首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The trisaccharide Gal13Gal14GlcNAc1O-(CH2)8COOCH3 was enzymatically synthesized, within situ UDP-Gal regeneration. By combination in one pot of only four enzymes, namely, sucrose synthase, UDP-Glc 4-epimerase, UDP-Gal:GlcNAc 4-galactosyltransferase and UDP-Gal:Gal14GlcNAc 3-galactosyltransferase, Gal13Gal14GlcNAc1O-(CH2)8COOCH3 was formed in a 2.2 µmol ml–1 yield starting from the acceptor GlcNAc1O-(CH2)8COOCH3. This is an efficient and convenient method for the synthesis of the Gal13Gal14GlcNAc epitope which plays an important role in various biological and immunological processes.  相似文献   

2.
With the exception of cellulose and callose, the cell wall polysaccharides are synthesized in Golgi membranes, packaged into vesicles, and exported to the plasma membrane where they are integrated into the microfibrillar structure. Consistent with this paradigm, several published reports have shown that the maize (Zea mays) mixed-linkage (1→3),(1→4)-β-d-glucan, a polysaccharide that among angiosperms is unique to the grasses and related Poales species, is synthesized in vitro with isolated maize coleoptile Golgi membranes and the nucleotide-sugar substrate, UDP-glucose. However, a recent study reported the inability to detect the β-glucan immunocytochemically at the Golgi, resulting in a hypothesis that the mixed-linkage β-glucan oligomers may be initiated at the Golgi but are polymerized at the plasma membrane surface. Here, we demonstrate that (1→3),(1→4)-β-d-glucans are detected immunocytochemically at the Golgi of the developing maize coleoptiles. Further, when maize seedlings at the third-leaf stage were pulse labeled with [14C]O2 and Golgi membranes were isolated from elongating cells at the base of the developing leaves, (1→3),(1→4)-β-d-glucans of an average molecular mass of 250 kD and higher were detected in isolated Golgi membranes. When the pulse was followed by a chase period, the labeled polysaccharides of the Golgi membrane diminished with subsequent transfer to the cell wall. (1→3),(1→4)-β-d-Glucans of at least 250 kD were isolated from cell walls, but much larger aggregates were also detected, indicating a potential for intermolecular interactions with glucuronoarabinoxylans or intermolecular grafting in muro.An overwhelming body of evidence accumulated has established that the (1→4)-β-d-glucan chains of cellulose microfibrils are synthesized and assembled at the plasma membrane surface (Delmer, 1999; Saxena and Brown, 2005), whereas, with the lone exception of the (1→3)-β-d-glucan, callose, all noncellulosic pectin and cross-linking glycan polysaccharides are synthesized in Golgi membranes (Northcote and Pickett-Heaps, 1966; Ray et al., 1969, 1976; Harris and Northcote, 1971; Zhang and Staehelin, 1992). Using several plant systems, including grass species, autoradiography and membrane fractionation showed that monosaccharides from 14C-labeled substrates accumulated in cell wall polysaccharides in Golgi vesicles during a pulse were subsequently transferred to the cell wall when chased with unlabeled substrates (Northcote and Pickett-Heaps, 1966; Pickett-Heaps, 1967; Jilka et al., 1972). Early studies showed that labeled sugars from nucleotide-sugar substrates could be incorporated into alcohol-insoluble polysaccharides using microsomal membranes, and later refined by isolation of Golgi membranes and the synthesis of defined polysaccharides with combinations of nucleotide sugars (Bailey and Hassid, 1966; Ray et al., 1969, 1976; Smith and Stone, 1973; Ray, 1980; Hayashi and Matsuda, 1981a; Gordon and Maclachlan, 1989; Gibeaut and Carpita, 1993).When micromolar concentrations of substrates were used, only small chains of the glycan products were typically made in vitro. For example, xyloglucan oligomers with the characteristic α-d-Xyl-(1→6)-d-glucosyl unit, isoprimeverose, were synthesized with isolated microsomal membranes and low concentrations of UDP-Glc and UDP-Xyl (Ray et al., 1976; Hayashi and Matsuda, 1981b). When concentrations of each nucleotide sugar were increased to millimolar concentrations, then polysaccharides of about 250 kD were synthesized containing the characteristic XXXG heptasaccharide unit structure (Gordon and Maclachlan, 1989). Immunocytochemical evidence with antibodies directed against the terminal nonreducing xylosyl and fucosyl residues confirm that synthesis of the xyloglucan backbone begins in the cis-Golgi membrane and culminates with fucosylation in the trans-Golgi membrane and trans-Golgi network (Moore et al., 1991; Lynch and Staehelin, 1992; Zhang and Staehelin, 