首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A calcium-activated and phospholipid-dependent protein kinase (protein kinase C) catalyzes the phosphorylation of both insoluble microsomal (Mr approximately 100,000) and purified soluble (Mr = 53,000) 3-hydroxy-3-methylglutaryl coenzyme A reductase. The phosphorylation and concomitant inactivation of enzymic activity of HMG-CoA reductase was absolutely dependent on Ca2+, phosphatidylserine, and diolein. Dephosphorylation of phosphorylated HMG-CoA reductase was associated with the loss of protein bound radioactivity and reactivation of enzymic activity. Maximal phosphorylation of purified HMG-CoA reductase was associated with the incorporation of 1.05 +/- 0.016 mol of phosphate/mol of native form of HMG-CoA reductase (Mr approximately 100,000). The apparent Km for purified HMG-CoA reductase and histone H1 was 0.08 mg/ml, and 0.12 mg/ml, respectively. The tumor-promoting phorbol ester, phorbol 12-myristate 13-acetate stimulated the protein kinase C-catalyzed phosphorylation of HMG-CoA reductase. Increased phosphorylation of HMG-CoA reductase by phorbol 12-myristate 13-acetate suggests a possible in vivo protein kinase C-mediated mechanism for the short-term regulation of HMG-CoA reductase activity. The identification of the protein kinase C system in addition to the reductase kinase-reductase kinase kinase bicyclic cascade systems for the modulation of the enzymic activity of HMG-CoA reductase may provide new insights into the molecular mechanisms involved in the regulation of cholesterol biosynthesis.  相似文献   

2.
A novel calmodulin-dependent protein kinase has been isolated from bovine cardiac muscle by successive chromatography on DEAE-Sepharose 6B, Calmodulin-Sepharose 4B affinity and Sepharose 6B chromatography columns. The protein kinase was shown by gel filtration chromatography to have a molecular mass of 36,000 daltons. The highly purified protein kinase stoichiometrically phosphorylated the high molecular weight calmodulin-binding protein from cardiac muscle [Sharma RK (1990) J Biol Chem 265, 1152-1157] in a Ca2+/calmodulin-dependent manner. The phosphorylation resulted in the maximal incorporation of 1 mol of phosphate/mol of the high molecular weight calmodulin-binding protein. Other Ca2+/calmodulin-dependent protein kinases failed to phosphorylate the high molecular weight calmodulin-binding protein. The distinct substrate specificity of this protein kinase indicates that it is not related to the known calmodulin-dependent protein kinases and therefore constitutes a novel protein kinase.  相似文献   

3.
A rabbit liver cAMP-independent glycogen synthase kinase has been purified 4500-fold to a specific activity of 2.23 mumol of 32P incorporated per min per mg of protein using ion exchange chromatography on DEAE-Sephacel and phosphocellulose, gel filtration chromatography on Sepharose 6B, and affinity chromatography on calmodulin-Sepharose. This synthase kinase, which was completely dependent on the presence of calmodulin (apparent K0.5 = 0.1 microM) and calcium for activity, also catalyzed the phosphorylation of purified smooth muscle myosin light chain but not of smooth muscle myosin. Using 0.5 mM ATP, a maximal rate of phosphorylation of glycogen synthase was achieved in the presence of 10 mM magnesium acetate with a pH optimum of 7.8. Gel filtration experiments indicated a Stokes radius of about 70 A and sucrose density gradient centrifugation data gave a sedimentation coefficient of 10.6 S. A molecular weight of approximately 300,000 was calculated. A definitive subunit structure was not determined, but major bands observed after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate corresponded to a doublet at 50,000 to 53,000. The calmodulin-dependent glycogen synthase kinase incorporated about 1 mol of 32P per mol of synthase subunit into sites 2 and 1b associated with a decrease in the synthase activity ratio from 0.8 to about 0.4. The calmodulin-dependent glycogen synthase kinase may mediate the effects of alpha-adrenergic agonists, vasopressin, and/or angiotensin II on glycogen synthase in liver.  相似文献   

4.
3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) has been isolated from human liver utilizing HMG-CoA affinity chromatography. The apparent monomer molecular weight of purified human HMG-CoA reductase by SDS-gel electrophoresis was 53,000, and the oligomeric molecular weight determined by sucrose density centrifugation was 104,000. A monospecific antibody prepared against rat liver HMG-CoA reductase inhibited the enzymic activity of microsomal and purified human liver enzyme and formed a single immunoprecipitin line by radial immunodiffusion. These results represent the initial isolation and characterization of human liver HMG-CoA reductase.  相似文献   

