首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Impairment in the regulation of energy homeostasis and imbalance between energy intake and energy expenditure lead to many metabolic disorders and diseases such as obesity and type 2 diabetes. AMP-activated protein kinase (AMPK) is considered as a "fuel-gauge" in the cell and plays a key role in the regulation of energy metabolism. Activated by an increase in the AMP/ATP ratio, AMPK switches on catabolic pathways such as fatty acid oxidation and switches off anabolic pathways such as lipogenesis or gluconeogenesis. Insulin-sensitizing adipokines (leptin and adiponectin) and anti-diabetic drugs (thiazolidinediones and biguanides) are acting in part through the activation of AMPK. More recent findings indicate that AMPK plays also a major role in the control of whole body energy homeostasis by integrating, at the hypothalamus level, nutrient and hormonal signals that regulate food intake and energy expenditure. AMPK provides therefore a potential target for the treatment of metabolic diseases such as obesity and type II diabetes.  相似文献   

2.
5’单磷酸腺苷活化蛋白激酶(AMP—activated protein kinase,AMPK)是细胞的能量感受器,调节细胞能量代谢,在正常细胞和癌细胞中均发挥重要的生物功能,它的激活有助于纠正代谢紊乱,使细胞代谢趋向生理平衡。在细胞应急反应中,细胞感受到能量危机,ATP浓度下降,AMP浓度上升,细胞内AMP/ATP比例上升,AMPK被激活:而在病理状态下,如代谢综合征、肿瘤等,常伴随能量代谢紊乱和AMPK激活抑制,因此,AMPK被视为治疗代谢性疾病与肿瘤的潜在作用靶点。然而,AMPK对能量代谢的调节与线粒体的功能密不可分,线粒体作为细胞的能量工厂,在健康与疾病中也发挥着重要的作用。越来越多的研究表明,线粒体能影响AMPK的活性,同时AMPK也通过多方面对线粒体进行调节,线粒体相关疾病与AMPK的调节有着密切的关系。该文主要针对AMPK是如何对线粒体的合成、线粒体自噬、内源性凋亡及线粒体相关疾病等方面进行综述。  相似文献   

3.
The role of PAS kinase in regulating energy metabolism   总被引:1,自引:0,他引:1  
Hao HX  Rutter J 《IUBMB life》2008,60(4):204-209
  相似文献   

4.
5.
AMP-activated protein kinase (AMPK) is an essential enzyme indispensable for energy sensing and metabolic homeostasis at both the cellular and whole-body levels. Phosphorylation of AMPK, a key step for its activation, is known to be regulated by upstream kinases such as liver kinase B1 (LKB1) and calmodulin-dependent protein kinase kinase-beta (CaMKKβ). Recent evidence shows that inositol polyphosphate multikinase (IPMK), which possesses both inositol phosphate kinase and lipid inositol kinase activities, can physiologically regulate AMPK signaling in cultured cells and in the arcuate nucleus. IPMK-mediated regulation of AMPK occurs through the dynamic protein interactions of IPMK with AMPK in response to glucose availability. Here we review and discuss a novel role for the hypothalamic IPMK signaling in the control of AMPK and central energy homeostasis.  相似文献   

6.
AMP-activated protein kinase (AMPK), a key regulator of energy homeostasis in mammalian cells, is, in turn, regulated by long-sought upstream protein kinases (AMPKKs). Following the recent identification of the tumor-suppressor kinase LKB1 as an AMPKK, a broader role for AMPK in metabolic economy has been unveiled by a new body of work from three groups that implicates the Ca(2+)/calmodulin-dependent protein kinase kinases as AMPKKs. We suggest that PKE (protein kinase "energy" or "economy") is now an apt name for this kinase, which regulates both cellular and whole-organism energy homeostasis.  相似文献   

7.
Hardie DG 《Cell metabolism》2007,6(5):339-340
AMP-activated protein kinase (AMPK) has attracted much attention for its key role in energy homeostasis. Three new papers providing structural information on mammalian and yeast AMPK homologs give insights into the binding of the regulatory nucleotides AMP and ATP and how mutations are associated with cardiac glycogen storage disorders.  相似文献   

