首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 532 毫秒
1.
Giardia lamblia is a unicellular, early branching eukaryote causing giardiasis, one of the most common human enteric diseases. Giardia, a microaerophilic protozoan parasite has to build up mechanisms to protect themselves against oxidative stress within the human gut (oxygen concentration 60 μM) to establish its pathogenesis. G. lamblia is devoid of the conventional mechanisms of the oxidative stress management system, including superoxide dismutase, catalase, peroxidase, and glutathione cycling, which are present in most eukaryotes. NADH oxidase is a major component of the electron transport chain of G. lamblia, which in concurrence with disulfide reductase, protects oxygen-labile proteins such as pyruvate: ferredoxin oxidoreductase against oxidative stress by sustaining a reduced intracellular environment. It also contains the arginine dihydrolase pathway, which occurs in a number of anaerobic prokaryotes, includes substrate level phosphorylation and adequately active to make a major contribution to ATP production.  相似文献   

2.
Although Staphylococcus aureus is not a classical intracellular pathogen, it can survive within phagocytes and many other cell types. However, the pathogen is also able to escape from cells by mechanisms that are only partially understood. We analysed a series of isogenic S. aureus mutants of the USA300 derivative JE2 for their capacity to destroy human macrophages from within. Intracellular S. aureus JE2 caused severe cell damage in human macrophages and could efficiently escape from within the cells. To obtain this full escape phenotype including an intermittent residency in the cytoplasm, the combined action of the regulatory systems Sae and Agr is required. Mutants in Sae or mutants deficient in the Sae target genes lukAB and pvl remained in high numbers within the macrophages causing reduced cell damage. Mutants in the regulatory system Agr or in the Agr target gene psmα were largely similar to wild‐type bacteria concerning cell damage and escape efficiency. However, these strains were rarely detectable in the cytoplasm, emphasizing the role of phenol‐soluble modulins (PSMs) for phagosomal escape. Thus, Sae‐regulated toxins largely determine damage and escape from within macrophages, whereas PSMs are mainly responsible for the escape from the phagosome into the cytoplasm. Damage of macrophages induced by intracellular bacteria was linked neither to activation of apoptosis‐related caspase 3, 7 or 8 nor to NLRP3‐dependent inflammasome activation.  相似文献   

3.
Superoxide dismutase has been discovered within the periplasm of several Gram-negative pathogens. We studied the Cu,Zn-SOD enzyme in Escherichia coli isolated from clinical samples (stool samples) collected from patients suffering from diarrhea. Antibiogram studies of the isolates were carried out to determine the sensitive and resistant strains. The metal co-factor present in the enzyme was confirmed by running samples in native gels and inhibiting with 2 mM potassium cyanide. A 519 bp sodC gene was amplified from resistant and sensitive strains of Escherichia coli. Cloning and sequencing of the sodC gene indicated variation in the protein and amino acid sequences of sensitive and resistant isolates. The presence of sodC in highly resistant Escherichia coli isolates from diarrheal patients indicates that sodC may play role in enhancing the pathogenicity by protecting cells from exogenous sources of superoxide, such as the oxidative burst of phagocytes. The presence of SodC could be one of the factors for bacterial virulence.  相似文献   

4.
The aim of this study was to assess the intensity of oxidative stress by measuring levels of lipid peroxidation products in the duodenum, jejunum and colon of rats infected with Hymenolepis diminuta and evaluate the effectiveness of protection against oxidative stress by measuring the glutathione levels and activity of anti-oxidant enzymes: superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase.In exposed rats we observed a significant increase of lipid peroxidation products in the duodenum and jejunum. A significant decrease in superoxide dismutase activity in all the examined parts of the digestive tract was observed. Additionally, rats from 16 to 40 days post H. diminuta infection (dpi) had a decreased catalase activity in the colon, while at 60 dpi it increased. The glutathione peroxidase activity increased significantly in the colon at 60 dpi. The increase in glutathione reductase activity was observed in the colon in rats 60 dpi. There was a lack of changes in the levels of glutathione in the duodenum and a significant increase in its concentration in the jejunum and colon from 40 to 60 dpi and from 16 to 40 dpi, respectively. In this study we observed altered activity of anti-oxidant enzymes and glutathione level in experimental hymenolepidosis, as a consequence of oxidative stress. It may indicate a decrease in the efficiency of intestinal protection against oxidative stress induced by the presence of the parasite. The imbalance between oxidant and anti-oxidant processes may play a major role in pathology associated with hymenolepidosis.  相似文献   