1992). The fucosyl transferase responsible for xyloglucan side chain decoration was also shown to be a Golgi-resident protein by in vitro synthesis of xyloglucan polymers (Camirand and Maclachlan, 1986).In Poales species, including all grasses, the mixed-linkage (1→3),(1→4)-β-d-glucan is a major cross-linking glycan that appears transiently during cell elongation in growing tissues and accumulates to large amounts in the cell walls of the endosperm of certain grains (Stone and Clarke, 1992; Trethewey et al., 2005). Bailey and Hassid (1966) demonstrated the synthesis in vitro of noncellulosic glucans with microsomal membranes from grasses. Henry and Stone (1982) used the Bacillus subtilis endoglucanase, an enzyme that generates diagnostic cellodextrin-(1→3)-β-Glc units from (1→3),(1→4)-β-d-glucan to show that the mixed-linkage β-glucan was made specifically with UDP-Glc and microsomal membranes. We used flotation centrifugation to obtain highly enriched Golgi membranes from which (1→3),(1→4)-β-d-glucans of an average of about 250 kD were synthesized (Gibeaut and Carpita, 1993).The BG1 monoclonal antibody recognizes the (1→3),(1→4)-β-d-glucan with high specificity (Meikle et al., 1994). This monoclonal antibody has been used to show dramatic changes in epitope abundance of (1→3),(1→4)-β-d-glucan in the cell walls of developing tissues (Meikle et al., 1994; Trethewey et al., 2005; McCann et al., 2007) and its appearance in the cell walls of Arabidopsis (Arabidopsis thaliana) following heterologous expression of genes thought to encode its synthases (Burton et al., 2006; Doblin et al., 2009). The failure to detect (1→3),(1→4)-β-d-glucan in Golgi membranes and only in the cell wall prompted Fincher (2009) to conclude that cellodextrin oligomers of the (1→3),(1→4)-β-d-glucan may be initiated in the Golgi membrane, but the actual polymerization of the polysaccharide occurs at the plasma membrane.While there is little question that synthesis of full-length polymers is possible in vitro with isolated Golgi membranes and UDP-Glc (Gibeaut and Carpita, 1993; Buckeridge et al., 1999, 2001; Urbanowicz et al., 2004), Fincher (2009) asserts correctly that there exists no experimental evidence that the polymer is made in vivo within the Golgi membrane in intact tissues. In fact, earlier work showing the paucity of immunolabeling of (1→3),(1→4)-β-d-glucan in Golgi membranes of developing wheat (Triticum aestivum) endosperm at a time of active deposition called to question the site of synthesis in vivo (Philippe et al., 2006). There is precedence for the synthesis of chitin in vitro with precociously activated chitisomes (Bracker et al., 1976), a vesicular package of chitin synthase that in vivo is quiescent until reaching the plasma membrane. No activity of chitin synthase from isolated plasma membranes could be demonstrated. In a similar way, the Golgi synthase activity of (1→3),(1→4)-β-d-glucan could be a precocious activation in vitro of a plasma membrane activity.As in vitro synthesis studies clearly show synthesis of full-length (1→3),(1→4)-β-d-glucan only at the Golgi, we reexamined the puzzling finding of its absence from Golgi bodies to determine the true site of synthesis in vivo. In contrast to Fincher (2009), our own immunocytochemistry shows (1→3),(1→4)-β-d-glucan is indeed in the Golgi membrane in 2-d-old coleoptiles, when rapid growth is just beginning. However, we are unable to detect the β-glucan in Golgi after the peak rate of elongation. We pulse labeled maize (Zea mays) seedlings with radiolabeled CO2 and followed the fate of label captured by photosynthesis and translocated to elongating cells at the base of the seedling. We found by flotation centrifugation that Golgi membranes contain (1→3),(1→4)-β-d-glucan of at least 250 kD, similar to that of the product of in vitro synthesis at optimal UDP-Glc concentrations and commercial preparations of barley (Hordeum vulgare) endosperm (1→3),(1→4)-β-d-glucan (Gibeaut and Carpita, 1993; Buckeridge et al., 1999, 2001; Urbanowicz et al., 2004). When polysaccharides are extracted sequentially from the cell walls by hot ammonium oxalate, and increasing concentrations of NaOH to 4 m, the (1→3),(1→4)-β-d-glucans are found mostly in the higher concentrations of alkali fractions. While 250 kD polymers are observed, most of the (1→3),(1→4)-β-d-glucans eluted in fractions containing glucuronoarabinoxylans (GAXs), which are much larger, indicating either that an aggregation with GAXs increase the apparent size or that trans-glucosylation events increase the degree of polymerization of the (1→3),(1→4)-β-d-glucans.  相似文献   

