首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Functional bacterial amyloids (FuBA) are intrinsically disordered proteins (IDPs) which rapidly and efficiently aggregate, forming extremely stable fibrils. The conversion from IDP to amyloid is evolutionarily optimized and likely couples folding to association. Many FuBA contain several imperfect repeat sequences which contribute to the stability of mature FuBA fibrils. Aggregation can be considered an intermolecular extension of the process of intramolecular protein folding which has traditionally been studied using chemical denaturants. Here we employ denaturants to investigate folding steps during fibrillation of CsgA and FapC. We quantify protein compactification (i.e. the extent of burial of otherwise exposed surface area upon association of proteins) during different stages of fibrillation based on the dependence of fibrillation rate constants on the denaturant concentration (m-values) determined from fibrillation curves. For both proteins, urea mainly affects nucleation and elongation (not fragmentation), consistent with the fact that these steps involve both intra- and intermolecular association. The two steps have similar m-values, indicating that activation steps in nucleation and elongation involve the same level of folding. Surprisingly, deletion of two or three repeats from FapC leads to larger m-values (i.e. higher compactification) during the activation step of fibril growth. This observation is extended by SAXS analysis of the fibrils which indicates that weakening of the amyloidogenic core caused by repeat deletions causes a larger portion of normally unstructured regions of the protein to be included into the amyloid backbone. We conclude that the sensitivity of fibrillation to denaturants can provide useful insight into molecular mechanisms of aggregation.  相似文献   

2.
The prediction of highly ordered three-dimensional structures of amyloid protein fibrils from the amino acid sequences of their monomeric self-assembly precursors constitutes a challenging and unresolved aspect of the classical protein folding problem. Because of the polymorphic nature of amyloid assembly whereby polypeptide chains of identical amino acid sequences under identical conditions are capable of self-assembly into a spectrum of different fibril structures, the prediction of amyloid structures from an amino acid sequence requires a detailed and holistic understanding of its assembly free energy landscape. The full extent of the structure space accessible to the cross-β molecular architecture of amyloid must also be resolved. Here, we review the current understanding of the diversity and the individuality of amyloid structures, and how the polymorphic landscape of amyloid links to biology and disease phenotypes. We present a comprehensive review of structural models of amyloid fibrils derived by cryo-EM, ssNMR and AFM to date, and discuss the challenges ahead for resolving the structural basis and the biological consequences of polymorphic amyloid assemblies.  相似文献   

3.
In the future, humans may live in space because of global pollution and weather fluctuations. In microgravity, convection does not occur, which may change the amyloidogenicity of proteins. However, the effect of gravity on amyloid fibril formation is unclear and remains to be elucidated. Here, we analyzed the effect of microgravity on amyloid fibril formation of amyloidogenic proteins including insulin, amyloid β42 (Aβ42), and transthyretin (TTR). We produced microgravity (10?3 g) by using the gravity controller Gravite. Human insulin, Aβ42, and human wild-type TTR (TTRwt) were incubated at pH 3.0, 7.0, and 3.5 at 37 °C, respectively, in 1 g on the ground or in microgravity. We measured amyloidogenicity via the thioflavin T (ThT) method and cell-based 1-fluoro-2,5-bis[(E)-3-carboxy-4-hydroxystyryl]benzene (FSB) assay. ThT fluorescence intensity and cell-based FSB assay results for human insulin samples were decreased in microgravity compared with results in 1 g. Aβ42 samples did not differ in ThT fluorescence intensity in microgravity and in 1 g on the ground. However, in the cell-based FSB assay, the staining intensity was reduced in microgravity compared with that on 1 g. Human TTRwt tended to form fewer amyloid fibrils in ThT fluorescence intensity and cell-based FSB assays in microgravity than in 1 g. Human insulin and Aβ42 showed decreased amyloid fibril formation in microgravity compared with that in 1 g. Human TTRwt tended to form fewer amyloid fibrils in microgravity. Our experiments suggest that the earth's gravity may be an accelerating factor for amyloid fibril formation.  相似文献   