5.
The 63-kDa subunit, but not the 60-kDa subunit, of brain calmodulin-dependent cyclic nucleotide phosphodiesterase was phosphorylated in vitro by the autophosphorylated form of Ca2+/calmodulin-dependent protein kinase II. When calmodulin was bound to the phosphodiesterase, 1.33 +/- 0.20 mol of phosphate was incorporated per mol of the 63-kDa subunit within 5 min with no significant effect on enzyme activity. Phosphorylation in the presence of low concentrations of calmodulin resulted in a phosphorylation stoichiometry of 2.11 +/- 0.21 and increased about 6-fold the concentration of calmodulin necessary for half-maximal activation of the phosphodiesterase. Peptide mapping analyses of complete tryptic digests of the 63-kDa subunit revealed two major (P1, P4) and two minor (P2, P3) 32P-peptides. Calmodulin-binding to the phosphodiesterase almost completely inhibited phosphorylation of P1 and P2 with reduced phosphorylation rates of P3 and P4, suggesting the affinity change of the enzyme for calmodulin may be caused by phosphorylation of P1 and/or P2. When Ca2+/calmodulin-dependent protein kinase II was added without prior autophosphorylation, there was no phosphorylation of the 63-kDa phosphodiesterase subunit or of the kinase itself in the presence of a low concentration of calmodulin, and with excess calmodulin the phosphodiesterase subunit was phosphorylated only at P3 and P4. Thus the 63-kDa subunit of phosphodiesterase has a regulatory phosphorylation site(s) that is phosphorylated by the autophosphorylated form of Ca2+/calmodulin-dependent protein kinase II and blocked by Ca2+/calmodulin binding to the subunit.  相似文献   

6.
J Kuret  H Schulman 《Biochemistry》1984,23(23):5495-5504
A soluble Ca2+/calmodulin-dependent protein kinase has been purified from rat brain to near homogeneity by using casein as substrate. The enzyme was purified by using hydroxylapatite adsorption chromatography, phosphocellulose ion-exchange chromatography, Sepharose 6B gel filtration, affinity chromatography using calmodulin-Sepharose 4B, and ammonium sulfate precipitation. On sodium dodecyl sulfate (NaDodSO4)-polyacrylamide gels, the purified enzyme consists of three protein bands: a single polypeptide of 51 000 daltons and a doublet of 60 000 daltons. Measurements of the Stokes radius by gel filtration (81.3 +/- 3.7 A) and the sedimentation coefficient by sucrose density sedimentation (13.7 +/- 0.7 S) were used to calculate a native molecular mass of 460 000 +/- 29 000 daltons. The kinase autophosphorylated both the 51 000-dalton polypeptide and the 60 000-dalton doublet, resulting in a decreased mobility in NaDodSO4 gels. Comparison of the phosphopeptides produced by partial proteolysis of autophosphorylated enzyme reveals substantial similarities between subunits. These patterns, however, suggest that the 51 000-dalton subunit is not a proteolytic fragment of the 60 000-dalton doublet. Purified Ca2+/calmodulin-dependent casein kinase activity was dependent upon Ca2+, calmodulin, and ATP X Mg2+ or ATP X Mn2+ when measured under saturating casein concentrations. Co2+, Mn2+, and La3+ could substitute for Ca2+ in the presence of Mg2+ and saturating calmodulin concentrations. In addition to casein, the purified enzyme displayed a broad substrate specificity which suggests that it may be a "general" protein kinase with the potential for mediating numerous processes in brain and possibly other tissues.  相似文献   

7.
Phosphorylation of nitric oxide synthase by protein kinase A.   总被引:3,自引:0,他引:3  
Nitric oxide synthase was purified to apparent homogeneity from the cytosolic fractions obtained from rat and porcine cerebellum. Enzyme activity--measured as [3H]citrulline formation after incubation with [3H]arginine--was dependent on Ca2+/calmodulin, NADPH, and tetrahydro-L-biopterin. Specific activity varied between 450 to 780 nmol/min/mg protein. Purified nitric oxide synthases showed a single band on 8% SDS/PAGE gels and had an apparent molecular mass of 150,000 Da. The purified proteins were used as substrate for phosphorylation with different protein kinases. In the assays using two Ca2+/calmodulin-dependent protein kinases, CaM kinase II and CaM kinase-Gr, protein kinase C, and the catalytic subunit of protein kinase A, nitric oxide synthase was exclusively phosphorylated by protein kinase A. Such phosphorylation was linear over time for at least 60 min and resulted in nearly stoichiometric phosphate/protein incorporation. The serine in the protein kinase A-consensus sequence KRFGS is probably the site of phosphorylation in nitric oxide synthase. Kemptide, a known protein kinase A substrate, inhibited phosphorylation of nitric oxide synthase in a dose-dependent manner. No changes in nitric oxide synthase activity were observed upon phosphorylation by protein kinase A.  相似文献   

