首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Extensively purified rat liver cytosolic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase kinase was used to examine the role of ADP in inactivation of HMG-CoA reductase (EC 1.1.1.34). Solubilized HMG-CoA reductase was a suitable substrate for HMG-CoA reductase kinase. At sufficiently high concentrations of solubilized HMG-CoA reductase, reductase kinase activity approached that measured using microsomal HMG-CoA reductase as substrate. Inactivation of solubilized HMG-CoA reductase by HMG-CoA reductase kinase required both MgATP and ADP. Other nucleoside diphosphates, including alpha, beta-methylene-ADP, could replace ADP. HMG-CoA reductase kinase catalyzed phosphorylation of bovine serum albumin fraction V by [gamma-32P]ATP. This process also required a nucleoside diphosphate (e.g. alpha, beta-methylene-ADP). Nucleoside diphosphates thus act on HMG-CoA reductase kinase, not on HMG-CoA reductase. For inactivation of HMG-CoA reductase, the ability of nucleoside triphosphates to replace ATP decreased in the order ATP greater than dATP greater than GTP greater than ITP, UTP. TTP and CTP did not replace ATP. Both for inactivation of HMG-CoA reductase and for phosphorylation of bovine serum albumin protein, the ability of nucleoside diphosphates to replace ADP decreased in the order ADP greater than CDP, dADP greater than UDP. GDP did not replace ADP. Nucleoside di- and triphosphates thus appear to bind to different sites on HMG-CoA reductase kinase. Nucleoside diphosphates act as allosteric activators of HMG-CoA reductase kinase. For inactivation of HMG-CoA reductase by HMG-CoA reductase kinase, Km for ATP was 140 microM and the activation constant, Ka, for ADP was 1.4 mM. The concentration of ADP required to modulate reductase kinase activity in vitro falls within the physiological range. Modulation of HMG-CoA reductase kinase activity, and hence of HMG-CoA reductase activity, by changes in intracellular ADP concentrations thus may represent a control mechanism of potential physiological significance.  相似文献   

2.
Inactivation of 3-hydroxy-3-methylglutaryl Coenzyme A reductase by reductase kinase and ATP-Mg needs either ADP or 5'-AMP as cofactors. 5'-AMP is a more potent activator of cytosolic reductase kinase than ADP. This capacity is expressed by increasing not only the rate of reductase inactivation, but also the rate of reductase phosphorylation from [gamma-32P]ATP. Activation constants, Ka, for 5'-AMP and ADP are 20 microM and 420 microM respectively. Neither 3'-AMP nor 2'-AMP activate reductase kinase. Other nucleoside monophosphates like UMP, CMP and GMP cannot replace 5'-AMP as activators of reductase kinase.  相似文献   

3.
1. We have purified the AMP-activated protein kinase 4800-fold from rat liver. The acetyl-CoA carboxylase kinase and 3-hydroxy-3-methylglutaryl-CoA(HMG-CoA) reductase kinase activities copurify through all six purification steps and are inactivated with similar kinetics by treatment with the reactive ATP analogue fluorosulphonylbenzoyladenosine. 2. The final preparation contains several polypeptides detectable by SDS/polyacrylamide gel electrophoresis, but only one of these, with an apparent molecular mass of 63 kDa, is labelled using [14C]fluorosulphonylbenzoyladenosine. This is also the only polypeptide in the preparation that becomes significantly labelled during incubation with [gamma 32P]ATP. This autophosphorylation reaction did not affect the AMP-stimulated kinase activity. 3. In the absence of AMP the purified kinase has apparent Km values for ATP and acetyl-CoA carboxylase of 86 microM and 1.9 microM respectively. AMP increases the Vmax 3-5-fold without a significant change in the Km for either protein or ATP substrates. 4. The response to AMP depends on the ATP concentration in the assay, but at a near-physiological ATP concentration the half-maximal effect of AMP occurs at 14 microM. Studies with a range of nucleoside monophosphates and diphosphates, and AMP analogues showed that the allosteric activation by AMP was very specific. ADP gave a small stimulation at low concentrations but was inhibitory at high concentrations. 5. These results show that the AMP-activated protein kinase is the major HMG-CoA reductase kinase detectable in rat liver under our assay conditions and that it is therefore likely to be identical to previously described HMG-CoA reductase kinase(s) which are activated by adenine nucleotides and phosphorylation. The AMP-binding and catalytic domains of the kinase are located on a 63-kDa polypeptide which is subject to autophosphorylation.  相似文献   