4.
Bacterial functional amyloids contribute to biofilm development by bacteria and provide protection from the immune system and prevent antibiotic treatment. Strategies to target amyloid formation and interrupt biofilm formation have attracted recent interest due to their antimicrobial potential. Functional amyloid in Pseudomonas (Fap) includes FapC as the major component of the fibril while FapB is a minor component suggested to function as a nucleator of FapC. The system also includes the small periplasmic protein FapA, which has been shown to regulate fibril composition and morphology. The interplay between these three components is central in Fap fibril biogenesis. Here we present a comprehensive biophysical and spectroscopy analysis of FapA, FapB and FapC and provide insight into their molecular interactions. We show that all three proteins are primarily disordered with some regions with structural propensities for α-helix and β-sheet. FapA inhibits FapC fibrillation by targeting the nucleation step, whereas for FapB the elongation step is modulated. Furthermore, FapA alters the morphology of FapC (more than FapB) fibrils. Complex formation is observed between FapA and FapC, but not between FapA and FapB, and likely involves the N-terminus of FapA. We conclude that FapA is an intrinsically disordered chaperone for FapC that guards against fibrillation within the periplasm. This new understanding of a natural protective mechanism of Pseudomonas against amyloid formations can serve as inspiration for strategies blocking biofilm formation in infections.  相似文献   

5.
An N-terminal hepta-peptide sequence of yeast prion protein Sup35 with the sequence GNNQQNY is widely used as a model system for amyloid fibril formation. In this study, we used a reproducible solubilisation protocol that allows the generation of a homogenous monomeric solution of GNNQQNY to uncover the molecular details of its self-assembly mechanism. The aggregation kinetics data show that the GNNQQNY sequence follows nucleation-dependent aggregation kinetics with a critical nucleus of size ~7 monomers and that the efficiency of nucleation were found to be inversely related to the reaction temperature. The nucleus reduces the thermodynamic energy barrier by acting as a template for further self-assembly and results in highly ordered amyloid fibrils. The fibers grown at different temperatures showed similar Thioflavin T fluorescence, Congo-red binding and β-sheet rich structures displaying a characteristic cross-β diffraction pattern. These aggregates also share morphological and structural identity with those reported earlier. The mature GNNQQNY fibers did not exert significant oxidative stress or cytotoxicity upon incubating with differentiated SHSY5Y cells. To our knowledge, this is the first study to experimentally validate previous nucleus size predictions based on theoretical and molecular dynamics simulations. These findings provide the basis for understanding the kinetics and thermodynamics of amyloid nucleation and elongation of amyloidogenic proteins/peptides associated with many systemic and neurodegenerative diseases.  相似文献   

6.
The protein tau is involved in several neurogenerative diseases such as Alzheimer’s Disease, where tau content and fibrillation have been linked to disease progression. Tau colocalizes with phospholipids and glycosaminoglycans in vivo. We investigated if and how tau fibrillation can be induced by two lysophospholipids, namely the zwitterionic 1-myristoyl-2-hydroxy-sn-glycero-3-phosphocholine (LPC) and the anionic 1-myristoyl-2-hydroxy-sn-glycero-3-phospho-(1′-rac-glycerol) (LPG) as well as the glycosaminoglycan heparin. We used a range of biophysical techniques including small-angle X-ray scattering, Thioflavin T fluorescence, and SDS-PAGE, collecting data at various time points to obtain structural information on each phase of the fibrillation. We find that LPC does not induce fibrillation or interact with tau. Low concentrations of LPG induce fibrillation by formation of small hydrophobic clusters with monomeric tau. At higher LPG concentrations, a core–shell complex is formed where tau wraps around LPG micelles with regions extending away from the micelles. For heparin, loosely associated oligomers are formed rapidly with around ten tau molecules. Fibrils formed with either LPG or heparin show similar final cross-section dimensions. Furthermore, SDS-resistant oligomers are observed for both LPG and heparin. Our study demonstrates that tau fibrillation can be induced by two different biologically relevant cofactors leading to structurally different initial states but similar cross-sectional dimensions for the fibrils. Structural information about initial states prior to fibril formation is important both to gain a better understanding of the onset of fibrillation in vivo, and for the development of targeted drugs that can reduce or abolish tau fibrillation.  相似文献   