8.
A Chu  C Sumbilla  G Inesi  S D Jay  K P Campbell 《Biochemistry》1990,29(25):5899-5905
A systematic study of protein kinase activity and phosphorylation of membrane proteins by ATP was carried out with vesicular fragments of longitudinal tubules (light SR) and junctional terminal cisternae (JTC) derived from skeletal muscle sarcoplasmic reticulum (SR). Following incubation of JTC with ATP, a 170,000-Da glycoprotein, a 97,500-Da protein (glycogen phosphorylase), and a 55,000-60,000-Da doublet (containing calmodulin-dependent protein kinase subunit) underwent phosphorylation. Addition of calmodulin in the presence of Ca2+ (with no added protein kinase) produced a 10-fold increase of phosphorylation involving numerous JTC proteins, including the large (approximately 450,000 Da) ryanodine receptor protein. Calmodulin-dependent phosphorylation of the ryanodine receptor protein was unambiguously demonstrated by Western blot analysis. The specificity of these findings was demonstrated by much lower levels of calmodulin-dependent phosphorylation in light SR as compared to JTC, and by much lower cyclic AMP dependent kinase activity in both JTC and light SR. These observations indicate that the purified JTC contain membrane-bound calmodulin-dependent protein kinase that undergoes autophosphorylation and catalyzes phosphorylation of various membrane proteins. Protein dephosphorylation was very slow in the absence of added phosphatases, but was accelerated by the addition of phosphatase 1 and 2A (catalytic subunit) in the absence of Ca2+, and calcineurin in the presence of Ca2+. Therefore, in the muscle fiber, dephosphorylation of SR proteins relies on cytoplasmic phosphatases. No significant effect of protein phosphorylation was detected on the Ca2(+)-induced Ca2+ release exhibited by isolated JTC vesicles. However, the selective and prominent association of calmodulin-dependent protein kinase and related substrates with junctional membranes, its Ca2+ sensitivity, and its close proximity to the ryanodine and dihydropyridine receptor Ca2+ channels suggest that this phosphorylation system is involved in regulation of functions linked to these structures.  相似文献   

9.
R K Sharma 《Biochemistry》1991,30(24):5963-5968
Calmodulin-dependent phosphodiesterase was purified to apparent homogeneity from the total calmodulin-binding fraction of bovine heart in a single step by immunoaffinity chromatography. The isolated enzyme had significantly higher affinity for calmodulin than the bovine brain 60-kDa phosphodiesterase isozyme. The cAMP-dependent protein kinase was found to catalyze the phosphorylation of the purified cardiac calmodulin-dependent phosphodiesterase with the incorporation of 1 mol of phosphate/mol of subunit. The phosphodiesterase phosphorylation rate was increased severalfold by histidine without affecting phosphate incorporation into the enzyme. Phosphorylation of phosphodiesterase lowered its affinity for calmodulin and Ca2+. At constant saturating concentrations of calmodulin (650 nM), the phosphorylated calmodulin-dependent phosphodiesterase required a higher concentration of Ca2+ (20 microM) than the nonphosphorylated phosphodiesterase (0.8 microM) for 50% activity. Phosphorylation could be reversed by the calmodulin-dependent phosphatase (calcineurin), and dephosphorylation was accompanied by an increase in the affinity of phosphodiesterase for calmodulin.  相似文献   

