首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim The spatio‐temporal dynamics of dry evergreen forest patches in the savanna biome of the Kagera region (north‐western Tanzania) are largely unknown owing to a lack of pollen and macrofossil evidence. Our aims were to reconstruct local‐scale shifts of the forest–savanna boundary in order to determine whether the forests have been expanding or retreating on a centennial and millennial time‐scale. Location The Kagera region of north‐western Tanzania, East Africa. Methods The vegetation reconstruction was based on analysing δ13C signatures in soils along a transect spanning both C4 open savanna and C3 forest vegetation. Furthermore, we fractionated soil organic matter (SOM) according to density and chemical stability to analyse δ13C values of soil fractions with distinct radiocarbon ages. Results We found sharp changes in δ13C signatures in bulk SOM from the forest to the savanna, within a few metres along the transect. The forest soil profiles carried a persistent C3‐dominated signature. Radiocarbon dating of the oldest, most recalcitrant forest soil fraction yielded a mean age of 5500 cal. yr bp , demonstrating that the forest has existed since at least the mid‐Holocene. The savanna sites showed a typical C4 isotopic signature in SOM of topsoils, but subsoils and more recalcitrant SOM fractions also contained signals of C3 plants. The dense soil fraction (ρ > 1.6 g cm?3) carrying a pure C4 label had a mean age of c. 1200 cal. yr bp , indicating the minimum duration of the dominance of grass vegetation on the savanna site. At the forest edge, the older C4 grass signature of SOM has steadily been replaced by the more negative δ13C fingerprint of the forest trees. As this replacement has occurred mainly in the 10‐m‐wide forest–savanna ecotone over the last c. 1200 years, the forest expansion must be very slow and is very likely less than 15 m century?1. Main conclusions Our results suggest that forest patches in the Kagera savanna landscape are very stable vegetation formations which have persisted for millennia. During the last millennium, they have been expanding very slowly into the surrounding savanna at a rate of less than 15 m century?1.  相似文献   

2.
Paleoecological and geomorphological studies indicate that, during the middle Holocene, there was a predominance of drier conditions with grassy savannahs replacing forests across the South American continent. Modern savannahs are composed mainly of C4 plants and soils developed under this type of vegetation show enrichment in 13C compared to soils under C3 vegetation cover. If soils contain stabilized organic matter formed in the middle Holocene, we hypothesize that former C4 vegetation would be evidenced by a large enrichment of 13C in soil organic matter (SOM). We investigate this possibility examining the depth variation of carbon isotopic composition in 21 soil profiles collected by different researchers at 14 different sites in Brazil. Of these, profiles from only three sites showed a marked increase of 13C with depth (9–10 enrichment in 13C difference between the surface soil and deepest depth); two sites showed intermediate enrichment (4–5), and nine sites showed a small enrichment of approximatelly 2.5. The majority of sites showing all-C3 derived SOM were in the Amazon region. Possible causes for the absence of a large 13C enrichment with depth are: (1) dominance of C3 rather than C4 grasses in mid-Holocene savannahas, (2) soil profiles did not preserve organic matter derived from mid-Holocene plants, (3) the retreat of forest areas did not occur on a regional scale, but was a much more localized phenomenon.  相似文献   

3.
We analyzed the δ13C of soil organic matter (SOM) and fine roots from 55 native grassland sites widely distributed across the US and Canadian Great Plains to examine the relative production of C3 vs. C4 plants (hereafter %C4) at the continental scale. Our climate vs. %C4 results agreed well with North American field studies on %C4, but showed bias with respect to %C4 from a US vegetation database (statsgo ) and weak agreement with a physiologically based prediction that depends on crossover temperature. Although monthly average temperatures have been used in many studies to predict %C4, our analysis shows that high temperatures are better predictors of %C4. In particular, we found that July climate (average of daily high temperature and month's total rainfall) predicted %C4 better than other months, seasons or annual averages, suggesting that the outcome of competition between C3 and C4 plants in North American grasslands was particularly sensitive to climate during this narrow window of time. Root δ13C increased about 1‰ between the A and B horizon, suggesting that C4 roots become relatively more common than C3 roots with depth. These differences in depth distribution likely contribute to the isotopic enrichment with depth in SOM where both C3 and C4 grasses are present.  相似文献   