3.
β-Glucan is a (1→3)-β-linked glucose polymer with (1→6)-β-linked side chains and a major component of fungal cell walls. β-Glucans provide structural integrity to the fungal cell wall. The nature of the (1-6)-β-linked side chain structure of fungal (1→3,1→6)-β-D-glucans has been very difficult to elucidate. Herein, we report the first detailed structural characterization of the (1→6)-β-linked side chains of Candida glabrata using high-field NMR. The (1→6)-β-linked side chains have an average length of 4 to 5 repeat units spaced every 21 repeat units along the (1→3)-linked polymer backbone. Computer modeling suggests that the side chains have a bent curve structure that allows for a flexible interconnection with parallel (1→3)-β-D-glucan polymers, and/or as a point of attachment for proteins. Based on these observations we propose new approaches to how (1→6)-β-linked side chains interconnect with neighboring glucan polymers in a manner that maximizes fungal cell wall strength, while also allowing for flexibility, or plasticity.  相似文献   

4.
D-Galactosyl-β1→4-L-rhamnose (GalRha) was produced enzymatically from 1.1 M sucrose and 1.0 M L-rhamnose by the concomitant actions of four enzymes (sucrose phosphorylase, UDP-glucose-hexose 1-phosphate uridylyltransferase, UDP-glucose 4-epimerase, and D-galactosyl-β1→4-L-rhamnose phosphorylase) in the presence of 1.0 mM UDP-glucose and 30 mM inorganic phosphate. The accumulation of GalRha in 1 liter of the reaction mixture reached 230 g (the reaction yield was 71% from L-rhamnose). Sucrose and fructose in the reaction mixture were removed by yeast treatment, but isolation of GalRha by crystallization after yeast treatment was unsuccessful. Finally, 49 g of GalRha was isolated from part of the reaction mixture with yeast treatment by gel-filtration chromatography.  相似文献   

5.
Xylans from five seaweeds belonging to the order Nemaliales (Galaxaura marginata, Galaxaura obtusata, Tricleocarpacylindrica, Tricleocarpa fragilis, and Scinaia halliae) and one of the order Palmariales (Palmaria palmata) collected on the Brazilian coasts were extracted with hot water and purified from acid xylomannans and/or xylogalactans through Cetavlon precipitation of the acid polysaccharides. The β-D-(1→4), β-D-(1→3) 'mixed linkage' structures were determined using methylation analysis and 1D and 2D NMR spectroscopy. The presence of large sequences of β-(1→4)-linked units suggests transient aggregates of ribbon- or helical-ordered structures that would explain the low optical rotations.  相似文献   