4.
Cold labile extramitochondrial acetyl-CoA hydrolase (dimeric form) purified from rat liver was activated by various nucleoside triphosphates and inhibited by various nucleoside diphosphates. Activation of acetyl-CoA hydrolase by ATP was inhibited by a low concentration of ADP (Ki congruent to 6.8 microM) or a high concentration of AMP (Ki congruent to 2.3 mM). ADP and AMP were competitive inhibitors of ATP. A Scatchard plot of the binding of ATP to acetyl-CoA hydrolase (dimer) at room temperature gave a value of 25 microM for the dissociation constant with at least 2 binding sites/mol of dimer. Cold-treated monomeric enzyme also associated with ATP-agarose, suggesting that the monomeric form of the enzyme also has a nucleotide binding site(s), probably at least 1 binding site/mol of monomer. Phenylglyoxal or 2,3-butanedione, both of which modify arginyl residues of protein, inactivated acetyl-CoA hydrolase. ATP (an activator) greatly protected acetyl-CoA hydrolase from inactivation by these reagents, while ADP (an inhibitor) greatly (a substratelike, competitive inhibitor), and CoASH (a product) were less effective. However, addition of ADP plus valeryl-CoA (or CoASH) effectively prevented the inactivation by 2,3-butanedione, but that is not the case for phenylglyoxal. These results suggest that one or more arginyl residues are involved in the nucleotide binding site of extramitochondrial acetyl-CoA hydrolase and that their nucleotide binding sites locate near the substrate binding site.  相似文献   

5.
The nucleotide analogue 5'-p-fluorosulfonylbenzoyladenosine (FSBA) reacts irreversibly with rat liver cytosolic 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase kinase, causing a rapid loss of the AMP activation capacity and a slower inactivation of the catalytic activity. The rate constant for loss of AMP activation is about 10 times higher (kappa 1 = 0.112 min-1) than the rate constant of inactivation (kappa 2 = 0.0106 min-1). There is a good correspondence between the time-dependent inactivation of reductase kinase and the time-dependent incorporation of 5'-p-sulfonylbenzoyl[14C]adenosine ([14C]SBA). An average of 1.65 mol of reagent/mol of enzyme subunit is bound when reductase kinase is completely inactivated. The time-dependent incorporation is consistent with the postulate that covalent reaction of 1 mol of SBA/mol of subunit causes complete loss of AMP activation, whereas reaction of another mole of SBA/mol of subunit would lead to total inactivation. Protection against inactivation by the reagent is provided by the addition of Mg2+, AMP, Mg-ATP, or Mg-AMP to the incubation mixtures. In contrast, addition of ATP, 2'-AMP, or 3'-AMP has no effect on the rate constants. Mg-ATP protects preferentially the catalytic site against inactivation, whereas Mg-AMP at low concentration protects preferentially the allosteric site. Mg-ADP affords less protection than Mg-AMP to the allosteric site when both nucleotides are present at a concentration of 50 microM with 7.5 mM Mg2+. Experiments done with [14C]FSBA in the presence of some protectants have shown that a close correlation exists between the pattern of protection observed and the binding of [14C]SBA. The postulate is that there exists a catalytic site and an allosteric site in the reductase kinase subunit and that Mg-AMP is the main allosteric activator of the enzyme.  相似文献   