5.
Macrophages are critical effectors of the early innate response to bacteria in tissues. Phagocytosis and killing of bacteria are interrelated functions essential for bacterial clearance but the rate‐limiting step when macrophages are challenged with large numbers of the major medical pathogen Staphylococcus aureus is unknown. We show that macrophages have a finite capacity for intracellular killing and fail to match sustained phagocytosis with sustained microbial killing when exposed to large inocula of S. aureus (Newman, SH1000 and USA300 strains). S. aureus ingestion by macrophages is associated with a rapid decline in bacterial viability immediately after phagocytosis. However, not all bacteria are killed in the phagolysosome, and we demonstrate reduced acidification of the phagolysosome, associated with failure of phagolysosomal maturation and reduced activation of cathepsin D. This results in accumulation of viable intracellular bacteria in macrophages. We show macrophages fail to engage apoptosis‐associated bacterial killing. Ultittop mately macrophages with viable bacteria undergo cell lysis, and viable bacteria are released and can be internalized by other macrophages. We show that cycles of lysis and reuptake maintain a pool of viable intracellular bacteria over time when killing is overwhelmed and demonstrate intracellular persistence in alveolar macrophages in the lungs in a murine model.  相似文献   

6.
In Staphylococcus aureus, the intracellular siderophore staphyloferrin B, which has been shown to chelate iron-bound to serum transferrin, is transported into cells by the SirABC system. In this work, we have analysed the role of the Sir transporter under stress conditions that resemble those imposed by the mammalian innate immune system. We show that exposure of S. aureus to oxidative and nitrosative stress generated by hydrogen peroxide and S-nitrosoglutathione, respectively, induced the expression of the sirA gene. The disruption of the sir operon led to a strain with lower viability and decreased resistance to oxidative stress. S. aureus sir null mutant was also analysed during infection of murine macrophages and shown to contribute to S. aureus survival inside macrophages. Altogether, our results indicate that the Sir transport system confers protection against reactive oxygen species, therefore, contributing to the virulence of S. aureus.  相似文献   

7.
A. R. McEuen  H. A. O. Hill 《Planta》1982,154(4):295-297
The possible involvement of superoxide and hydrogen peroxide in the oxidative gelling of phloem exudate from Cucurbita pepo. was investigated. Neither superoxide dismutase (EC 1.15.1.1) nor catalase (EC 1.11.1.6) inhibited the reaction. Although catalase could not be detected in exudate, both peroxidase (EC. 1.11.1.7) and superoxide dismutase were present in reasonable amounts. Polyacrylamide gel electrophoresis revealed one major and one minor isozyme of superoxide dismutase, both of which were adjudged to contain copper and zinc as their prosthetic metals, on the basis of cyanide inhibition and molecular weight.Abbreviations SOD superoxide dismutase  相似文献   

8.
Regulation of the balance between production of reactive oxygen species (ROS) by cellular processes and its removal by antioxidant defense system maintains normal physiological processes. Any condition leading to increased ROS results in oxidative stress which has been related with a number of diseases including cancer. Improvement in antioxidant defense system is required to overcome the damaging effects of oxidative stress. Therefore in the present study, effect of the aqueous extract of a medicinal plant Andrographis paniculata (AP) on antioxidant defense system in liver is investigated in lymphoma bearing AKR mice. Estimating catalase, superoxide dismutase and glutathione S transferase monitored the antioxidant action. Oral administration of the aqueous extract of A. paniculata in different doses causes a significant elevation of catalase, superoxide dismutase and glutathione S transferase activities. It reveals the antioxidant action of the aqueous extract of AP, which may play a role in the anticarcinogenic activity by reducing the oxidative stress. LDH activity is known to increase in various cancers due to hypoxic condition. Lactate dehydrogenase is used as tumor marker. We find a significant decrease in LDH activity on treatment with AP, which indicates a decrease in carcinogenic activity. A comparison with Doxorubicin (DOX), an anticancerous drug, indicates that the aqueous extract of AP is more effective than DOX with respect to its effect on catalase, superoxide dismutase, glutathione S transferase as well as on lactate dehydrogenase activities in liver of lymphoma bearing mice.  相似文献   

9.
In order to quantify intracellular Staphylococcus aureus within a macrophage-like cell line by a bioluminescence technique, the mouse cell line J774 and opsonized Staphylococcus aureus were incubated together to allow phagocytosis to occur. Experiments using UV microscopy and fluorescent stained S. aureus were performed to determine an estimate of the mean intracellular bacterial numbers. For enumeration of intracellular bacteria by a bioluminescence technique, extracellular bacteria were removed by washing, the macrophages lysed mechanically and osmotically and treated with apyrase to remove somatic ATP. Bacterial cells were washed and the intracellular ATP measured by firefly luciferase bioluminescence in a luminometer. This new method of enumerating intracellular bacteria was compared to the conventional method of viable counts and found to correlate (r = 0.78). The bioluminescence assay developed was found to be a relatively rapid alternative method to the techniques currently used to enumerate intracellular bacteria and could prove advantageous in studies of intracellular killing and effects of antimicrobial agents on intracellular pathogens.  相似文献   