4.
Abstract. We document the potential for using carbon isotopes in both soil organic matter (SOM) and grass phytoliths in soil to increase the temporal and taxonomic resolutions of long term vegetation dynamics. Carbon isotope values from both SOM and phytoliths are expected to describe both the age of material through 14C dating, and the photosynthetic pathway of the source plant material through ratios of 12C/13C. Taxonomic resolution is increased because the phytoliths examined are specific to grasses, whereas the SOM reflects the contribution of all the vegetation. Temporal resolution is increased because phytoliths are less mobile in the soil profile than SOM, and can therefore provide older dates from the same soil depth. Our results, from a desert grassland site in southwestern North America, largely confirm these expectations, and show that C4 species have dominated the grass composition for the last 8000 yr, C3 non‐grass vegetation increased about 100–350 yrBP, and no significant C3 grass or non‐grass vegetation existed between 350–2000 yr BP.  相似文献   

5.
We examined the effects of elevated atmospheric CO2 on soil carbon decomposition in an experimental anaerobic wetland system. Pots containing either bare C4‐derived soil or the C3 sedge Scirpus olneyi planted in C4‐derived soil were incubated in greenhouse chambers at either ambient or twice‐ambient atmospheric CO2. We measured CO2 flux from each pot, quantified soil organic matter (SOM) mineralization using δ13C, and determined root and shoot biomass. SOM mineralization increased in response to elevated CO2 by 83–218% (P<0.0001). In addition, soil redox potential was significantly and positively correlated with root biomass (P= 0.003). Our results (1) show that there is a positive feedback between elevated atmospheric CO2 concentrations and wetland SOM decomposition and (2) suggest that this process is mediated by the release of oxygen from the roots of wetland plants. Because this feedback may occur in any wetland system, including peatlands, these results suggest a limitation on the size of the carbon sink presented by anaerobic wetland soils in a future elevated‐CO2 atmosphere.  相似文献   

6.
Response of the Shortgrass Steppe to Changes in Rainfall Seasonality   总被引:4,自引:1,他引:3  
Studies in temperate grassland ecosystems have shown that differences in composition of C3 and C4 plant functional types can have important influences on ecosystem pools and processes. We used a plant community dynamics model (STEPPE) linked to a biogeochemical cycling model (CENTURY) to determine how ecosystem properties in shortgrass steppe are influenced by plant functional type composition. Because of phenological differences between C3 and C4 plants, we additionally simulated the effects of precipitation seasonality on plant communities and examined how C3 and C4 composition interacts with precipitation to affect ecosystems. The model output suggests that differences in C3 and C4 composition can lead to differences in soil organic carbon (C) and nitrogen (N) within 1000 simulation years. Soil organic C and N (g C and N m 2 to 0.2-m depth) were least in a 100% C4 community compared with a 100% C3 community and a mixed C3–C4 community. A change in the time of maximum precipitation from summer to spring in a simulated shortgrass steppe slightly favored C3 plants over C4 plants. The proportion of total net primary production accounted for by C3 plants increased from 21% to 25% after 200 years, when 90 mm of precipitation was switched from summer to spring. Soil organic matter (SOM) was relatively stable in the C4-dominated communities with respect to changes in precipitation seasonality, whereasSOM in the C3 community was sensitive to precipitation seasonality changes. These results suggest an important interaction between plant community composition and precipitation seasonality on SOM, with phenology playing a key role. Received 9 June 1998; accepted 6 January 1999  相似文献   