6.
Cell surface ecto-nucleotidases are considered the major effector system for inactivation of extracellular adenine nucleotides, whereas the alternative possibility of ATP synthesis has received little attention. Using a TLC assay, we investigated the main exchange activities of 3H-labeled adenine nucleotides on the cultured human umbilical vein endothelial cells. Stepwise nucleotide degradation to adenosine occurred when a particular nucleotide was present alone, whereas combined cell treatment with ATP and either [3H]AMP or [3H]ADP caused unexpected phosphorylation of 3H-nucleotides via the backward reactions AMP --> ADP --> ATP. The following two groups of nucleotide-converting ecto-enzymes were identified based on inhibition and substrate specificity studies: 1) ecto-nucleotidases, ATP-diphosphohydrolase, and 5'-nucleotidase; 2) ecto-nucleotide kinases, adenylate kinase, and nucleoside diphosphate kinase. Ecto-nucleoside diphosphate kinase possessed the highest activity, as revealed by comparative kinetic analysis, and was capable of using both adenine and nonadenine nucleotides as phosphate donors and acceptors. The transphosphorylation mechanism was confirmed by direct transfer of the gamma-phosphate from [gamma-32P]ATP to AMP or nucleoside diphosphates and by measurement of extracellular ATP synthesis using luciferin-luciferase luminometry. The data demonstrate the coexistence of opposite, ATP-consuming and ATP-generating, pathways on the cell surface and provide a novel mechanism for regulating the duration and magnitude of purinergic signaling in the vasculature.  相似文献   

7.
3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase in the ileum of rats was inactivated by Mg2+-ATP and reversibly reactivated by cytoplasmic activator from the liver. The mevalonate kinase reaction was presumably not involved in this inactivation. Studies of nucleotide specificity for the inactivation revealed that ATP was most effective in the reaction among the nucleotides tested. In contrast to the hepatic microsomal HMG-CoA reductase, more than one-half of intestinal reductase existed in an active form. These observations indicated the presence of phosphorylation-dephosphorylation mechanism for modulation of intestinal HMG-CoA reductase.  相似文献   

8.
Incubation of four purified rat liver HMG-CoA reductase phosphatases, with ATP, ADP and AMP caused a concentration-dependent inactivation of enzyme activities. The nucleotides of guanine, cytosine and uracil produced similar effects to those by the nucleotides of adenine for the same number of phosphates present in the molecules. The greater the number of phosphate groups in nucleotides, the higher was the inhibition in reductase phosphatases observed. Preincubation of phosphatases with ATP and subsequent dilution did not diminish the inactivation effect, showing that nucleotides inhibit the enzyme prior to their binding to the substrate. A relationship was observed between those concentrations of nucleotides which produce 50% inactivation and the logarithm stability constant of Mg or Mn salts of nucleotides. ATP-inactivated enzymes were reactivated by Mn++ and to a lesser proportion by Mg++, the conclusion being that HMG-CoA reductase phosphatases have the characteristics of metalloenzymes.  相似文献   

9.
A Ca2+/calmodulin-dependent kinase has been purified which catalyzed the phosphorylation and concomitant inactivation of both the microsomal native (100,000 Da) and protease-cleaved purified 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase) (53,000 Da) fragments. This low molecular weight brain cytosolic Ca2+/calmodulin-dependent kinase phosphorylates histone H1, synapsin I, and purified HMG-CoA reductase as major substrates. The kinase, purified by sequential chromatography on DEAE-cellulose, calmodulin affinity resin, and high performance liquid chromatography (TSKG 3000 SW) is an electrophoretically homogeneous protein of approximately 110,000 Da. The molecular weight of the holoenzyme, substrate specificity, subunit protein composition, subunit autophosphorylation, subunit isoelectric points, and subunit phosphopeptide analysis suggest that this kinase of Mr 110,000 may be different from other previously reported Ca2+/calmodulin-dependent kinases. Maximal phosphorylation by the low molecular form of Ca2+/calmodulin-dependent kinase of purified HMG-CoA reductase revealed a stoichiometry of approximately 0.5 mol of phosphate/mol of 53,000-Da enzyme. Dephosphorylation of phosphorylated and inactivated native and purified HMG-CoA reductase revealed a time-dependent loss of 32P-bound radioactivity and reactivation of enzyme activity. Based on the results reported here, we propose that HMG-CoA reductase activity may be modulated by yet another kinase system involving covalent phosphorylation. The elucidation of a Ca2+/calmodulin-dependent HMG-CoA reductase kinase-mediated modulation of HMG-CoA reductase activity involving reversible phosphorylation may provide new insights into the molecular mechanisms involved in the regulation of cholesterol biosynthesis.  相似文献   

