首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polymorphic parasite antigens are known targets of protective immunity to malaria, but this antigenic variation poses challenges to vaccine development. A synthetic MSP-1 Block 2 construct, based on all polymorphic variants found in natural Plasmodium falciparum isolates has been designed, combined with the relatively conserved Block 1 sequence of MSP-1 and expressed in E.coli. The MSP-1 Hybrid antigen has been produced with high yield by fed-batch fermentation and purified without the aid of affinity tags resulting in a pure and extremely thermostable antigen preparation. MSP-1 hybrid is immunogenic in experimental animals using adjuvants suitable for human use, eliciting antibodies against epitopes from all three Block 2 serotypes. Human serum antibodies from Africans naturally exposed to malaria reacted to the MSP-1 hybrid as strongly as, or better than the same serum reactivities to individual MSP-1 Block 2 antigens, and these antibody responses showed clear associations with reduced incidence of malaria episodes. The MSP-1 hybrid is designed to induce a protective antibody response to the highly polymorphic Block 2 region of MSP-1, enhancing the repertoire of MSP-1 Block 2 antibody responses found among immune and semi-immune individuals in malaria endemic areas. The target population for such a vaccine is young children and vulnerable adults, to accelerate the acquisition of a full range of malaria protective antibodies against this polymorphic parasite antigen.  相似文献   

2.
BACKGROUND: The sickle-cell trait protects against severe Plasmodium falciparum malaria and reduces susceptibility to mild malaria but does not prevent infection. The exact mechanism of this protection remains unclear. We have hypothesized that AS individuals are protected by virtue of being less susceptible to a subset of parasite strains; thus we compared some genetic characteristics of parasites infecting AS and AA subjects. MATERIALS AND METHODS: Blood was collected from asymptomatic individuals living in two different regions of Africa. The polymorphic MSP-1 and MSP-2 loci were genotyped using a PCR-based methodology. Individual alleles were identified by size polymorphism, amplification using family-specific primers, and hybridization using family-specific probes. Multivariate logistic regression was used to analyze allele distribution. RESULTS: In Senegalese carriers, age and hemoglobin type influenced differently the distribution of the three MSP-1 families and had an impact on distinct individual alleles, whereas the distribution of MSP-2 alleles was marginally affected. There was no influence of other genetic traits, including the HLA Bw53 genotype, or factors such as place of residence within the village. In a cohort of Gabonese schoolchildren in which the influence of age was abrogated, a similar imbalance in the MSP-1 allelic distribution but not of MSP-2 allelic distribution by hemoglobin type was observed. CONCLUSIONS: The influence of the host's hemoglobin type on P. falciparum genotypes suggests that parasite fitness for a specific host is strain-dependent, which is consistent with our hypothesis that innate resistance might result from reduced fitness of some parasite strains for individuals with sickle-cell traits.  相似文献   

3.
An understanding of structural and functional constraints on the C-terminal double epidermal growth factor (EGF)-like modules of merozoite surface protein (MSP)-1 and related proteins is of importance to the development of these molecules as malaria vaccines and drug targets. Using allelic replacement, we show that Plasmodium falciparum parasites can invade erythrocytes and grow efficiently in the absence of an MSP-1 protein with authentic MSP-1 EGF domains. In this mutant parasite line, the MSP-1 EGFs were replaced by the corresponding double EGF module from P. berghei MSP-8, the sequence of which shares only low identity with its MSP-1 counterpart. Hence, the C-terminal EGF domains of at least some Plasmodium surface proteins appear to perform the same function in asexual blood-stage development. Mapping the surface location of the few residues that are common to these functionally complementary EGF modules revealed the presence of a highly conserved pocket of potential functional significance. In contrast to MSP-8, an even more divergent double EGF module, that from the sexual stage protein PbS25, was not capable of complementing MSP-1 EGF function. More surprisingly, two chimeric double EGF modules comprising hybrids of the EGF domains from P. falciparum and P. chabaudi MSP-1 were also not capable of replacing the P. falciparum MSP-1 EGF module. Together, these data suggest that although the MSP-1 EGFs can accommodate extensive sequence diversity, there appear to be constraints that may restrict the simple accumulation of point mutations in the face of immune pressure in the field.  相似文献   

4.
Merozoite surface protein-1 (MSP-1) and merozoite surface protein-2 (MSP-2) were used to develop vaccines and to investigate the genetic diversity in Plasmodium falciparum malaria in Iran. Nested polymerase chain reaction amplification was used to determine polymorphisms of block 2 of the MSP-1 and the central domain of MSP-2 genes. A total of 67 microscopically positive P. falciparum infected individuals from a major endemic region, southeast Iran, were included in this trial. Nine alleles of MSP-1 and 11 alleles of MSP-2 were identified. The results showed that amplified product from these surface antigen genes varied in size and there was specific pattern for each isolate. Besides, regarding this pattern, 23 multiple infections with at least 2 alleles were observed. While the endemic regions of malaria in Iran is classified in low to moderate group, but extensive polymorphism was observed for each marker and the MSP-2 central repeat was the most diverse that could be considered in designing malaria vaccine.  相似文献   