7.
The history of isolated patches of monsoon rainforest within large tracts of Eucalyptus savanna is poorly understood because of the scarcity of reliable palaeoecological records in the Australian monsoon tropics. Elsewhere in the world, the ratio of the stable isotopes 13C to 12C (δ13C) in soil organic matter has shed light on the dynamics of rainforest–savanna boundaries because tropical grasses with the C4 photosynthetic pathway have a distinct δ13C signature (–17 to –9‰) compared with that of woody plants with the C3 photosynthetic pathway (–32 to –22‰). In order to determine the magnitude of the variation in δ13C, unreplicated soil profiles were sampled beneath different vegetation types on three boundaries between Eucalyptus savanna and rainforest that were both growing on Tertiary age laterite parent material. Replicated (n = 3) soil profiles, which were also derived from Tertiary age laterite, were sampled from beneath: (i) dense stands of African grasses within a frequently burnt Eucalyptus savanna; and within the same long unburnt Eucalyptus savanna, (ii) patches of African and natives grasses and (iii) clumps of Acacia trees. The strongly negative δ13C values of soil organic matter derived from the frequently burnt and long unburnt grassy understoreys in the Eucalyptus savannas showed that a considerable amount of the soil carbon was derived from C3 (woody) species despite the presence of a ground layer dominated by C4 grasses. However, a feature of these data was the considerable variability among the three ‘replicate’ profiles. The surface soil samples from beneath three clumps of Acacia trees in the unburnt Eucalyptus savanna had much less variable δ13C values and were similar to two of the three monsoon rainforests sampled. The pattern of δ13C values from unreplicated soil profiles from different vegetation types across three rainforest boundaries was also very variable and not always obviously related the known disturbance history of the extant vegetation. Given the considerable variability within and between vegetation types with contrasting disturbance histories, it is concluded that the use of carbon stable isotopes to advance understanding of the dynamics of rainforest and Eucalyptus savanna boundaries will require further development, such as determination of the 14C age and δ13C values of different soil carbon fractions.  相似文献   

8.
Soils play an important role in the global carbon cycle, and can be major source or sink of CO2 depending upon land use, vegetation type and soil management practices. Natural and human impact on soil carbon concentration and storage is poorly understood in native north Australian savanna, yet this represents the largest carbon store in the ecosystem. To gain understanding of possible management impacts on this carbon pool, soil organic carbon (SOC) of the top 1m of red earth sands and sandy loams common in the region was sampled at 5 sites with different vegetation cover and site history (fire regime and tree removal). SOC was high when compared to other published values for savannas and was more comparable with dry-deciduous tropical forests. Sites sampled in this study represent high rainfall savannas of northern Australia (> 1700 mm annual rainfall) that feature frequent burning (2 in 3 years or more frequent) and a cycle of annual re-growth of tall C4 grasses that dominate the savanna understorey. These factors may be responsible for the higher than expected SOC levels of the surface soils, despite high respiration rates. Medium term fire exclusion (15–20 years) at one of the sampled sites (Wildlife Park) dramatically reduced the grassy biomass of the understorey. This site had lower SOC levels when compared to the grass dominated and frequently burnt sites, which may be due to a reduction in detrital input to surface (0–30 cm) soil carbon pools. Exclusion of trees also had a significant impact on both the total amount and distribution of soil organic carbon, with tree removal reducing observed SOC at depth (100 cm). Soil carbon content was higher in the wet season than that in the dry season, but this difference was not statistically significant. Our results indicated that annual cycle of grass growth and wildfire resulted in small carbon accumulation in the upper region of the soil, and removal of woody plants resulted in significant carbon losses to recalcitrant, deep soil horizons greater than 80 cm depth.  相似文献   

9.
The stability and turnover of soil organic matter (SOM) are a very important but poorly understood part of carbon (C) cycling. Conversion of C3 grassland to the C4 energy crop Miscanthus provides an ideal opportunity to quantify medium‐term SOM dynamics without disturbance (e.g., plowing), due to the natural shift in the δ13C signature of soil C. For the first time, we used a repeated 13C natural abundance approach to measure C turnover in a loamy Gleyic Cambisol after 9 and 21 years of Miscanthus cultivation. This is the longest C3–C4 vegetation change study on C turnover in soil under energy crops. SOM stocks under Miscanthus and reference grassland were similar down to 1 m depth. However, both increased between 9 and 21 years from 105 to 140 mg C ha?1 (< 0.05), indicating nonsteady state of SOM. This calls for caution when estimating SOM turnover based on a single sampling. The mean residence time (MRT) of old C (>9 years) increased with depth from 19 years (0–10 cm) to 30–152 years (10–50 cm), and remained stable below 50 cm. From 41 literature observations, the average SOM increase after conversion from cropland or grassland to Miscanthus was 6.4 and 0.4 mg C ha?1, respectively. The MRT of total C in topsoil under Miscanthus remained stable at ~60 years, independent of plantation age, corroborating the idea that C dynamics are dominated by recycling processes rather than by C stabilization. In conclusion, growing Miscanthus on C‐poor arable soils caused immediate C sequestration because of higher C input and decreased SOM decomposition. However, after replacing grasslands with Miscanthus, SOM stocks remained stable and the MRT of old C3‐C increased strongly with depth.  相似文献   