10.
Phosphorylation of brain synaptic and coated vesicle proteins was stimulated by Ca2+ and calmodulin. As determined by 5-15% sodium dodecylsulfate (SDS) polyacrylamide gel electrophoresis (PAGE), molecular weights (Mr) of the major phosphorylated proteins were 55,000 and 53,000 in synaptic vesicles and 175,000 and 55,000 in coated vesicles. In synaptic vesicles, phosphorylation was inhibited by affinity-purified antibodies raised against a 30,000 Mr protein doublet endogenous to synaptic and coated vesicles. When this doublet, along with clathrin, was extracted from coated vesicles, phosphorylation did not take place, implying that the protein doublet may be closely associated with Ca2+/calmodulin-dependent protein kinase. Affinity-purified antibodies, raised against clathrin used as a control antibody, failed to inhibit Ca2+/calmodulin-dependent phosphorylation in either synaptic or coated vesicles. Immunoelectron cytochemistry revealed that this protein doublet was present in axon terminal synaptic and coated vesicles. Synaptic vesicles also displayed cAMP-dependent kinase activity; coated vesicles did not. The molecular weights of phosphorylated synaptic vesicle proteins in the presence of Mg2+ and cAMP were: 175,000, 100,000, 80,000, 57,000, 55,000, 53,000, 40,000, and 30,000. Based on the different phosphorylation patterns observed in synaptic and coated vesicles, we propose that brain vesicle protein kinase activities may be involved in the regulation of exocytosis and in retrieval of synaptic membrane in presynaptic axon terminals.  相似文献   

11.
3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase exists in interconvertible active and inactive forms in cultured fibroblasts from normal and familial hypercholesterolemic subjects. The inactive form can be activated by endogenous or added phosphoprotein phosphatase. Active or partially active HMG-CoA reductase in cell extracts was inactivated by a ATP-Mg-dependent reductase kinase. Incubation of phosphorylated (inactive) HMG-CoA reductase with purified phosphoprotein phosphatase was associated with dephosphorylation (reactivation) and complete restoration of HMG-CoA reductase activity. Low density lipoprotein, 25-hydroxycholesterol, 7-ketocholesterol, and mevalonolactone suppressed HMG-CoA reductase activity by a short-term mechanism involving reversible phosphorylation. 25-Hydroxycholesterol, which enters cells without the requirement of low density lipoprotein-receptor binding, inhibited the HMG-CoA reductase activity in familial hypercholesterolemic cells by reversible phosphorylation. Measurement of the short-term effects of inhibitors on the rate of cholesterol synthesis from radiolabeled acetate revealed that HMG-CoA reductase phosphorylation was responsible for rapid suppression of sterol synthesis. Reductase kinase activity of cultured fibroblasts was also affected by reversible phosphorylation. The active (phosphorylated) reductase kinase can be inactivated by dephosphorylation with phosphatase. Inactive reductase kinase can be reactivated by phosphorylation with ATP-Mg and a second protein kinase from rat liver, designated reductase kinase kinase. Reductase kinase kinase activity has been shown to be present in the extracts of cultured fibroblasts. The combined results represent the initial demonstration of a short-term regulation of HMG-CoA reductase activity and cholesterol synthesis in normal and receptor-negative cultured fibroblasts involving reversible phosphorylation of both HMG-CoA reductase and reductase kinase.  相似文献   

12.
We have shown previously that the subcellular distribution of a major calmodulin-binding protein is altered under conditions causing increased synthesis of cAMP in Aplysia neurons (Saitoh, T., and J. H. Schwartz, 1983, Proc. Natl. Acad. Sci. USA, 80:6708-6712). We now provide evidence that this Mr 55,000 protein is a subunit of a Ca2+/calmodulin-dependent kinase: (a) both the Mr 55,000 calmodulin-binding protein and kinase activity are loosely attached to the membrane-cytoskeletal complex; (b) both kinase activity and the Mr 55,000 protein are translocated from the membrane-cytoskeleton complex to the cytoplasm under conditions that cause the change in the subcellular distribution of the Mr 55,000 calmodulin-binding protein; and (c) calmodulin-binding activity of the Mr 55,000 protein and the ability to carry out the Ca2+/calmodulin-dependent phosphorylation of synapsin I are purified in parallel. The subcellular localization of the Ca2+/calmodulin-dependent protein kinase appears to be under control of two second messengers: Ca2+ and cAMP. We find that the Mr 55,000 subunit is phosphorylated when the extracted membrane-cytoskeleton complex is incubated with Ca2+, calmodulin, and ATP, with the concomitant release of this phosphorylated peptide from the complex. Previously, we had found that, when translocation occurs in extracts in the presence of cAMP and ATP (but in the absence of Ca2+), there was no detectable phosphorylation of the Mr 55,000 subunit itself. The subcellular distribution of the subunit thus appears to be influenced by (a) cAMP-dependent phosphorylation, which, we infer, modifies some as yet unidentified structural component, causing the release of the enzyme; and (b) Ca2+/calmodulin-dependent phosphorylation of the Mr 55,000 subunit. These studies also suggest that phosphorylation has an important regulatory consequence: during the Ca2+/calmodulin-dependent translocation of the Mr 55,000 subunit, the kinase appears to be activated, becoming independent of added Ca2+/calmodulin.  相似文献   