10.
11.
12.
Brucellosis is characterized by abortion in ruminants and a protracted undulant fever in humans, which often results in severe pathological manifestations. Scant information exists about the molecular mechanisms employed by Brucella abortus to combat host defenses or to persist and replicate within host cells. Transposon (Tn5) mutagenesis of B. abortus and the subsequent screening of mutants for sensitivity to killing in murine macrophages and in the mouse model led to the identification of mutants which were severely attenuated for intracellular survival. One group of mutants was interrupted in cydB, a gene that is part of the cydAB operon encoding cytochrome bd oxidase, which catalyzes an alternate terminal electron transport step in bacterial respiration. The elevated affinity for molecular oxygen of this enzyme in Escherichia coli has suggested that it is involved in the protection of sensitive enzymatic activities such as those of hydrogenases and nitrogenases from damage. B. abortus cydB::Tn5 strains exhibited heightened sensitivity to the respiratory inhibitors zinc and azide, highly reactive oxygen species such as hydrogen peroxide, low pH, and attenuated virulence in the mouse model of infection. Virulence was restored by an intact copy of cydAB or by B. abortus genes encoding the oxidative radical-scavenging enzyme Cu/Zn superoxide dismutase or catalase. These results suggest a bifunctional role for the products of the cydAB operon, both in preventing the buildup of oxidative free radicals and in detoxifying the intracellular compartment, thus indicating the importance of these products in preventing intracellular destruction. Intracellular conditions that favor expression of the cydAB operon are under investigation and may be linked to the acid sensitivity also observed in this strain.  相似文献   

13.

Background

Schistosomiasis is caused by helminth parasites of the genus Schistosoma. Berberine chloride (BER), an isoquinoline alkaloid, has been used in vivo for its antiparasitic, antioxidant and hepatoprotective properties. In this study, the protective effect of BER and praziquantel has been compared for the extent of schistosomiasis-induced oxidative stress in hepatic tissue of mice.

Results

S. mansoni was able to induce inflammation and injury to the liver, evidenced (i) by an increase in inflammatory cellular infiltrations, dilated sinusoids and vacuolated hepatocytes, (ii) by decreased levels of alanine and aspartate aminotransferases and increased levels of alkaline phosphatase, γ-glutamyl transferase in the liver homogenate, (iii) by increased production of nitric oxide and thiobarbituric acid reactive substances, and (iv) by lowered glutathione levels and decreased activities of catalase and superoxide dismutase, respectively. All these infection-induced parameters were significantly altered during BER treatment. In particular, berberine counteracted the S. mansoni-induced loss of glutathione and the activities of catalase and superoxide dismutase.

Conclusion

Based on these results, it is concluded that berberine could ameliorate pre-existing liver damage and oxidative stress conditions due to schistosomiasis.  相似文献   

14.
The success of Staphylococcus aureus as a pathogen is partly attributable to its ability to thwart host innate immune responses, which includes resisting the antimicrobial functions of phagocytes. Here, we have studied the interaction of methicillin‐resistant S. aureus (MRSA) strain USA300 with murine RAW 264.7 and primary human macrophages using molecular imaging and single cell analysis to obtain an unprecedented understanding of the interaction between the macrophage and MRSA. Herein we demonstrate that macrophages fail to control intracellular infection by MRSA USA300 despite trafficking the bacteria into mature phagolysosomes. Using fluorescence‐based proliferation assays we also show that intracellular staphylococci proliferate and that replication commences while the bacteria are residing in mature phagolysosomes hours after initial phagocytosis. Finally, live‐cell fluorescence video microscopy allowed for unprecedented visual insight into the escape of MRSA from macrophages, demonstrating that the macrophages die through a pathway characterized by membrane blebbing and activation of caspase‐3 followed by acquisition of the vital dye propidium iodide. Moreover, cell death precedes the emergence of MRSA from infected macrophages, and these events can be ablated by prolonged exposure of infected phagocytes to gentamicin.  相似文献   

15.
Bukharin  O. V.  Sgibnev  A. V.  Cherkasov  S. V.  Ivanov  Yu. B. 《Microbiology》2002,71(2):154-157
The cell extracts (i.e., intracellular metabolites) and culture liquids (i.e., extracellular metabolites) of microorganisms isolated from various ecotopes were found to inhibit the catalase activity of Staphylococcus aureus ATCC 6538 P, which resulted in a considerable inhibition of the growth of metabolite-treated S. aureus cells by hydrogen peroxide. The inhibitory effect of microbial metabolites on S. aureus catalase can be considered as a mechanism of intercellular interactions responsible for the formation of microbiocenoses.  相似文献   