10.
The possibility of ecosystem boundary changes in northern Brazilian Amazonia during the Holocene period was investigated using soil organic carbon isotope ratios. Determination of past and present fluctuations of the forest-savanna boundary involved the measurement of natural 13C isotope abundance, expressed as 13C, in soil organic matter (SOM). SOM 13C analyses and radiocarbon dating of charcoal fragments were carried out on samples derived from soil profiles taken along transects perpendicular to the ecotonal boundary. SOM 13C values in the upper soil horizons appeared to be in equilibrium with the overlying vegetation types and did not point to a movement of the boundary during the last decades. However, 13C values obtained from deeper savanna and forest soil layers indicated that the vegetation type has changed in the past. In current savanna soil profiles, we observed the presence of mid-Holocene charcoals derived from forest species: fire frequency at that time was probably greater, and more extensive savanna may have resulted. Isotope data and the presence of these charcoals thus suggest that the forest-savanna boundary has shifted significantly in the recent Holocene period, forest being more extensive during the early Holocene than today. During the middle Holocene, the forest could have strongly regressed, and fires appeared, with a maximum development of the savanna vegetation. At the beginning of the late Holocene, the forest may have invaded a part of this savanna, and fires occurred again.  相似文献   

11.
A common assumption in paleoenvironmental reconstructions using soils is that the carbon isotope composition of soil-respired CO2 is equivalent to the carbon isotope composition of bulk soil organic matter (SOM). However, the occurrence of a non-zero per mil carbon isotope enrichment factor between CO2 and SOM (\(\varepsilon_{{{\text{CO}}_{ 2} - {\text{SOM}}}}\)) during soil respiration is the most widely accepted explanation for the down-profile increase in SOM δ13C values commonly observed in well-drained soils. In order to shed light on this apparent discrepancy, we incubated soil samples collected from the top 2 cm of soils with pure C3 vegetation and compared the δ13C values of soil-respired CO2 to the δ13C values of bulk SOM. Our results show near-zero \(\varepsilon_{{{\text{CO}}_{ 2} - {\text{SOM}}}}\) values (?0.3 to 0.4 ‰), supporting the use of paleosol organic matter as a proxy for paleo soil-respired CO2. Significantly more negative \(\varepsilon_{{{\text{CO}}_{ 2} - {\text{SOM}}}}\) values are required to explain the typical δ13C profiles of SOM in well-drained soils. Therefore our results also suggest that typical SOM δ13C profiles result from either (1) a process other than carbon isotope fractionation between CO2 and SOM during soil respiration or (2) \(\varepsilon_{{{\text{CO}}_{ 2} - {\text{SOM}}}}\) values that become increasingly negative as SOM matures.  相似文献   

12.
Question: The relationship between carbon‐13 in soil organic matter and C3 and C4 plant abundance is complicated because of differential productivity, litter fall and decomposition. As a result, applying a mass balance equation to δ13C data from soils cannot be used to infer past C3 and C4 plant abundance; only the proportion of carbon derived from C3 and C4 plants can be estimated. In this paper, we compare δ13C of surface soil samples with vegetation data, in order to establish whether the ratio of C3:C4 plants (rather than the proportion of carbon from C3 and C4 plants) can be inferred from soil δ13C. Location: The Tsavo National Park, in southeastern Kenya. Methods: We compare vegetation data with δ13C of organic matter in surface soil samples and derive regression equations relating the δ13C of soil organic matter to C3:C4 plant abundance. We use these equations to interpret δ13C data from soil profiles in terms of changes in inferred C3:C4 plant ratio. We compare our method of interpretation with that derived from a mass balance approach. Results: There was a statistically significant, linear relationship between the δ13C of organic matter in surface soil samples and the natural logarithm of the ratio of C3:C4 plants in the 100m2 surrounding the soil sample. Conclusions: We suggest that interpretation of δ13C data from organic matter in soil profiles can be improved by comparing vegetation surveys with δ13C of organic matter in surface soil samples. Our results suggest that past C3 plant abundance might be under‐estimated if a mass balance approach is used.  相似文献   