8.
Bioenergy homeostasis constitutes one of the most crucial foundations upon which other cellular and organismal processes may be executed. AMP-activated protein kinase (AMPK) has been shown to be the key player in the regulation of energy metabolism, and thus is becoming the focus of research on obesity, diabetes and other metabolic disorders. However, its role in the brain, the most energy-consuming organ in our body, has only recently been studied and appreciated. Widely expressed in the brain, AMPK activity is tightly coupled to the energy status at both neuronal and whole-body levels. Importantly, AMPK signaling is intimately implicated in multiple aspects of brain development and function including neuronal proliferation, migration, morphogenesis and synaptic communication, as well as in pathological conditions such as neuronal cell death, energy depletion and neurodegenerative disorders.  相似文献   

9.
AMPK:细胞能量中枢   总被引:1,自引:0,他引:1  
腺苷酸活化蛋白激酶(AMP activated protein kinase,AMPK)是真核细胞中高度保守的丝氨酸/苏氨酸蛋白激酶,以异源三聚体的形式广泛存在于真核生物体内,是细胞的能量感受器,在能量代谢调控中起极其重要的作用。肝激酶B1(LKB1)、Ca^2+/CaM-依赖蛋白激酶激酶β(CaMKKβ)、AMP/ATP或ADP/ATP比值升高以及诸如运动肌肉收缩等生理刺激均可以激活AMPK,进而调节细胞的能量代谢网络,提高其应对内外环境变化的能力,从而维持细胞水平乃至整个机体的稳定状态。活化的AMPK可以增强分解代谢,抑制合成代谢,上调ATP水平,参与细胞糖代谢、脂肪代谢、蛋白质代谢等能量代谢过程,增加细胞能量储备,应对能量缺乏。同时活化的AMPK参与细胞的生长、增殖、凋亡、自噬等基本生物学过程。AMPK是研究肥胖,糖尿病等能量代谢性疾病的核心。肿瘤细胞存在特殊的能量代谢方式,其发生,生长,转移与能量代谢失衡密切相关。AMPK与肿瘤细胞异常的能量代谢相关,为肿瘤发生、发展机制研究提供新的策略。本文主要探讨AMPK的结构、激活机制、参与的物质能量代谢和细胞的基本生物学过程以及与肿瘤发生的关联。  相似文献   

10.
腺苷酸活化蛋白激酶(AMPactivated proteinkinase,AMPK)是真核细胞中高度保守的丝氨酸/苏氨酸蛋白激酶,以异源三聚体的形式广泛存在于真核生物体内,是细胞的能量感受器,在能量代谢调控中起极其重要的作用。肝激酶B1(LKB1)、Ca2+/CaM-依赖蛋白激酶激酶β(CaMKKβ)、AMP/ATP或ADP/ATP比值升高以及诸如运动肌肉收缩等生理刺激均可以激活AMPK,进而调节细胞的能量代谢网络,提高其应对内外环境变化的能力,从而维持细胞水平乃至整个机体的稳定状态。活化的AMPK可以增强分解代谢,抑制合成代谢,上调ATP水平,参与细胞糖代谢、脂肪代谢、蛋白质代谢等能量代谢过程,增加细胞能量储备,应对能量缺乏。同时活化的AMPK参与细胞的生长、增殖、凋亡、自噬等基本生物学过程。AMPK是研究肥胖,糖尿病等能量代谢性疾病的核心。肿瘤细胞存在特殊的能量代谢方式,其发生,生长,转移与能量代谢失衡密切相关。AMPK与肿瘤细胞异常的能量代谢相关,为肿瘤发生、发展机制研究提供新的策略。本文主要探讨AMPK的结构、激活机制、参与的物质能量代谢和细胞的基本生物学过程以及与肿瘤发生的关联。  相似文献   

11.
AMP-activated protein kinase (AMPK) plays a crucial role in both cellular and whole body energy homeostasis. Here we demonstrate that the muscarinic receptor agonist carbachol activates AMPKalpha1-containing complexes in the human SH-SY5Y cell line via a mechanism specific for the AMPK upstream kinase, Ca(2+)/calmodulin-dependent protein kinase kinase beta. Activation of AMPK inhibits mRNA expression of the orexigenic neuropeptides Agouti-related peptide and melanin-concentrating hormone but surprisingly has no effect on neuropeptide Y mRNA, a neuropeptide previously shown to be regulated by AMPK. Rather than restoring mRNA levels to baseline, pharmacological inhibition of Ca(2+)/calmodulin-dependent protein kinase kinase beta or AMPK greatly increases Agouti-related peptide and melanin-concentrating hormone mRNA expression. These data support a hypothesis that modulating basal AMPK activity in the hypothalamus is essential for maintaining tight regulation of pathways contributing to food intake.  相似文献   

