP and speech psychoacoustics are discussed. A mechanism for categorical differentiation of voiced and unvoiced consonants is proposed.  相似文献   

12.
The processing of species-specific communication signals in the auditory system represents an important aspect of animal behavior and is crucial for its social interactions, reproduction, and survival. In this article the neuronal mechanisms underlying the processing of communication signals in the higher centers of the auditory system--inferior colliculus (IC), medial geniculate body (MGB) and auditory cortex (AC)--are reviewed, with particular attention to the guinea pig. The selectivity of neuronal responses for individual calls in these auditory centers in the guinea pig is usually low--most neurons respond to calls as well as to artificial sounds; the coding of complex sounds in the central auditory nuclei is apparently based on the representation of temporal and spectral features of acoustical stimuli in neural networks. Neuronal response patterns in the IC reliably match the sound envelope for calls characterized by one or more short impulses, but do not exactly fit the envelope for long calls. Also, the main spectral peaks are represented by neuronal firing rates in the IC. In comparison to the IC, response patterns in the MGB and AC demonstrate a less precise representation of the sound envelope, especially in the case of longer calls. The spectral representation is worse in the case of low-frequency calls, but not in the case of broad-band calls. The emotional content of the call may influence neuronal responses in the auditory pathway, which can be demonstrated by stimulation with time-reversed calls or by measurements performed under different levels of anesthesia. The investigation of the principles of the neural coding of species-specific vocalizations offers some keys for understanding the neural mechanisms underlying human speech perception.  相似文献   

13.
Hearing dysfunction has been associated with Alzheimer's disease (AD) in humans, but there is little data on the auditory function of mouse models of AD. Furthermore, characterization of hearing ability in mouse models is needed to ensure that tests of cognition that use auditory stimuli are not confounded by hearing dysfunction. Therefore, we assessed acoustic startle response and pre‐pulse inhibition in the double transgenic 5xFAD mouse model of AD from 3–4 to 16 months of age. The 5xFAD mice showed an age‐related decline in acoustic startle as early as 3–4 months of age. We subsequently tested auditory brainstem response (ABR) thresholds at 4 and 13–14 months of age using tone bursts at frequencies of 2–32 kHz. The 5xFAD mice showed increased ABR thresholds for tone bursts between 8 and 32 kHz at 13–14 months of age. Finally, cochleae were extracted and basilar membranes were dissected to count hair cell loss across the cochlea. The 5xFAD mice showed significantly greater loss of both inner and outer hair cells at the apical and basal ends of the basilar membrane than wild‐type mice at 15–16 months of age. These results indicate that the 5xFAD mouse model of AD shows age‐related decreases in acoustic startle responses, which are at least partially due to age‐related peripheral hearing loss. Therefore, we caution against the use of cognitive tests that rely on audition in 5xFAD mice over 3–4 months of age, without first confirming that performance is not confounded by hearing dysfunction.  相似文献   

14.
A subset of neurons in the cochlear nucleus (CN) of the auditory brainstem has the ability to enhance the auditory nerve''s temporal representation of stimulating sounds. These neurons reside in the ventral region of the CN (VCN) and are usually known as highly synchronized, or high-sync, neurons. Most published reports about the existence and properties of high-sync neurons are based on recordings performed on a VCN output tract—not the VCN itself—of cats. In other species, comprehensive studies detailing the properties of high-sync neurons, or even acknowledging their existence, are missing.Examination of the responses of a population of VCN neurons in chinchillas revealed that a subset of those neurons have temporal properties similar to high-sync neurons in the cat. Phase locking and entrainment—the ability of a neuron to fire action potentials at a certain stimulus phase and at almost every stimulus period, respectively—have similar maximum values in cats and chinchillas. Ranges of characteristic frequencies for high-sync neurons in chinchillas and cats extend up to 600 and 1000 Hz, respectively. Enhancement of temporal processing relative to auditory nerve fibers (ANFs), which has been shown previously in cats using tonal and white-noise stimuli, is also demonstrated here in the responses of VCN neurons to synthetic and spoken vowel sounds.Along with the large amount of phase locking displayed by some VCN neurons there occurs a deterioration in the spectral representation of the stimuli (tones or vowels). High-sync neurons exhibit a greater distortion in their responses to tones or vowels than do other types of VCN neurons and auditory nerve fibers.Standard deviations of first-spike latency measured in responses of high-sync neurons are lower than similar values measured in ANFs'' responses. This might indicate a role of high-sync neurons in other tasks beyond sound localization.  相似文献   

15.
Examination of the cortical auditory evoked potentials to complex tones changing in pitch and timbre suggests a useful new method for investigating higher auditory processes, in particular those concerned with `streaming' and auditory object formation. The main conclusions were: (i) the N1 evoked by a sudden change in pitch or timbre was more posteriorly distributed than the N1 at the onset of the tone, indicating at least partial segregation of the neuronal populations responsive to sound onset and spectral change; (ii) the T-complex was consistently larger over the right hemisphere, consistent with clinical and PET evidence for particular involvement of the right temporal lobe in the processing of timbral and musical material; (iii) responses to timbral change were relatively unaffected by increasing the rate of interspersed changes in pitch, suggesting a mechanism for detecting the onset of a new voice in a constantly modulated sound stream; (iv) responses to onset, offset and pitch change of complex tones were relatively unaffected by interfering tones when the latter were of a different timbre, suggesting these responses must be generated subsequent to auditory stream segregation.  相似文献   