13.
Changes in glycolytic flux have been observed in liver under conditions where effects of cAMP seem unlikely. We have, therefore, studied the phosphorylation of four enzymes involved in the regulation of glycolysis and gluconeogenesis (6-phosphofructo-1-kinase from rat liver and rabbit muscle; pyruvate kinase, 6-phosphofructo-2-kinase and fructose-1,6-bisphosphatase from rat liver) by defined concentrations of two cAMP-independent protein kinases: Ca2+/calmodulin-dependent protein kinase and Ca2+/phospholipid-dependent protein kinase (protein kinase C). The results were compared with those obtained with the catalytic subunit of cAMP-dependent protein kinase. The following results were obtained. 1. Ca2+/calmodulin-dependent protein kinase phosphorylates 6-phosphofructo-1-kinase and L-type pyruvate kinase at a slightly lower rate as compared to cAMP-dependent protein kinase. 2. 6-Phosphofructo-1-kinase is phosphorylated by the two kinases at a single identical position. There is no additive phosphorylation. The final stoichiometry is 2 mol phosphate/mol tetramer. The same holds for L-type pyruvate kinase except that the stoichiometry with either kinase or both kinases together is 4 mol phosphate/mol tetramer. 3. Rabbit muscle 6-phosphofructo-1-kinase is phosphorylated by cAMP-dependent protein kinase but not by Ca2+/calmodulin-dependent protein kinase. 4. Fructose-1,6-bisphosphatase from rat but not from rabbit liver is phosphorylated at the same position but at a markedly lower rate by Ca2+/calmodulin-dependent protein kinase when compared to the phosphorylation by cAMP-dependent protein kinase. 5. 6-Phosphofructo-2-kinase is phosphorylated by Ca2+/calmodulin-dependent protein kinase only at a negligible rate. 6. Protein kinase C does not seem to be involved in the regulation of the enzymes examined: only 6-phosphofructo-2-kinase became phosphorylated to a significant degree. In contrast to the phosphorylation by cAMP-dependent protein kinase, this phosphorylation is not associated with a change of enzyme activity. This agrees with our observation that the sites of phosphorylation by the two kinases are different. The results indicate that Ca2+/calmodulin-dependent protein kinase but not protein kinase C could be involved in the regulation of hepatic glycolytic flux under conditions where changes in the activity of cAMP-dependent protein kinase seem unlikely.  相似文献   

14.
The autophosphorylation of purified Ca2+/calmodulin-dependent protein kinase II (Ca2+/CaM kinase II) on a threonine-containing phosphopeptide common to both the alpha and beta subunits was previously shown to convert this enzyme into a catalytically active Ca2+-independent species. We now have examined the phosphorylation and activation of Ca2+/CaM kinase II in synaptosomes, a Ca2+-dependent neurosecretory system consisting of isolated nerve terminals. Synaptosomes were prelabeled with 32Pi and the alpha subunit of Ca2+/CaM kinase II was immunoprecipitated. Under basal incubation conditions the alpha subunit was phosphorylated. Depolarization of synaptosomes produced a rapid (2-5 s) Ca2+-dependent increase of about 50% in the state of phosphorylation of the alpha subunit. This was followed by a slower increase in the 32P content of the alpha subunit over the next 5 min of depolarization. The enhanced phosphorylation was characterized by an initial rise (2 s) and subsequent decrease (30 s) in the phosphothreonine content of the alpha subunit. In contrast, the phosphoserine content of the alpha subunit slowly increased during the course of depolarization. Thermolytic two-dimensional phosphopeptide maps of the alpha subunit demonstrated that depolarization stimulated the labeling of a phosphopeptide associated with autoactivation. In parallel experiments, unlabeled synaptosomes were depolarized, and lysates of these synaptosomes were assayed for Ca2+/CaM kinase II activity. Depolarization produced a rapid (less than or equal to 2 s) increase in Ca2+-independent Ca2+/CaM kinase II activity. This activity returned to basal levels by 60 s. Thus, depolarization of intact synaptosomes is associated with the transient phosphorylation of Ca2+/CaM kinase II on threonine residues, presumably involving an autophosphorylation mechanism and concomitantly the transient generation of the Ca2+-independent form of Ca2+/CaM kinase II.  相似文献   