7.
Tau is an intrinsically disordered protein implicated in many neurodegenerative diseases. The repeat domain fragment of tau, tau-K18, is known to undergo a disorder to order transition in the presence of lipid micelles and vesicles, in which helices form in each of the repeat domains. Here, the mechanism of helical structure formation, induced by a phospholipid mimetic, sodium dodecyl sulfate (SDS) at sub-micellar concentrations, has been studied using multiple biophysical probes. A study of the conformational dynamics of the disordered state, using photoinduced electron transfer coupled to fluorescence correlation spectroscopy (PET-FCS) has indicated the presence of an intermediate state, I, in equilibrium with the unfolded state, U. The cooperative binding of the ligand (L), SDS, to I has been shown to induce the formation of a compact, helical intermediate (IL5) within the dead time (∼37 µs) of a continuous flow mixer. Quantitative analysis of the PET-FCS data and the ensemble microsecond kinetic data, suggests that the mechanism of induction of helical structure can be described by a U ↔ I ↔ IL5 ↔ FL5 mechanism, in which the final helical state, FL5, forms from IL5 with a time constant of 50–200 µs. Finally, it has been shown that the helical conformation is an aggregation-competent state that can directly form amyloid fibrils.  相似文献   

8.
α-Synuclein (α-Syn) amyloids in synucleinopathies are suggested to be structurally and functionally diverse, reminiscent of prion-like strains. The mechanism of how the aggregation of the same precursor protein results in the formation of fibril polymorphs remains elusive. Here, we demonstrate the structure–function relationship of two polymorphs, pre-matured fibrils (PMFs) and helix-matured fibrils (HMFs), based on α-Syn aggregation intermediates. These polymorphs display the structural differences as demonstrated by solid-state NMR and mass spectrometry studies and also possess different cellular activities such as seeding, internalization, and cell-to-cell transfer of aggregates. HMFs, with a compact core structure, exhibit low seeding potency but readily internalize and transfer from one cell to another. The less structured PMFs lack transcellular transfer ability but induce abundant α-Syn pathology and trigger the formation of aggresomes in cells. Overall, the study highlights that the conformational heterogeneity in the aggregation pathway may lead to fibril polymorphs with distinct prion-like behavior.  相似文献   

9.
Senile plaques that is characterized as an amyloid deposition found in Alzheimer's disease are composed primarily of fibrils of an aggregated peptide, amyloid β (Aβ). The ability to monitor senile plaque formation on a neuronal membrane under physiological conditions provides an attractive model. In this study, the growth behavior of amyloid Aβ fibrils in the presence of liposomes incorporating β-cholesteryl-D-glucose (β-CG) was examined using total internal reflection fluorescence microscopy, transmittance electron microscopy, and other spectroscopic methods. We found that β-CG on the liposome membrane induced the spontaneous formation of spherulitic Aβ fibrillar aggregates. The β-CG cluster formed on liposome membranes appeared to induce the accumulation of Aβ, followed by the growth of the spherulitic Aβ aggregates. In contrast, DMPC and DMPC incorporated cholesterol-induced fibrils that are laterally associated with each other. A comparison study using three types of liposomes implied that the induction of glucose contributed to the agglomeration of Aβ fibrils and liposomes. This agglomeration required the spontaneous formation of spherulitic Aβ fibrillary aggregates. This action can be regarded as a counterbalance to the growth of fibrils and their toxicity, which has great potential in the study of amyloidopathies.  相似文献   

10.
USP5 and USP8 (Deubiquitinating enzyme) are highly overexpressed and more recognized as poor prognosis marker in various cancers. Depleting USP5 or USP8 to assess the synergism with proteasome inhibitor (Bortezomib) were measured. Furthermore, in present finding USP5 cooperates hnRNPA1 & USP8 cooperate SF2/ASF1, therefore gain in expression of either hnRNPA1 or SF2/ASF1 is sufficient to promote cell survival. On the other side, apoptosis markers were more pronounced in U87 or T98G cells devoid of either USP5 or USP8. However, apparent increase in SF2/ASF1 in absence of USP5, providing resistant factor is new. Antiapoptotic activity due to rise in SF2/ASF1 was validated after co-knock down of SF2/ASF1 in addition to USP5 induces more apoptosis comparing to individual knock down of USP5 or SF2/ASF1. This reveals SF2/ASF1 (RNA binding protein) delayed the apoptotic effect due to loss of USP5, lends ubiquitination of hnRNPA1. In presence of USP5, PI3 kinase inhibition promotes even more interaction between USP5 and hnRNPA1, thereby stabilizes hnRNPA1 in U87MG. In that way hnRNPA1 and SF2/ASF1 impart oncogenic activity. In conclusion, siRNA based strategy against USP5 is not enough to inhibit glioma, moreover targeting additionally SF2/ASF1 by knocking down USP8 is suitably more effective to deal with glioma tumour reoccurrence by indirectly targeting both SF2/ASF1 and hnRNPA1 oncogene.  相似文献   