16.
Individuals with profound deafness rely critically on vision to interact with their environment. Improvement of visual performance as a consequence of auditory deprivation is assumed to result from cross-modal changes occurring in late stages of visual processing. Here we measured reaction times and event-related potentials (ERPs) in profoundly deaf adults and hearing controls during a speeded visual detection task, to assess to what extent the enhanced reactivity of deaf individuals could reflect plastic changes in the early cortical processing of the stimulus. We found that deaf subjects were faster than hearing controls at detecting the visual targets, regardless of their location in the visual field (peripheral or peri-foveal). This behavioural facilitation was associated with ERP changes starting from the first detectable response in the striate cortex (C1 component) at about 80 ms after stimulus onset, and in the P1 complex (100-150 ms). In addition, we found that P1 peak amplitudes predicted the response times in deaf subjects, whereas in hearing individuals visual reactivity and ERP amplitudes correlated only at later stages of processing. These findings show that long-term auditory deprivation can profoundly alter visual processing from the earliest cortical stages. Furthermore, our results provide the first evidence of a co-variation between modified brain activity (cortical plasticity) and behavioural enhancement in this sensory-deprived population.  相似文献   

17.
人类听觉的基本特性和机制与其他哺乳动物相似,因此,利用动物所作的听觉研究和获得的结果,有助于认识人类自身的听觉.围绕听觉中枢神经元对不同模式的声信号的识别和处理,简要综述了这方面的研究.声信号和声模式识别在听觉中枢对声信号的感受和加工中具有重要意义.听神经元作为声模式识别的结构和功能基础,对不同的声刺激模式产生不同反应,甚至是在同一声刺激模式下,改变其中的某个声参数,神经元的反应也会发生相应改变,而其反应的特性和机制均需要更多研究来解答.另外,声信号作为声信息的载体,不同的声信息寓于不同的声参数和声特征之中,研究发现,听觉中枢神经元存在相应的声信息甄别和选择的神经基础,能对动态变化的声频率、幅度和时程等进行反应和编码,并且,在不同种类动物上获得的研究结果极为相似,表明听觉中枢对不同声信号和声刺激模式的识别、分析和加工,具有共同性和普遍性.  相似文献   

18.
Brain-stem, middle latency and late auditory evoked potentials (BAEPs, MLAEPs and LAEPs, respectively) were recorded in a patient 2 months after removal of a tumor affecting the quadrigeminal plate. Simultaneously, MRI showed a left unilateral lesion involving the inferior colliculus, brachium colliculi and the medial geniculate body (MGB). On dichotic listening, there was complete extinction of the right ear input, without subjective auditory disturbance. BAEPs were abnormal after stimulation of the right ear alone. Wave V was delayed and reduced in amplitude, and the I–V interval was augmented. Above all, MLAEPs of both ears were very abnormal. The Pa and Na components over the left hemisphere were abolished (Pa) or very reduced in amplitude or abolished (Na) whereas both Pa and Na components over the right hemisphere were normal. LAEPs were asymmetrical, with reduced P1N1P2 complex over the left hemisphere and absence of polarity reversal over the mastoid. It has been demonstrated that a lesion affecting only the inferior colliculus and MGB unilaterally and not extending beyond the MGB can abolish Na and Pa ipsilaterally. Any discussion of Na and Pa sources should take into account the output of the MGB to the auditory radiations, the MGB, the brachium colliculi and the inferior colliculus.  相似文献   

19.
We investigated the representation of four typical guinea pig vocalizations in the auditory cortex (AI) in anesthetized guinea pigs with the aim to compare cortical data to the data already published for identical calls in subcortical structures - the inferior colliculus (IC) and medial geniculate body (MGB). Like the subcortical neurons also cortical neurons typically responded to many calls with a time-locked response to one or more temporal elements of the calls. The neuronal response patterns in the AI correlated well with the sound temporal envelope of chirp (an isolated short phrase), but correlated less well in the case of chutter and whistle (longer calls) or purr (a call with a fast repetition rate of phrases). Neuronal rate vs. characteristic frequency profiles provided only a coarse representation of the calls’ frequency spectra. A comparison between the activity in the AI and those of subcortical structures showed a different transformation of the neuronal response patterns from the IC to the AI for individual calls: i) while the temporal representation of chirp remained unchanged, the representations of whistle and chutter were transformed at the thalamic level and the response to purr at the cortical level; ii) for the wideband calls (whistle, chirp) the rate representation of the call spectra was preserved in the AI and MGB at the level present in the IC, while in the case of low-frequency calls (chutter, purr), the representation was less precise in the AI and MGB than in the IC; iii) the difference in the response strength to natural and time-reversed whistle was found to be smaller in the AI than in the IC or MGB.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号