15.
Elongation factor 2 (EF-2) has been recently shown to be extensively phosphorylated in a Ca2+/calmodulin-dependent manner in extracts of mammalian cells (A. G. Ryazanov (1987) FEBS Lett. 214, 331-334). In the present study, we partially purified the protein kinase which phosphorylates EF-2 from rabbit reticulocytes. The molecular weight of the enzyme determined by gel filtration was about 140,000. Unlike the substrate, the EF-2 kinase had no affinity for RNA and therefore could be separated from EF-2 by chromatography on RNA-Sepharose. After chromatography on hydroxyapatite, the kinase activity became calmodulin-dependent. Two-dimensional separation of the phosphorylated EF-2 according to O'Farrell's technique revealed that there were two phosphorylation sites within the EF-2 molecule; in both cases, the phosphorylated amino acid was threonine. The EF-2 kinase differed from the four known types of Ca2+/calmodulin-dependent protein kinases. Thus, the system of EF-2 phosphorylation represents the novel (fifth) Ca2+/calmodulin-dependent system of protein phosphorylation. This system is supposed to be responsible for the regulation of the elongation rate of protein biosynthesis in eukaryotic cells.  相似文献   

16.
Enoate reductase from Clostridium tyrobutyricum was purified by a rapid novel procedure. Chromatography on DEAE-Sepharose and on hydroxyapatite resulted in a high yield of about 90% pure enzyme in less than 10 h. A purity greater than 98% could be obtained by additional chromatography on Sephacryl S-300. The enzyme sediments in the analytical ultracentrifuge as a single, symmetrical boundary with a velocity of S(0)20,w = 24.9 S. Equilibrium ultracentrifugation yielded a molecular mass of 940 000 +/- 20 000 Da. The enzyme contains one type of subunit as shown by dodecyl sulfate electrophoresis and partial sequence determination. A subunit molecular mass of about 73 000 Da was established by dodecyl sulfate electrophoresis and by sedimentation equilibrium analysis in guanidine hydrochloride. In addition to FAD, iron and labile sulfur, the enzyme purified by the new method showed approximately 0.7 mol of FMN per mol of subunit. A dissociation product sedimenting at a velocity of S(0)20,w = 9.8 S can be obtained by various experimental protocols. The fragment was obtained in pure form by gel permeation chromatography. The molecular mass was 230 000 +/- 10 000 Da as shown by sedimentation equilibrium analysis. Thus it appears that the dissociation product is a trimer of the 73 000-Da subunit. The formation of the 10-S fragment by dissociation of the native enzyme is accompanied by the loss of most of the FMN, whereas the FAD content is not changed. The fragment catalysed the reduction of acetylpyridine adenine dinucleotide by NADH. However, enoate reductase activity with NADH or methylviologen as cosubstrate was low. Electron micrographs of negatively stained enoate reductase show trigonal symmetry. The data suggest that enoate reductase is a dodecamer (tetramer of trimers) with tetrahedral symmetry.  相似文献   

17.
Ca2+/calmodulin-dependent protein kinase II is thought to participate in M3 muscarinic receptor-mediated acid secretion in gastric parietal cells. During acid secretion tubulovesicles carrying H+/K+-ATPase fuse with the apical membrane. We localized Ca2+/calmodulin-dependent protein kinase II from highly purified rabbit gastric tubulovesicles using Ca2+/calmodulin-dependent protein kinase II isoform-specific antibodies, in vitro phosphorylation and pharmacological inhibition of Ca2+/calmodulin-dependent protein kinase II activity by the potent Ca2+/calmodulin-dependent protein kinase II inhibitor KN-62. The presence of Ca2+/calmodulin-dependent protein kinase II in tubulovesicles was shown by immunoblot detection of both Ca2+/calmodulin-dependent protein kinase II-gamma (54 kDa) and Ca2+/calmodulin-dependent protein kinase II-delta (56.5 kDa). The immunoprecipitated Ca2+/calmodulin-dependent protein kinase II from tubulovesicles showed Ca2+/calmodulin-dependent protein kinase activity by phosphorylating autocamtide-II, a specific synthetic Ca2+/calmodulin-dependent protein kinase II substrate. KN-62 inhibited the in vitro autophosphorylation of tubulovesicle-associated Ca2+/calmodulin-dependent protein kinase II (IC50 = 11 nM). During the search for potential Ca2+/calmodulin-dependent protein kinase II substrates we identified different proteins associated with tubulovesicles, such as synaptophysin and beta-tubulin immunoreactivity, which were identified using specific antibodies. These targets are known to participate in intracellular membrane traffic. Ca2+/calmodulin-dependent protein kinase II is thought to play an important role in regulating tubulovesicular motor activity and therefore in acid secretion.  相似文献   