12.
Bioenergy homeostasis constitutes one of the most crucial foundations upon which other cellular and organismal processes may be executed. AMP-activated protein kinase (AMPK) has been shown to be the key player in the regulation of energy metabolism, and thus is becoming the focus of research on obesity, diabetes and other metabolic disorders. However, its role in the brain, the most energy-consuming organ in our body, has only recently been studied and appreciated. Widely expressed in the brain, AMPK activity is tightly coupled to the energy status at both neuronal and whole-body levels. Importantly, AMPK signaling is intimately implicated in multiple aspects of brain development and function including neuronal proliferation, migration, morphogenesis and synaptic communication, as well as in pathological conditions such as neuronal cell death, energy depletion and neurodegenerative disorders.Key words: AMPK, energy, neuron, brain, metabolism, glucose, neurodegenerative disease, cell death, neural development, polarization  相似文献   

13.
Skeletal muscle is the major site for glucose disposal, the impairment of which closely associates with the glucose intolerance in diabetic patients. Diabetes-related ankyrin repeat protein (DARP/Ankrd23) is a member of muscle ankyrin repeat proteins, whose expression is enhanced in the skeletal muscle under diabetic conditions; however, its role in energy metabolism remains poorly understood. Here we report a novel role of DARP in the regulation of glucose homeostasis through modulating AMP-activated protein kinase (AMPK) activity. DARP is highly preferentially expressed in skeletal muscle, and its expression was substantially upregulated during myotube differentiation of C2C12 myoblasts. Interestingly, DARP-/- mice demonstrated better glucose tolerance despite similar body weight, while their insulin sensitivity did not differ from that in wildtype mice. We found that phosphorylation of AMPK, which mediates insulin-independent glucose uptake, in skeletal muscle was significantly enhanced in DARP-/- mice compared to that in wildtype mice. Gene silencing of DARP in C2C12 myotubes enhanced AMPK phosphorylation, whereas overexpression of DARP in C2C12 myoblasts reduced it. Moreover, DARP-silencing increased glucose uptake and oxidation in myotubes, which was abrogated by the treatment with AICAR, an AMPK activator. Of note, improved glucose tolerance in DARP-/- mice was abolished when mice were treated with AICAR. Mechanistically, gene silencing of DARP enhanced protein expression of LKB1 that is a major upstream kinase for AMPK in myotubes in vitro and the skeletal muscle in vivo. Together with the altered expression under diabetic conditions, our data strongly suggest that DARP plays an important role in the regulation of glucose homeostasis under physiological and pathological conditions, and thus DARP is a new therapeutic target for the treatment of diabetes mellitus.  相似文献   

14.
Damián Gatica 《Autophagy》2020,16(6):973-974
ABSTRACT

AMPK is one of the main regulators of energy homeostasis in the cell, achieving this role in part by upregulating autophagy in times of nutrient deprivation. Previous reports have described several AMPK substrates involved in autophagy regulation; however, there are still undiscovered AMPK downstream effectors that could play an important role in autophagy. In a new article, Dohmen et al. discovered that the CCNY-CDK16 complex is a novel AMPK substrate involved in autophagy activation.  相似文献   

15.
Yao F  Ji GY  Zhang L 《生理学报》2012,64(3):341-345
The AMP-activated protein kinase (AMPK) is a pivotal serine/threonine kinase participating in the regulation of glucose, lipid as well as protein metabolism and maintenance of energy homeostasis. Recent studies demonstrated that AMPK can also inhibit nuclear factor-κB, suppress the expression of inflammatory genes and attenuate inflammatory injury through phosphorylating its downstream targets including SIRT1, PGC-lα, p53 and FoxO3a. In addition, the widely used antidiabetic metformin also exerts its anti-inflammatory effects through activating AMPK. Therefore, AMPK is emerging as a promising novel target for the development of anti-inflammatory drugs. This review summarized the anti-inflammatory effects of AMPK and the underling molecular mechanisms.  相似文献   

16.
All living organisms depend on dynamic mechanisms that repeatedly reassess the status of amassed energy, in order to adapt energy supply to demand. The AMP-activated protein kinase (AMPK) αβγ heterotrimer has emerged as an important integrator of signals managing energy balance. Control of AMPK activity involves allosteric AMP and ATP regulation, auto-inhibitory features and phosphorylation of its catalytic (α) and regulatory (β and γ) subunits. AMPK has a prominent role not only as a peripheral sensor but also in the central nervous system as a multifunctional metabolic regulator. AMPK represents an ideal second messenger for reporting cellular energy state. For this reason, activated AMPK acts as a protective response to energy stress in numerous systems. However, AMPK inhibition also actively participates in the control of whole body energy homeostasis. In this review, we discuss recent findings that support the role and function of AMPK inhibition under physiological and pathological states.  相似文献   