11.
AA amyloidosis is the result of overproduction and aberrant processing of acute-phase serum amyloid A1 (SAA1) by hepatocytes. Proteolytic cleavage of SAA1 is believed to play a central role in AA amyloid formation. The SAA1 protein undergoes a cleavage of 18 residues consisting of the signal peptide at the N-terminal region. To better understand the mechanism behind systemic amyloidosis in the SAA1 protein, we studied the misfolding propensity of the signal peptide region. We first examined the signal peptide amino acid SAA derived from different animal species. A library of 16 peptides was designed to evaluate the propensity of aggregation. The amyloidogenic potential of each SAA1 signal peptide homolog was assessed using in silico Tango program, thioflavin T (ThT) fluorescence, transmission electron microscopy (TEM), and seeding with misfolded human SAA1 signal peptide. After 7 days of incubation, most of the SAA1 signal peptide fragments had the propensity to form fibrils at a concentration of 100 μM in 50 mM Tris buffer at 37 °C by TEM. All peptides were able to generate fibrils at a higher concentration, i.e 500 μM in 25 mM Tris buffer with 50% HFIP, by ThT. All SAA1 signal synthetic peptides designed from the different animal species had the propensity to misfold and form fibrils, particularly in species with low occurrence of systemic amyloidosis. The human SAA1 signal peptide region was capable to seed the SAA1 1–25 and 32–47 peptide regions. Characterizing fibrillar conformations are relevant for seeding intact and/or fragmented SAA, which may contribute, to the mechanism of protein misfolding. This research signifies the importance of the signal peptide region and its possible contribution to the misfolding of aggregation-prone proteins.  相似文献   

12.
Hepatitis C virus (HCV) core is a highly conserved and multifunctional protein that forms the viral capsid, making it an attractive target for HCV detection and inhibition. Aptamers are in vitro selected, single-stranded nucleic acids (RNA or ssDNA) with growing applicability in viral diagnostics and therapy. We have carried out DNA and RNA in vitro selection against six different variants of HCV core protein: two versions of the full-length protein of genotype 1, and the hydrophilic domain of genotypes 1 to 4. The aptamer populations obtained were analyzed by means of Ultra-Deep Sequencing (UDS), the most abundant sequences were identified and a number of highly represented sequence motifs were unveiled. Affinity (measured as the dissociation constant, Kd) of the most abundant DNA and RNA aptamers were quantified using Enzyme-Linked OligoNucleotide Assay (ELONA)-based methods. Some aptamers with nanomolar or subnanomolar Kd values (as low as 0.4 nM) were the common outcome of DNA and RNA selections against different HCV core variants. They were tested in sandwich and competitive biosensor assays, reaching a limit of detection for HCV core of 2 pM. Additionally, the two most prevalent and high affinity aptamers were assayed in Huh-7.5 reporter cell lines infected with HCV, where they decreased both the viral progeny titer and the extracellular viral RNA level, while increasing the amount of intracellular viral RNA. Our results suggest that these aptamers inhibit HCV capsid assembly and virion formation, thus making them good candidate molecules for the design of novel therapeutic approaches for hepatitis C.  相似文献   

13.
Aggregation of 42-residue amyloid β-protein (Aβ42) can be prevented by β-sheet breaker peptides (BSBps) homologous to LVFFA residues, which are included in a β-sheet region of Aβ42 aggregates. To enhance the affinity of BSBps to the Aβ42 aggregates, we designed and synthesized β-strand-fixed peptides (BSFps) whose side chains were cross-linked by ring closing metathesis. Conformation analysis verified that the designed peptides could be fixed in β-strand conformation. Among the synthesized pentapeptides, 1 and 12, whose side chains of 2nd and 4th residues were cross-linked, significantly inhibited the aggregation of Aβ42. This suggested that β-strand-fixation of BSBps could enhance their inhibitory activity against the Aβ42 aggregation. However, pentapeptides 1 and 12 had little effect on morphology of Aβ42 aggregates (fibrils) and neurotoxicity of Aβ42 against SH-SY5Y cells.  相似文献   