10.
We have previously shown that incubation of isolated hepatocytes with fructose leads to elevation of AMP and activation of the AMP-activated protein kinase. We now show that this treatment causes marked inactivation of HMG-CoA reductase. Using immunoprecipitation from the microsomal fraction of 32P-labelled cells, we also show that this treatment leads to a 2.6-fold increase in the phosphorylation of the 100 kDa subunit of HMG-CoA reductase. Successive digestion of this 32P-labelled subunit with cyanogen bromide and endoproteinase Lys-C confirmed that Ser-871, the site phosphorylated in cell-free assays by the AMP-activated protein kinase, was the only site phosphorylated under these conditions.  相似文献   

11.
A new sensitive method for adenine nucleotide analysis is described. The key reaction is the phosphorylation of ADP by [32P]PEP in a reaction catalyzed by pyruvate kinase, with the extent of transfer of 32P to ADP being determined by adsorbing the nucleotides onto charcoal. The nonadenine nucleoside diphosphates which also react in the pyruvate kinase reaction are corrected for by determining the 32P retained in the nucleotide fraction after a second incubation with hexokinase and excess glucose. ATP is determined as ADP, after it is quantitatively converted by hexokinase in the presence of excess glucose. Similarly, AMP is analyzed by its conversion to ADP in an incubation with excess ATP and adenylate kinase. The sensitivity of the method for ADP and ATP is 0.05–0.5 pmoles while for AMP it is 5 pmoles.  相似文献   

12.
Immunoprecipitation of native rat liver microsomal 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, phosphorylated by [gamma-32P]ATP in the presence of reductase kinase, revealed a major 97-kDa 32P band which disappeared upon competition with pure unlabeled 53-kDa HMG-CoA reductase. A linear correlation between the expressed/total HMG-CoA reductase activity ratio (E/T) and the fraction of 32P released from the 97-kDa enzyme established the validity of the E/T ratio as an index of HMG-CoA reductase phosphorylation state in isolated microsomes. Incubation of rat hepatocytes with mevalonolactone resulted in a rapid increase in phosphorylation of microsomal reductase (decrease in E/T) followed by an enhanced rate of decay of total reductase activity which was proportional to the loss of 97-kDa enzyme mass determined by immunoblots. Inhibitors of lysosome function dampened both basal and mevalonate-induced reductase degradation in hepatocytes. In an in vitro system using the calcium-dependent protease calpain-2, up to 5-fold greater yields of soluble 52-56-kDa fragments of reductase (immunoblot and total activity) were obtained when the substrate 97-kDa reductase was phosphorylated before proteolysis. Immunoblots of unlabeled phosphorylated reductase compared with gels of immunoprecipitated 32P-labeled reductase resolved a 52-56-kDa doublet which contained 32P solely in the upper band. These data suggest that a major phosphorylation site of HMG-CoA reductase lies within the "linker" segment joining the membrane spanning and cytoplasmic domains of the native 97-kDa protein.  相似文献   

13.
Recent studies have demonstrated that green and black tea consumption can lower serum cholesterol in animals and in man, and suppression of hepatic cholesterol synthesis is suggested to contribute to this effect. To evaluate this hypothesis, we measured cholesterol synthesis in cultured rat hepatoma cells in the presence of green and black tea extracts and selected components. Green and black tea decreased cholesterol synthesis by up to 55% and 78%, respectively, as measured by a 3-h incorporation of radiolabeled acetate. Inhibition was much less evident when radiolabeled mevalonate was used, suggesting that the inhibition was mediated largely at or above the level of HMG-CoA reductase. Both extracts directly inhibited HMG-CoA reductase when added to microsomal preparations, although the extent of inhibition was considerably less than the decrease in cholesterol synthesis observed in whole cells. As HMG-CoA reductase activity also can be decreased by enzyme phosphorylation by AMP kinase, the phosphorylation state of HMG-CoA reductase and AMP kinase, which is activated by phosphorylation, was determined in lysates from cells treated with tea extracts. Both extracts increased AMP-kinase phosphorylation and HMG-CoA reductase phosphorylation by 2.5- to 4-fold, but with different time courses: maximal phosphorylation with green tea was evident within 30 min of treatment, whereas with black tea phosphorylation was slower to develop, with maximal phosphorylation occurring > or =3 hours after treatment. These results suggest that both green and black tea decrease cholesterol synthesis in whole cells by directly inhibiting HMG-CoA reductase and by promoting its inactivation by AMP kinase.  相似文献   