13.
The spatial and temporal distribution of carbon isotopes (13C, 14C) in soil organic matter (SOM) were studied based on SOM content, SOM 14C and SOM 13C of thinly layered soil samples for six soil profiles with different elevations at the Dinghushan Biosphere Reserve (DHSBR), South China. The results indicate that variations of SOM 13C with depth of the soil profiles at different elevations are controlled by soil development, and correlate well with SOM composition in terms of SOM compartments with different turnover rates, and SOM turnover processes at the DHSBR. The effect of carbon isotope fractionation was obvious during transformation of organic matter (OM) from plant debris to SOM in topsoil and SOM turnover processes after the topsoil was buried, which resulted in great increments of OM 13C, respectively. Increments of SOM 13C of topsoil from 13C of plant debris were controlled by SOM turnover rates. Both topsoil SOM 13C and plant debris 13C increase with elevation, indicating regular changes in vegetation species and composition with elevation, which is consistent with the vertical distribution of vegetation at the DHSBR. The six soil profiles at different elevations had similar characteristics in variations of SOM 13C with depth, alterations of SOM contents with depth and that SOM 14C apparent ages increasing with depth, respectively. These are presumably attributed to the regular distribution of different SOM compartments with depth because of their regular turnover during soil development. Depth with the maximal SOM 13C value is different in mechanism and magnitude with penetrating depth of 14C produced by nuclear explosion into atmosphere from 1952 to 1962, and both indicate controls of topography and vegetation on the distribution of SOM carbon isotopes with depth. Elevation exerts indirect controls on the spatial and temporal distribution of SOM carbon isotopes of the studied mountainous soil profiles at the DHSBR. This study shows that mountainous soil profiles at different elevations and with distinctive aboveground vegetation are presumably ideal sites for studies on soil carbon dynamics in different climatic-vegetation zones.  相似文献   

14.

Aim

Millennial-scale biogeographic changes are well understood in many parts of the world, but little is known about long-term vegetation dynamics in subtropical regions. Here we investigate shifts in C3/C4 plant abundance occurred in central Argentina during the past few millennia

Methods

We determined present day soil organic matter ??13C signatures of grasslands, shrublands and woodlands, containing different mixtures of C3 and C4 plants. We measured past changes in the relative cover of C3/C4 plants by comparing ??13C values in soil profiles with present day ??13C signatures. We analyzed 14C activity in soil depths that showed major changes in vegetation.

Results

Present day relative cover of C3/C4 plants determines whole ecosystem ??13C signatures integrated as litter and superficial soil organic matter (R2?=?0.78; p?<?0.01). Deeper soils show a consistent shift in ??13C, indicating a continuous replacement of C4 by C3 plants since 3,870 (±210) YBP. During this period, the relative abundance of C3 plants increased 32% (average across sites) with significant changes being observed in all studied ecosystems.

Conclusions

Our results show that C4 species were more abundant in the past, but C3 species became dominant during the late Holocene. We identified increases in the relative C3/C4 cover in grasslands, shrublands and woodlands, suggesting a physiological basis for changes in vegetation. The replacement of C4 by C3 plants coincided with changes in climate towards colder and wetter conditions and could represent a climatically driven shift in the C4 species optimum range.  相似文献   