14.
Nucleosome assembly protein 1 (NAP1) binds to histone H2A-H2B heterodimers, mediating their deposition on and eviction from the nucleosome. Human NAP1 (hNAP1) consists of a dimerization core domain and intrinsically disordered C-terminal acidic domain (CTAD), both of which are essential for H2A-H2B binding. Several structures of NAP1 proteins bound to H2A-H2B exhibit binding polymorphisms of the core domain, but the distinct structural roles of the core and CTAD domains remain elusive. Here, we have examined dynamic structures of the full-length hNAP1 dimer bound to one and two H2A-H2B heterodimers by integrative methods. Nuclear magnetic resonance (NMR) spectroscopy of full-length hNAP1 showed CTAD binding to H2A-H2B. Atomic force microscopy revealed that hNAP1 forms oligomers of tandem repeated dimers; therefore, we generated a stable dimeric hNAP1 mutant exhibiting the same H2A-H2B binding affinity as wild-type hNAP1. Size exclusion chromatography (SEC), multi-angle light scattering (MALS) and small angle X-ray scattering (SAXS), followed by modelling and molecular dynamics simulations, have been used to reveal the stepwise dynamic complex structures of hNAP1 binding to one and two H2A-H2B heterodimers. The first H2A-H2B dimer binds mainly to the core domain of hNAP1, while the second H2A-H2B binds dynamically to both CTADs. Based on our findings, we present a model of the eviction of H2A-H2B from nucleosomes by NAP1.  相似文献   

15.
Immunoglobulin light chain (LC) amyloidosis (AL) is a life-threatening human disease wherein free mono-clonal LCs deposit in vital organs. To determine what makes some LCs amyloidogenic, we explored patient-based amyloidogenic and non-amyloidogenic recombinant LCs from the λ6 subtype prevalent in AL. Hydrogen-deuterium exchange mass spectrometry, structural stability, proteolysis, and amyloid growth studies revealed that the antigen-binding CDR1 loop is the least protected part in the variable domain of λ6 LC, particularly in the AL variant. N32T substitution in CRD1 is identified as a driver of amyloid formation. Substitution N32T increased the amyloidogenic propensity of CDR1 loop, decreased its protection in the native structure, and accelerated amyloid growth in the context of other AL substitutions. The destabilizing effects of N32T propagated across the molecule increasing its dynamics in regions ∼30 Å away from the substitution site. Such striking long-range effects of a conservative point substitution in a dynamic surface loop may be relevant to Ig function. Comparison of patient-derived and engineered proteins showed that N32T interactions with other substitution sites must contribute to amyloidosis. The results suggest that CDR1 is critical in amyloid formation by other λ6 LCs.  相似文献   

16.
Protein aggregation is a widespread phenomenon with important implications in many scientific areas. Although amyloid formation is typically considered as detrimental, functional amyloids that perform physiological roles have been identified in all kingdoms of life. Despite their functional and pathological relevance, the structural details of the majority of molecular species involved in the amyloidogenic process remains elusive. Here, we explore the application of AlphaFold, a highly accurate protein structure predictor, in the field of protein aggregation. While we envision a straightforward application of AlphaFold in assisting the design of globular proteins with improved solubility for biomedical and industrial purposes, the use of this algorithm for predicting the structure of aggregated species seems far from trivial. First, in amyloid diseases, the presence of multiple amyloid polymorphs and the heterogeneity of aggregation intermediates challenges the “one sequence, one structure” paradigm, inherent to sequence-based predictions. Second, aberrant aggregation is not the subject of positive selective pressure, precluding the use of evolutionary-based approaches, which are the core of the AlphaFold pipeline. Instead, amyloid polymorphism seems to be constrained by the need for a defined structure-activity relationship in functional amyloids. They may thus provide a starting point for the application of AlphaFold in the amyloid landscape.  相似文献   