14.
A calcium-activated and phospholipid-dependent protein kinase (protein kinase C) catalyzes the phosphorylation of both insoluble microsomal (Mr approximately 100,000) and purified soluble (Mr = 53,000) 3-hydroxy-3-methylglutaryl coenzyme A reductase. The phosphorylation and concomitant inactivation of enzymic activity of HMG-CoA reductase was absolutely dependent on Ca2+, phosphatidylserine, and diolein. Dephosphorylation of phosphorylated HMG-CoA reductase was associated with the loss of protein bound radioactivity and reactivation of enzymic activity. Maximal phosphorylation of purified HMG-CoA reductase was associated with the incorporation of 1.05 +/- 0.016 mol of phosphate/mol of native form of HMG-CoA reductase (Mr approximately 100,000). The apparent Km for purified HMG-CoA reductase and histone H1 was 0.08 mg/ml, and 0.12 mg/ml, respectively. The tumor-promoting phorbol ester, phorbol 12-myristate 13-acetate stimulated the protein kinase C-catalyzed phosphorylation of HMG-CoA reductase. Increased phosphorylation of HMG-CoA reductase by phorbol 12-myristate 13-acetate suggests a possible in vivo protein kinase C-mediated mechanism for the short-term regulation of HMG-CoA reductase activity. The identification of the protein kinase C system in addition to the reductase kinase-reductase kinase kinase bicyclic cascade systems for the modulation of the enzymic activity of HMG-CoA reductase may provide new insights into the molecular mechanisms involved in the regulation of cholesterol biosynthesis.  相似文献   

15.
The effect of mono-, di-, and trinucleoside phosphates and respiratory inhibitors on respiration in winter wheat (Triticum aestivum L. cv. Rideau) mitochondria has been examined. When added during state 4 respiration, subsequent to addition of ADP, all of the dinucleotides stimulated oxidation and induced respiratory control with all substrates examined. Similar results were obtained with AMP, but other mononucleotides and all trinucleotides did not affect the rate of oxidation. Nucleoside diphosphates did not stimulate respiration when added prior to the addition of ADP, but subsequent addition of AMP, ADP, or ATP re-established coupled respiration in the presence of the dinucleotides.  相似文献   

16.
Carbamoyl phosphate synthetase of pea shoots (Pisum sativum L.) was purified 101-fold. Its stability was greatly increased by the addition of substrates and activators. The enzyme was strongly inhibited by micromolar amounts of UMP (Ki less than 2 mum). UDP, UTP, TMP, and ADP were also inhibitory. AMP caused either slight activation (under certain conditions) or was inhibitory. Uridine nucleotides were competitive inhibitors, as was AMP, while ADP was a noncompetitive inhibitor. Enzyme activity was increased manyfold by the activator ornithine. Ornithine acted by increasing the affinity for Mg.ATP by a factor of 8 or more. Other activators were IMP, GMP, ITP, and GTP, IMP, like ornithine, increased the Michaelis constant for Mg.ATP. The activators ornithine, GMP, and IMP (but not GTP and ITP) completely reversed inhibition caused by pyrimidine nucleotides while increasing the inhibition caused by ADP and AMP.  相似文献   

17.
Modulation of cholesterol 7 alpha-hydroxylase catalytic activity by adenine nucleotides was studied in rat liver microsomal preparations. Inactivation of cholesterol 7 alpha-hydroxylase showed specific requirements of ATP and ADP. AMP and cyclic AMP were stimulatory and cyclic AMP had no effect in the ATP inactivation. The inactivation reactions by ATP were dependent on Mg2+ ions, a cytosolic factor, and time. Ca2+ ions were less effective whereas Mn2+ ions were highly inhibitory to hydroxylase activity. The inactivation could be reversed in a time-dependent reaction requiring a cytosolic activator that was precipitable by ammonium sulphate of saturation up to 65%. The current data suggest that cholesterol 7 alpha-hydroxylase can exist in two catalytic forms that are reversible.  相似文献   