15.
Upland tropical forests have expanded and contracted in response to past climates, but it is not clear whether similar dynamics were exhibited by gallery (riparian) forests within savanna biomes. Because such forests generally have access to ample water, their extent may be buffered against changing climates. We tested the long‐term stability of gallery forest boundaries by characterizing the border between gallery forests and savannas and tracing the presence of gallery forest through isotopic analysis of organic carbon in the soil profile. We measured leaf area index, grass vs. shrub or tree coverage, the organic carbon, phosphorus, nitrogen and calcium concentrations in soils and the carbon isotope ratios of soil organic matter in two transitions spanning gallery forests and savanna in a Cerrado ecosystem. Gallery forests without grasses typically show a greater leaf area index in contrast to savannas, which show dense grass coverage. Soils of gallery forests have significantly greater concentrations of organic carbon, phosphorus, nitrogen and calcium than those of savannas. Soil organic carbon of savannas is significantly more enriched in 13C compared with that of gallery forests. This difference in enrichment is in part caused by the presence of C4 grasses in savanna ecosystem and its absence in gallery forests. Using the 13C abundance as a signature for savanna and gallery forest ecosystems in 1 m soil cores, we show that the borders of gallery forests have expanded into the savanna and that this process initiated at least 3000–4000 bp based on 14C analysis. Gallery forests, however, may be still expanding as we found more recent transitions according to 14C activity measurements. We discuss the possible mechanisms of gallery forest expansion and the means by which nutrients required for the expansion of gallery forest might accumulate.  相似文献   

16.
 Over the past century, overgrazing and drought in New Mexico’s Jornada Basin has promoted the replacement of native black grama (Bouteloua eriopoda Torr.) grass communities by shrubs, primarily mesquite (Prosopis glandulosa Torr.). We investigated the effects of shrub expansion on the distribution, origin, turnover, and quality of light (LFC) and heavy (HFC) soil organic matter (SOM) fractions using δ13C natural abundance to partition SOM into C4 (grass) and C3 (shrub) sources. Soil organic matter beneath grasses and mesquite was isotopically distinct from associated plant litter, providing evidence of both recent shrub expansion and Holocene plant community changes. Our δ13C analyses indicated that SOM derived from mesquite was greatest beneath shrub canopies, but extended at least 3 m beyond canopy margins, similar to the distribution of fine roots. Specific 14C activities of LFC indicated that root litter is an important source of SOM at depth. Comparison of turnover rates for surface LFC pools in grass (7 or 40 years) and mesquite (11 or 28 years) soils and for HFC pools by soil depth (∼150–280 years), suggest that mesquite may enhance soil C storage relative to grasses. We conclude that the replacement of semiarid grasslands by woody shrubs will effect changes in root biomass, litter production, and SOM cycling that influence nutrient availability and long-term soil C sequestration at the ecosystem level. Received: 17 May 1996 / Accepted: 12 November 1996  相似文献   

17.
Long-lived soil organic matter (SOM) pools are critical for the global carbon (C) cycle, but challenges in isolating such pools have inhibited understanding of their dynamics. We physically isolated particulate (>53 μm), silt-, and clay-sized organic matter from soils collected over two decades from a perennial C3 grassland established on long-term agricultural soil with a predominantly C4 isotopic signature. Silt- and clay-sized fractions were then subjected to a sequential chemical fractionation (acid hydrolysis followed by peroxide oxidation) to isolate long-lived C pools. We quantified 14C and the natural 13C isotopic label in the resulting fractions to identify and evaluate pools responsible for long-lived SOM. After removal of particulate organic matter (~14% of bulk soil C) sequential chemical treatment removed 80% of mineral-associated C. In all mineral-associated fractions, at least 55% of C4-derived C was retained 32 years after the switch to C3 inputs. However, C3–C increased substantially beginning ~25 years after the switch. Radiocarbon-based turnover times ranged from roughly 1200–3000 years for chemically resistant mineral-associated pools, although some pools turned over faster under C3 grassland than in a reference agricultural field, indicating that new material had entered some pools as early as 14 years after the vegetation switch. These findings provide further evidence that SOM chemistry does not always reflect SOM longevity and resistance to microbial decomposition. Even measureable SOM fractions that have extremely long mean turnover times (>1500 years) can have a substantial component that is dynamic over much shorter timescales.  相似文献   