16.
Mitochondria are cellular organelles that are involved in various metabolic processes, and damage to mitochondria can affect cell health and even lead to disease. Mitophagy is a mechanism by which cells selectively wrap and degrade damaged mitochondria to maintain cell homeostasis. However, studies have not focused on whether mitophagy is involved in the occurrence of Staphylococcus aureus (S. aureus)-induced mastitis in dairy cows. Here, we found that S. aureus infection of bovine macrophages leads to oxidative damage and mitochondria damage. The expression of LC3, PINK1 and Parkin was significantly increased after intracellular infection. We observed changes in the morphology of mitochondria and the emergence of mitochondrial autolysosomes in bovine macrophages by transmission electron microscopy and found that enhanced mitophagy promoted bacterial proliferation in the cell. In conclusion, this study demonstrates that S. aureus infection of bovine macrophages induces mitophagy through the PINK1/Parkin pathway, and this mechanism is used by the bacteria to avoid macrophage-induced death. These findings provide new ideas and references for the prevention and treatment of S. aureus infection.  相似文献   

17.
Chemopreventive effect of S-allylcysteine (constituent of garlic) on N-nitrosodiethylamine (NDEA)-induced hepatocarcinogenesis was evaluated in Wistar rats. Significantly decreased lipid peroxidation products (thiobarbituric acid reactive substances-TBARS and lipid hydroperoxides) with increased level of reduced glutathione, increased activities of glutathione S-transferase, and glutathione peroxidase were observed in liver of NDEA-treated rats when compared with control rats. The activities of superoxide dismutase and catalase were significantly decreased in tumor tissue when compared with control. Administration of S-allylcysteine (SAC) showed the inhibition of tumor incidence, modulated the lipid peroxidation, and increased the reduced glutathione, glutathione-dependent enzymes, superoxide dismutase, and catalase in NDEA-induced carcinogenesis. From our results, we speculate that S-allylcysteine mediates its chemopreventive effects by modulating lipid peroxidation, GST stimulation, and by increasing the antioxidants. Hence SAC prevents cells from loss of oxidative capacity in NDEA-induced hepatocarcinogenesis.  相似文献   

18.
Various studies indicate the role of manganese (Mn) in the virulence of pathogens. Salmonella is an intracellular pathogen which is able to multiply within the macrophages. The present study was therefore, designed to assess the effect of Mn supplementation on Salmonella–macrophage interactions particularly in reference to Salmonella virulence and macrophage functions. A 50-fold decrease in the lethal dose 50 (LD50) of Salmonella typhimurium was observed when mice were infected with Salmonella grown in the presence of Mn as compared to the LD50 in the absence of Mn indicating an increase in the virulence of the organism. A significant increase was observed in the levels of superoxide dismutase (SOD) of S. typhimurium grown in presence of manganese. Upon Mn supplementation, macrophage functions were also found to be altered. Decreased phagocytic activity of macrophages interacted with Salmonella was observed in presence of Mn as compared to the activity in the absence of Mn. A significant increase was observed in the extent of lipid peroxidation along with significant decreases in the activities of SOD and catalase as well as nitrite levels of macrophages interacted with S. typhimurium upon supplementation with Mn. These observations indicate that Mn supplementation might have increased the expression of Mn transporters in Salmonella resulting in increased levels of its superoxide dismutase. The altered Salmonella function in turn might have been responsible for inhibiting phagocytosis and impairing the balance between the oxidant and antioxidant profile of macrophages, thus protecting itself by exhibiting exalted virulence.  相似文献   

19.
20.
Staphylococcus aureus is a pathogen that often causes severe nosocomial infections including pneumonia. The present study was designed to examine innate phagocyte mediated immune mechanisms using a previously described murine S. aureus Newman pneumonia model. We found that BALB/c mice represent a more susceptible mouse strain compared to C57BL/6 mice after intranasal S. aureus Newman challenge. Depletion experiments revealed that neutrophils are a crucial determinant for resistance whereas depletion of alveolar macrophages protected mice to some degree from acute pulmonary S. aureus challenge. C57BL/6 mice lacking the subunit gp91phox of the NADPH-oxidase (gp91phox/− mice) proved to be highly susceptible against the pathogen. In contrast, C57BL/6 inducible nitric oxidase synthase deficient (iNOS−/−) mice did not differ in their clinical outcome after infection. Neither bone marrow macrophages from iNOS−/− nor from gp91phox−/− mice were impaired in controlling intracellular persistence of S. aureus. Our data suggest that neutrophil and NADPH-oxidase mediated mechanisms are essential components in protecting the host against pulmonary S. aureus Newman challenge. On contrary, macrophages as well as NO mediated mechanisms do not seem to play a critical role for resistance in this model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号