6.
The location of the (13)--glucan, callose, in the walls of pollen tubes in the style of Nicotiana alata Link et Otto was studied using specific monoclonal antibodies. The antibodies were raised against a laminarinhaemocyanin conjugate. One antibody selected for further characterization was specific for (13)--glucans and showed no binding activity against either a cellopentaose-bovine serum albumin (BSA) conjugate or a (13, 14)--glucan-BSA conjugate. Binding was inhibited by (13)--oligoglucosides (DP, 3–6) with maximum competition being shown by laminaripentaose and laminarihexaose, indicating that the epitope included at least five (13)--linked glucopyranose residues. The monoclonal antibody was determined to have an affinity constant for laminarihexaose of 2.7. 104M–1. When used with a second-stage gold-labelled, rabbit anti-mouse antibody, the monoclonal antibody probe specifically located the (13)--glucan in the inner wall layer of thin sections of the N. alata pollen tubes.Abbreviations BSA bovine serum albumin - PBS phosphate-buffered saline - ELISA enzyme linked immunosorbent assay - DP degree of polymerization - PVC polyvinyl chloride P.J.M. is an Australian Postdoctoral Research Fellow. We wish to thank Joan Hoogenraad for her technical assistance with the tissue culture, and Althea Wright for her assistance in the preparation of this paper.  相似文献   

7.
Synthesis and clusterization of Galβ(1→3)[NeuAcα(2→6)]GlcNAcβ(1→2)Man motif of the N-glycan, as the molecular probes for their biological evaluation, are reported. Key step is the quantitative and the completely α-selective sialylation of the C5-azide N-phenyltrifluoroacetimidate with the disaccharide acceptor, Galβ(1→3)GlcNTroc. Clusterization of the 16 molecules of trisaccharide motif was also achieved by the ‘self-activating click reaction’. These probes could efficiently be labeled by biotin and/or other fluorescence- or radioactive reporter groups through either cross metathesis, acylation, Cu(I)-mediated Huisgen [2+3]-cycloaddition, or the azaelectrocyclization to utilize the various biological techniques.  相似文献   

8.
9.
An endo-(14)--d-xylanase from Neocallimastix frontalis was purified by anion-exchange chromatography. The enzyme had an apparent molecular mass of 30 kDa on SDS-PAGE and exhibited maximum activity at 50°C and at pH values between 6.0 and 6.6. Kinetic studies on the hydrolysis of xylo-oligosaccharides, ranging from xylobiose to xylodecaose, showed that xylohexaose and xyloheptaose were the preferred substrates for the enzyme and that xylobiose, xylotriose and xylotetraose were not hydrolysed. Xylose was not a product of the hydrolysis of any of the xylo-oligosaccharide substrates tested. The enzyme appeared to have a strong preference for the hydrolysis of the internal glycosidic bonds of the oligosaccharides, which is typical of endo-(14)--d-xylanase activity, but it differed from other fungal endo-(14)--d-xylanases in that it had uniform action on the various internal linkages in the xylo-oligosaccharides.V. Garcia-Campayo, S.I. McCrae and T.M. Wood are with The Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB2 9SB, UK  相似文献   

10.
Kim KH  Kim YO  Ko BS  Youn HJ  Lee DS 《Biotechnology letters》2004,26(22):1749-1755
An endo--(13),(14)-glucanase gene (bglBC1) from Bacillus circulans ATCC21367 was modified by substituting its native promoter with a strong promoter, BJ27X, to increase expression of the gene when cloned into B. subtilis RM125 and B. megaterium ATCC14945. A 771-bp endo--(13),(14)-glucanase open reading frame was inserted into a new shuttle plasmid, pBLC771, by ligating the ORF and pBE1, the latter of which contained the strong promoter, BJ27X. B. subtilis, transformed with the recombinant plasmid pBLC771, produced an extracellular endo--(13),(14)-glucanase that was 130 times (7176 mU ml–1) more active than that of the gene donor cells (55 mU ml–1), while the enzyme from the transformed B. megaterium was 7 times (378 mU ml–1) more active than that of the gene donor cells. M r of the enzyme was 28 kDa, with proteolytic processing of the enzyme being observed only in B. subtilis cells. The major products of water-soluble -glucan hydrolyzed by over-produced endo--(13),(14)-glucanase were tri- and tetra-oligosaccharides which can be developed as useful products such as anti-hypercholesterolemic, anti-hypertriglyceridemic, and anti-hyperglycemic agents.  相似文献   