18.
It was found that nucleoside 5'-diphosphates could serve as effectors of ribonucleotide reductase. ADP was an activator of CDP reduction; ADP reduction was activated by dGDP; GDP reduction was activated by dTDP. Conversely, dADP inhibited the reduction of CDP, UDP, GDP, and ADP; dGDP inhibited UDP and GDP reductions; and dTDP inhibited UDP reduction. The inhibition of UDP reduction by dADP, dTDP, and dGDP was at least equal to that observed for dATP, dTTP, and dGTP, respectively. In these experiments with the nucleoside diphosphates as effectors, high-pressure liquid chromatography analysis of the reaction mixtures showed that no nucleoside 5'-triphosphates were found during the reaction period which could account for the effects seen with the nucleoside diphosphates as effectors. Further experiments were carried out in which adenyl-5'-yl imidodiphosphate was used as the positive effector of CDP and UDP reductions in place of ATP. Under these conditions, CDP and UDP reductions were inhibited by dADP, dTDP, and dGDP to the same extent observed in the presence of ATP. ADP served not only as a substrate for ribonucleotide reductase but also as an activator of CDP and UDP reductions. The direct products (dNDPs) also served as positive and negative effectors. Dixon plots indicated that the dNDPs were acting as noncompetitive inhibitors with respect to the substrate. ADP increased the sedimentation velocity of the ribonucleotide reductase in a manner similar to ATP. These data are consistent with the allosteric effects seen with the nucleoside 5'-triphosphates. Additionally, from the thorough study of the role of effectors on UDP reduction, it is clear that UDP reduction was most sensitive to the negative effectors dATP, dADP, dTTP, dTDP, dGTP, and dGDP.  相似文献   

19.
Reductase kinase and mevalonate kinase are separated by: a) ammonium sulfate fractionation; b) chromatography on agarose-Procion Red HE3B; and c) chromatography on DEAE-Sephacel. Fractions containing only reductase kinase reversibly inactivated microsomal or homogeneous HMG-CoA reductase. Fractions containing only mevalonate kinase revealed artifactual reductase kinase activity in the absence of EDTA or mevalonic acid; however, addition of EDTA or mevalonate before reductase assay completely blocked any apparent decline in HMG-CoA reductase activity. Under these conditions no dephosphorylation (reactivation) was observed by phosphatase. The combined results demonstrate unequivocally that reductase kinase and mevalonate kinase are two different enzymes and inactivation of HMG-CoA reductase is catalyzed by ATP-Mg-dependent reductase kinase.  相似文献   

20.
In vitro enzyme-based ATP regeneration systems are important for improving yields of ATP-dependent enzymatic reactions for preparative organic synthesis and biocatalysis. Several enzymatic ATP regeneration systems have been described but have some disadvantages. We report here on the use of polyphosphate:AMP phosphotransferase (PPT) from Acinetobacter johnsonii strain 210A in an ATP regeneration system based on the use of polyphosphate (polyP) and AMP as substrates. We have examined the substrate specificity of PPT and demonstrated ATP regeneration from AMP and polyP using firefly luciferase and hexokinase as model ATP-requiring enzymes. PPT catalyzes the reaction polyP(n) + AMP --> ADP + polyP(n-1). The ADP can be converted to ATP by adenylate kinase (AdK). Substrate specificity with nucleoside and 2'-deoxynucleoside monophosphates was examined using partially purified PPT by measuring the formation of nucleoside diphosphates with high-pressure liquid chromatography. AMP and 2'-dAMP were efficiently phosphorylated to ADP and 2'-dADP, respectively. GMP, UMP, CMP, and IMP were not converted to the corresponding diphosphates at significant rates. Sufficient AdK and PPT activity in A. johnsonii 210A cell extract allowed demonstration of polyP-dependent ATP regeneration using a firefly luciferase-based ATP assay. Bioluminescence from the luciferase reaction, which normally decays very rapidly, was sustained in the presence of A. johnsonii 210A cell extract, MgCl(2), polyP(n=35), and AMP. Similar reaction mixtures containing strain 210A cell extract or partially purified PPT, polyP, AMP, glucose, and hexokinase formed glucose 6-phosphate. The results indicate that PPT from A. johnsonii is specific for AMP and 2'-dAMP and catalyzes a key reaction in the cell-free regeneration of ATP from AMP and polyP. The PPT/AdK system provides an alternative to existing enzymatic ATP regeneration systems in which phosphoenolpyruvate and acetylphosphate serve as phosphoryl donors and has the advantage that AMP and polyP are stabile, inexpensive substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号