17.
Efficient cell division of Gram-negative bacteria requires the presence of the Tol-Pal system to coordinate outer membrane (OM) invagination with inner membrane invagination (IM) and peptidoglycan (PG) remodeling. The Tol-Pal system is a trans-envelope complex that connects the three layers of the cell envelope through an energy-dependent process. It is composed of the three IM proteins, TolA, TolQ and TolR, the periplasmic protein TolB and the OM lipoprotein Pal. The proteins of the Tol-Pal system are dynamically recruited to the cell septum during cell division. TolA, the central hub of the Tol-Pal system, has three domains: a transmembrane helix (TolA1), a long second helical periplasmic domain (TolA2) and a C-terminal globular domain (TolA3). The TolQR complex uses the PMF to energize TolA, allowing its cyclic interaction via TolA3 with the OM TolB-Pal complex. Here, we confirm that TolA2 is sufficient to address TolA to the site of constriction, whereas TolA1 is recruited by TolQ. Analysis of the protein localization as function of the bacterial cell age revealed that TolA and TolQ localize earlier at midcell in the absence of the other Tol-Pal proteins. These data suggest that TolA and TolQ are delayed from their septal recruitment by the multiple interactions of TolA with TolB-Pal in the cell envelope providing a new example of temporal regulation of proteins recruitment at the septum.  相似文献   

18.
Functional bacterial amyloid provides structural stability in biofilm, making it a promising target for anti-biofilm therapeutics. Fibrils formed by CsgA, the major amyloid component in E. coli are extremely robust and can withstand very harsh conditions. Like other functional amyloids, CsgA contains relatively short aggregation-prone regions (APR) which drive amyloid formation. Here, we demonstrate the use of aggregation-modulating peptides to knock down CsgA protein into aggregates with low stability and altered morphology. Remarkably, these CsgA-peptides also modulate fibrillation of the unrelated functional amyloid protein FapC from Pseudomonas, possibly through recognition of FapC segments with structural and sequence similarity with CsgA. The peptides also reduce the level of biofilm formation in E. coli and P. aeruginosa, demonstrating the potential for selective amyloid targeting to combat bacterial biofilm.  相似文献   

19.
Despite the fact that type III collagen is the second most abundant collagen type in the body, its contribution to the physiologic maintenance and repair of skeletal tissues remains poorly understood. This study queried the role of type III collagen in the structure and biomechanical functions of two structurally distinctive tissues in the knee joint, type II collagen-rich articular cartilage and type I collagen-dominated meniscus. Integrating outcomes from atomic force microscopy-based nanomechanical tests, collagen fibril nanostructural analysis, collagen cross-link analysis and histology, we elucidated the impact of type III collagen haplodeficiency on the morphology, nanostructure and biomechanical properties of articular cartilage and meniscus in Col3a1+/− mice. Reduction of type III collagen leads to increased heterogeneity and mean thickness of collagen fibril diameter, as well as reduced modulus in both tissues, and these effects became more pronounced with skeletal maturation. These data suggest a crucial role of type III collagen in mediating fibril assembly and biomechanical functions of both articular cartilage and meniscus during post-natal growth. In articular cartilage, type III collagen has a marked contribution to the micromechanics of the pericellular matrix, indicating a potential role in mediating the early stage of type II collagen fibrillogenesis and chondrocyte mechanotransduction. In both tissues, reduction of type III collagen leads to decrease in tissue modulus despite the increase in collagen cross-linking. This suggests that the disruption of matrix structure due to type III collagen deficiency outweighs the stiffening of collagen fibrils by increased cross-linking, leading to a net negative impact on tissue modulus. Collectively, this study is the first to highlight the crucial structural role of type III collagen in both articular cartilage and meniscus extracellular matrices. We expect these results to expand our understanding of type III collagen across various tissue types, and to uncover critical molecular components of the microniche for regenerative strategies targeting articular cartilage and meniscus repair.  相似文献   

20.
The rod-outer-segment guanylyl cyclase 1 (ROS-GC1) is a key transmembrane protein for retinal phototransduction. Mutations of ROS-GC1 correlate with different retinal diseases that often lead to blindness. No structural data are available for ROS-GC1 so far. We performed a 3D-structural analysis of native ROS-GC1 from bovine retina by cross-linking/mass spectrometry (XL-MS) and computational modeling. Absolute quantification and activity measurements of native ROS-GC1 were performed by MS-based assays directly in bovine retina samples. Our data present the first 3D-structural analysis of active, full-length ROS-GC1 derived from bovine retina. We propose a novel domain organization for the intracellular domain ROS-GC1. Our XL-MS data of native ROS-GC1 from rod-outer-segment preparations of bovine retina agree with a dimeric architecture. Our integrated approach can serve as a blueprint for conducting 3D-structural studies of membrane proteins in their native environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号