11.
Chronic kidney disease constitutes an increasing medical burden affecting 26 million people in the United States alone. Diabetes, hypertension, ischemia, acute injury, and urological obstruction contribute to renal fibrosis, a common pathological hallmark of chronic kidney disease. Regardless of etiology, elevated TGF-β1 levels are causatively linked to the activation of profibrotic signaling pathways initiated by angiotensin, glucose, and oxidative stress. Unilateral ureteral obstruction (UUO) is a useful and accessible model to identify mechanisms underlying the progression of renal fibrosis. Plasminogen activator inhibitor-1 (PAI-1), a major effector and downstream target of TGF-β1 in the progression of several clinically important fibrotic disorders, is highly up-regulated in UUO and causatively linked to disease severity. SMAD and non-SMAD pathways (pp60c-src, epidermal growth factor receptor [EGFR], mitogen-activated protein kinase, p53) are required for PAI-1 induction by TGF-β1. SMAD2/3, pp60c-src, EGFR, and p53 activation are each increased in the obstructed kidney. This review summarizes the molecular basis and translational significance of TGF-β1-stimulated PAI-1 expression in the progression of kidney disease induced by ureteral obstruction. Mechanisms discussed here appear to be operative in other renal fibrotic disorders and are relevant to the global issue of tissue fibrosis, regardless of organ site.  相似文献   

12.
13.
Three structural classes of (13)--d-glucans are encountered in some important soil-dwelling, plant-associated or human pathogenic bacteria. Linear (13)--glucans and side-chain-branched (13,12)--glucans are major constituents of capsular materials, with roles in bacterial aggregation, virulence and carbohydrate storage. Cyclic (13,16)--glucans are predominantly periplasmic, serving in osmotic adaptation. Curdlan, the linear (13)--glucan from Agrobacterium, has unique rheological and thermal gelling properties, with applications in the food industry and other sectors. This review includes information on the structure, properties and molecular genetics of the bacterial (13)--glucans, together with an overview of the physiology and biotechnology of curdlan production and applications of this biopolymer and its derivatives.  相似文献   

14.
An endo-(1→6)-β-D-glucanase (EC 3.2.1), isolated from the culture filtrate of Mucor hiemalis, was purified by ammonium sulphate fractionation and gel filtration. The homogeneity of the enzyme was confirmed by disc electrophoresis. The enzyme had a wide range of temperature and pH stability, high substrate specificity, and an action pattern of the endo-type.  相似文献   

15.
We characterized a glycoside hydrolase family 112 protein from Opitutus terrae (Oter_1377 protein). The enzyme phosphorolyzed d-galactosyl-β1→4-l-rhamnose (GalRha) and also showed phosphorolytic activity on d-galactosyl-β1→3-d-glucose as a minor substrate. In the reverse reaction, the enzyme showed higher activity on l-rhamnose derivatives than on d-glucose derivatives. The enzyme was stable up to 45 °C and at pH 6.0–7.0. The values of kcat and Km of the phosphorolytic activity of the enzyme on GalRha were 60 s?1 and 2.1 mM, respectively. Thus, Oter_1377 protein was identified as d-galactosyl-β1→4-l-rhamnose phosphorylase (GalRhaP). The presence of GalRhaP in O. terrae suggests that genes encoding GalRhaP are widely distributed in different organisms.  相似文献   

16.
1. The enzymic synthesis of O-β-d-glucopyranosyl-(1→6)-d-galactose has been described and evidence for the structure presented. 2. It has been shown that the transglycosylase of A. niger provides a convenient means of synthesizing (1→6)-linked disaccharides.  相似文献   