18.
We have examined the effects of added cAMP-dependent protein kinase and endogenous calmodulin-dependent kinase on Ca2+ transport in purified internal membranes from human platelets. Both Ca2+ uptake and Ca2+-ATPase activity were maximally stimulated about 2-fold by addition of cAMP-dependent protein kinase. Cyclic AMP-dependent protein kinase inhibitor reduced both Ca2+ uptake and Ca2+-ATPase activities at concentrations which also inhibited cAMP-dependent protein phosphorylation. In addition, concerted stimulation of Ca2+-ATPase by exogenous calmodulin and added catalytic subunit of cAMP-dependent protein kinase was observed. A 22-kDa protein was phosphorylated by both cAMP-dependent and calmodulin-dependent kinases at the same rate as stimulation of the Ca2+-ATPase. Cyclic AMP-dependent phosphorylation of the 22-kDa polypeptide was inhibited by the protein kinase inhibitor and calmodulin-dependent phosphorylation was inhibited by chlorpromazine and EGTA. These results are consistent with the hypothesis that one mode of control of Ca2+ homeostasis in platelets may be similar to the phospholamban system in cardiac muscle.  相似文献   

19.
Tubulin is a major substrate for endogenous Ca2+-calmodulin-dependent phosphorylation in synaptic cytoplasm. The present study details the purification to apparent homogeneity and characterization of a brain cytosolic Ca2+-calmodulin-dependent kinase which phosphorylates tubulin and microtubule-associated proteins as major substrates. The cytosolic kinase system, purified by sequential chromatography on phosphocellulose resin, calmodulin-affinity resin, and Fractogel TSK HW-55, chromatographs as a homogeneous complex of approximately 600,000 Da on Sephacryl S-300. This calmodulin-dependent kinase possesses a group of properties which specifically characterize this enzyme system: 1) the enzyme contains two calmodulin-binding doublets, rho and sigma, of approximately 52,000 and 63,000 Da, respectively; 2) both the rho and the sigma subunits demonstrate isoelectric points between 6.7 and 7.2; 3) both the rho and sigma subunits demonstrate autophosphorylation; 4) both the rho and sigma subunits show significant homologies as assessed by tryptic peptide fingerprints; 5) in the absence of substrate, both the rho and sigma subunits manifest lower mobility autophosphorylated species; 6) the kinase phosphorylates beta-tubulin equally on threonine and serine residues. Substrate specificity, kinetic parameters, calmodulin-binding properties, subunit composition, and subunit isoelectric points clearly differentiate this enzyme from other previously reported calmodulin-dependent kinases.  相似文献   

20.
A protein with an estimated subunit mass of 19 kDa was isolated and purified from perfused rat liver cytosol. This protein activates hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase (NADPH) (EC 1.1.1.34), the rate-limiting enzyme in the cholesterol biosynthetic pathway. The activation process by this HMG-CoA reductase activating protein (RAP) is time-dependent and requires NADPH. Maximal activity of HMG-CoA reductase induced by RAP is comparable to that obtained in the presence of thiols, such as GSH, and can exceed 100-fold the activity obtained when thiols are omitted. Purified RAP lacks ability to reduce 5,5'-dithiobis-(2-nitrobenzoic acid). RAP was purified to homogeneity utilizing DEAE- and phenyl-Sepharose CL-4B column chromatography. The purified RAP migrates as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and shows multiple interconvertible aggregational forms on native polyacrylamide gel electrophoresis. A monospecific antibody against RAP was prepared by immunization of hens and extracted from either their egg yolks or serum. The catalytic activity of RAP might be responsible for the physiological activation of HMG-CoA reductase and regulation of its activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号