18.
Archived soils can provide valuable information about changes in the carbon and carbon isotope content of soils during the past century. We characterized soil carbon dynamics in a Russian steppe preserve using a 100‐year‐old‐soil archive and modern samples collected from the same site. The site has been protected since 1885 to the present, during which time the region has experienced widespread conversion to cultivation, a decrease in fire frequency, and a trend of increasing precipitation. In the preserve, the amount of organic carbon did not change appreciably between the 1900 and 1997 sampling dates, with 32 kg C/m2 in the top meter and a third of that in the top 20 cm. Carbon and nitrogen stocks varied by less than 6% between two replicate modern soil pits or between the modern sites and the archive. Radiocarbon content decreased with depth in all sites and the modern SOM had positive Δ values near the surface due to nuclear weapons testing in the early 1960s. In the upper 10 cm, most of the SOM had a turnover time of 6–10 years, according to a model fit to the radiocarbon content. Below about 10 cm, the organic matter was almost all passive material with long (millennial) turnover times. Soil respiration Δ14CO2 on a summer day was 106–109‰, an isotopic disequilibrium of about 9‰ relative to atmospheric 14CO2. In both the modern and archive soil, the relative abundance of 13C in organic matter increased with depth by 2‰ in the upper meter from δ13C = ‐‐26‰ at 5 cm to ‐‐24‰ below a meter. In addition, the slope of δ13C vs. depth below 5 cm was the same for both soils. Given the age of the soil archive, these results give clear evidence that the depth gradients are not due to depletion of atmospheric 13CO2 by fossil fuel emissions but must instead be caused by isotopic fractionation between plant litter inputs and preservation of SOM. Overall, the data show that these soils have a large reservoir of recalcitrant C and stocks had not changed between sampling dates 100 years apart.  相似文献   

19.
Carbon isotopic composition of soils subjected to C3–C4 vegetation change can be used to estimate C turnover in bulk soil and in soil organic matter (SOM) pools with fast and intermediate turnover rates. We hypothesized that the biological availability of SOM pools is inversely proportional to their thermal stability, so that thermogravimetry can be used to separate SOM pools with contrasting turnover rates. Soil samples from a field plot cultivated for 10.5 years with the perennial C4 plant Miscanthus×gigantheus were analyzed by thermogravimetry coupled with differential scanning calorimetry (DSC). Three SOM fractions were distinguished according to the differential weight losses and exothermic or endothermic reactions measured by DSC. The δ13C and δ15N values of these three fractions obtained by gradual soil heating were measured by IRMS. The weight losses up to 190 °C mainly reflected water evaporation because no significant C and N losses were detected and δ13C and δ15N values of the residual SOM remained unchanged. The δ13C values (−16.4‰) of SOM fraction decomposed between 190 and 390 °C (containing 79% of total soil C) were slightly closer to that of the Miscanthus plant tissues (δ13C = −11.8‰) compared to the δ13C values (−16.8‰) of SOM fraction decomposed above 390 °C containing the residual 21% of SOM. Thus, the C turnover in the thermally labile fraction was faster than that in thermally stable fractions, but the differences were not very strong. Therefore, in this first study combining TG-DSC with isotopic analysis, we conclude that the thermal stability of SOM was not very strongly related to biological availability of SOM fractions. In contrast to δ13C, the δ15N values strongly differed between SOM fractions, suggesting that N turnover in the soil was different from C turnover. More detailed fractionation of SOM by thermal analysis with subsequent isotopic analysis may improve the resolution for δ13C.  相似文献   

20.
Soil carbon distribution with depth, stable carbon isotope ratios in soil organic matter and their changes as a consequence of the presence of legume were studied in three 12-year-old tropical pastures (grass alone —Brachiaria decumbens (C4), legume alone —Pueraria phaseoloides (C3) and grass + legume) on an Oxisol in Colombia. The objective of this study was to determine the changes that occurred in the13C isotope composition of soil from a grass + legume pasture that was established by cultivation of a native savanna dominated by C4 vegetation. The13C natural abundance technique was used to estimate the amount of soil organic carbon originating from the legume. Up to 29% of the organic carbon in soil of the grass + legume pasture was estimated to be derived from legume residues in the top 0–2-cm soil depth, which decreased to 7% at 8–10 cm depth. Improvements in soil fertility resulting from the soil organic carbon originated from legume residues were measured as increased potential rates of nitrogen mineralization and increased yields of rice in a subsequent crop after the grass + legume pasture compared with the grass-only pasture. We conclude that the13C natural abundance technique may help to predict the improvements in soil quality in terms of fertility resulting from the presence of a forage legume (C3) in a predominantly C4 grass pasture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号