17.
Philippe S  Saulnier L  Guillon F 《Planta》2006,224(2):449-461
Arabinoxylans (AX) and (1→3),(1→4)-β-glucans are major components of wheat endosperm cell walls. Their chemical heterogeneity has been described but little is known about the sequence of their deposition in cell walls during endosperm development. The time course and pattern of deposition of the (1→3) and (1→3),(1→4)-β-glucans and AX in the endosperm cell walls of wheat (Triticum aestivum L. cv. Recital) during grain development was studied using specific antibodies. At approximately 45°D (degree-days) after anthesis the developing walls contained (1→3)-β-glucans but not (1→3),(1→4)-β-glucans. In contrast, (1→3),(1→4)-β-glucans occurred widely in the walls of maternal tissues. At the end of the cellularization stage (72°D), (1→3)-β-glucan epitopes disappeared and (1→3),(1→4)-β-glucans were found equally distributed in all thin walls of wheat endosperm. The AX were detected at the beginning of differentiation (245°D) in wheat endosperm, but were missing in previous stages. However, epitopes related to AX were present in nucellar epidermis and cross cells surrounding endosperm at all stages but not detected in the maternal outer tissues. As soon as the differentiation was apparent, the cell walls exhibited a strong heterogeneity in the distribution of polysaccharides within the endosperm.  相似文献   

18.
Our recent studies have revealed the existence of two distinct Gal: 3-O-sulfotransferases capable of acting on the C-3 position of galactose in a Core 2 branched structure, e.g., Gal14GlcNAc16(Gal13)GalNac1OBenzyl as acceptor to give 3-O-sulfoGal14GlcNAc13(Gal13)GalNAc1OB 20 and Gal14GlcNAc16(3-O-sulfoGal13)GalNAc1OB 23. We herein report the synthesis of these two compounds and also that of other modified analogs that are highly specific acceptors for the two sulfotransferases. Appropriately protected 1-thio-glycosides 7, 8, and 10 were employed as glycosyl donors for the synthesis of our target compounds.  相似文献   

19.
A water-insoluble (1→3)-β-d-glucan isolated from the fresh fruiting bodies of Russula virescens was sulfated using sulfur trioxide-pyridine complex as reagent in dimethyl sulfoxide. Depending on the reaction conditions, the products showed different degrees of sulfation (DS) ranging from 0.17 to 1.17 and different weight average molecular weights (Mws) ranging from 2.5 × 104 to 1.2 × 105 Da. Moreover, the antitumor activities of the five sulfated derivatives against Sarcoma 180 tumor cell were tested both in vitro and in vivo. The results indicated that the native (1→3)-β-d-glucan did not show antitumor activity, while the sulfated derivatives exhibited enhanced antitumor activities. This study demonstrated that DS and Mw could influence the antitumor activities of the sulfated derivatives.  相似文献   

20.
Immunogold labeling was used to study the distribution of (1 → 3)-β-glucans and (1 → 3, 1 → 4)-β-glucans in the rice grain during cellularization of the endosperm. At approximately 3–5 d after pollination the syncytial endosperm is converted into a cellular tissue by three developmentally distinct types of wall. The initial free-growing anticlinal walls, which compartmentalize the syncytium into open-ended alveoli, are formed in the absence of mitosis and phragmoplasts. This stage is followed by unidirectional (centripetal) growth of the anticlinal walls mediated by adventitious phragmoplasts that form between adjacent interphase nuclei. Finally, the periclinal walls that divide the alveoli are formed in association with centripetally expanding interzonal phragmoplasts following karyokinesis. The second and third types of wall are formed alternately until the endosperm is cellular throughout. All three types of wall that cellularize the endosperm contain (1 → 3)-β-glucans but not (1 → 3, 1 → 4)-β-glucans, whereas cell walls in the surrounding maternal tissues contain considerable amounts of (1 → 3, 1 → 4)-β-glucans with (1 → 3)-β-glucans present only around plasmodesmata. The callosic endosperm walls remain thin and cell plate-like throughout the cellularization process, appearing to exhibit a prolonged juvenile state. Received: 7 January 1997 / Accepted: 11 February 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号