17.
The AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase that acts as a sensor of cellular energy status switch regulating several systems including glucose and lipid metabolism. Recently, AMPK has been implicated in the control of skeletal muscle mass by decreasing mTORC1 activity and increasing protein degradation through regulation of ubiquitin-proteasome and autophagy pathways. In this review, we give an overview of the central role of AMPK in the control of skeletal muscle plasticity. We detail particularly its implication in the control of the hypertrophic and atrophic signaling pathways. In the light of these cumulative and attractive results, AMPK appears as a key player in regulating muscle homeostasis and the modulation of its activity may constitute a therapeutic potential in treating muscle wasting syndromes in humans.  相似文献   

18.
MARK4, also known as Par-1d/MarkL1, is a member of the AMP-activated protein kinase (AMPK)-related family of kinases, which are implicated in the regulation of dynamic biological functions, including glucose and energy homeostasis. However, the physiological function of MARK4 in mammals remains elusive. Here, we investigated a role for MARK4 in regulating energy homeostasis by generating mice with targeted inactivation of the mark4 gene. We show that MARK4 deficiency in mice caused hyperphagia, hyperactivity, and hypermetabolism, leading to protection from diet-induced obesity and its related metabolic complications through up-regulation of brown fat activity. Consequently, MARK4 deficiency mitigated insulin resistance associated with diet-induced obesity by dramatically enhancing insulin-stimulated AKT phosphorylation in major metabolic tissues. Ablation of MARK4 also significantly improved glucose homeostasis by up-regulating the activity and expression of AMPK kinase in key metabolic tissues. Taken together, these data identify a key role of MARK4 in energy metabolism, implicating the kinase as a novel drug target for the treatment of obesity and type 2 diabetes.  相似文献   

19.
AMP-activated protein kinase (AMPK) is an energy-sensing enzyme that plays a pivotal role in regulating cellular metabolism for sustaining energy homeostasis under stress conditions. Activation of AMPK has been observed in the heart during acute and chronic stresses, but its functional role has not been completely understood because of the lack of effective activators and inhibitors of this kinase in the heart. We generated transgenic mice (TG) with cardiac-specific overexpression of a dominant negative mutant of the AMPK alpha2 catalytic subunit to clarify the functional role of this kinase in myocardial ischemia. In isolated perfused hearts subjected to a 10-min ischemia, AMPK alpha2 activity in wild type (WT) increased substantially (by 4.5-fold), whereas AMPK alpha2 activity in TG was similar to the level of WT at base line. Basal AMPK alpha1 activity was unchanged in TG and increased normally during ischemia. Ischemia stimulated a 2.5-fold increase in 2-deoxyglucose uptake over base line in WT, whereas the inactivation of AMPK alpha2 in TG significantly blunted this response. Using 31P NMR spectroscopy, we found that ATP depletion was accelerated in TG hearts during no-flow ischemia, and these hearts developed left ventricular dysfunction manifested by an early and more rapid increase in left ventricular end-diastolic pressure. The exacerbated ATP depletion could not be attributed to impaired glycolytic ATP synthesis because TG hearts consumed slightly more glycogen during this period of no-flow ischemia. Thus, AMPK alpha2 is necessary for maintaining myocardial energy homeostasis during ischemia. It is likely that the functional role of AMPK in myocardial energy metabolism resides both in energy supply and utilization.  相似文献   

20.
The 5′ adenosine monophosphate-activated protein kinase (AMPK) is a heterotrimeric, evolutionary conserved enzyme which has emerged as a critical regulator of skeletal muscle cellular bioenergetics. AMPK is activated by both chemical (adipokines) and mechanical (stretch, contraction) stimuli leading to metabolic changes within muscle cells that include increased fatty acid oxidation, glucose uptake and glycolysis, as well as the stimulation and regulation of mitochondrial biogenesis. Collectively these acute responses and chronic adaptations act to reduce cellular disturbances, resulting in tighter metabolic control and maintenance of energy homeostasis. This brief review will describe the structure, function and activation of AMPK in skeletal muscle and how this ubiquitous molecule may be a plausible target for the treatment of several lifestyle-related metabolic disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号