5.
The C-terminal region of Plasmodium falciparum merozoite surface protein 1 (MSP-119) is at present a leading malaria vaccine candidate. Antibodies against the epidermal growth factor-like domains of MSP-1 19are associated with immunity to P. falciparum and active immunization with recombinant forms of the molecule protect against malaria challenge in various experimental systems. These findings, with the knowledge that epidermal growth factor-like domains in other molecules have essential binding functions, indicate the importance of this protein in merozoite invasion of red blood cells. Despite extensive molecular epidemiological investigations, only limited sequence polymorphism has been identified in P. falciparum MSP-119 (refs. 9-11). This indicates its sequence is functionally constrained, and is used in support of the use of MSP-119 as a vaccine. Here, we have successfully complemented the function of most of P. falciparum MSP-119 with the corresponding but highly divergent sequence from the rodent parasite P. chabaudi. The results indicate that the role of MSP-119 in red blood cell invasion is conserved across distantly related Plasmodium species and show that the sequence of P. falciparum MSP-119 is not constrained by function.  相似文献   

6.
The C-terminal 19-kDa fragment of Plasmodium falciparum merozoite surface protein-1 (MSP-1(19)) is a target of protective Abs against blood-stage infection and a leading candidate for inclusion in a human malaria vaccine. However, the precise role, relative importance, and mechanism of action of Abs that target this protein remain unclear. To examine the potential protective role of Abs to MSP-1(19) in individuals naturally exposed to malaria, we conducted a treatment time to infection study over a 10-wk period in 76 residents of a highland area of western Kenya during a malaria epidemic. These semi-immune individuals were not all equally susceptible to reinfection with P. falciparum following drug cure. Using a new neutralization assay based on transgenic P. falciparum expressing the P. chabaudi MSP-1(19) orthologue, individuals with high-level MSP-1(19)-specific invasion-inhibitory Abs (>75th percentile) had a 66% reduction in the risk of blood-stage infection relative to others in the population (95% confidence interval, 3-88%). In contrast, high levels of MSP-1(19) IgG or IgG subclass Abs measured by enzyme immunoassay with six different recombinant MSP-1(19) Ags did not correlate with protection from infection. IgG Abs measured by serology and functional invasion-inhibitory activity did not correlate with each other. These findings implicate an important protective role for MSP-1(19)-specific invasion inhibitory Abs in immunity to blood-stage P. falciparum infection, and suggest that the measurement of MSP-1(19) specific inhibitory Abs may serve as an accurate correlate of protection in clinical trials of MSP-1-based vaccines.  相似文献   

7.
ABSTRACT: BACKGROUND: The 19 kDa C-terminal region of Plasmodium falciparum Merozoite Surface Protein-1 is a known target of naturally acquired humoral immunity and a malaria vaccine candidate. MSP- 119 has four predominant haplotypes resulting in amino acid changes labelled EKNG, QKNG, QTSR and ETSR. IgG antibodies directed against all four variants have been detected, but it is not known if these variant specific antibodies are associated with haplotype-specific protection from infection. METHODS: Blood samples from 201 healthy Kenyan adults and children who participated in a 12-week treatment time-to-infection study were evaluated. Venous blood drawn at baseline (week 0) was examined for functional and serologic antibodies to MSP-119 and MSP-142 variants. MSP-119 haplotypes were detected by a multiplex PCR assay at baseline and weekly throughout the study. Generalized linear models controlling for age, baseline MSP-119 haplotype and parasite density were used to determine the relationship between infecting P. falciparum MSP-119 haplotype and variant-specific antibodies. RESULTS: A total of 964 infections resulting in 1,533 MSP-119 haplotypes detected were examined. The most common haplotypes were EKNG and QKNG, followed by ETSR and QTSR. Children had higher parasite densities, greater complexity of infection (>1 haplotype), and more frequent changes in haplotypes over time compared to adults. Infecting MSP-119 haplotype at baseline (week 0) had no influence on haplotypes detected over the subsequent 11 weeks among children or adults. Children but not adults with MSP-119 and some MSP-142 variant antibodies detected by serology at baseline had delayed time-to-infection. There was no significant association of variant-specific serology or functional antibodies at baseline with infecting haplotype at baseline or during 11 weeks of follow up among children or adults. CONCLUSIONS: Variant transcending IgG antibodies to MSP-119 are associated with protection from infection in children, but not adults. These data suggest that inclusion of more than one MSP-119 variant may not be required in a malaria blood stage vaccine.  相似文献   

8.
The merozoite surface protein-1 (MSP-1) of Plasmodium falciparum comprises two major targets of antibody-mediated immunity: the polymorphic block 2 and the 19-kDa C-terminal domain MSP-1(19). Here, we measured antibodies to three block 2 variants and MSP-1(19) among Amazonian gold miners and examined the repertoire of block 2 variants in local parasites. Main findings were as follows: (1) Only seven different block 2 variants were found in 18 DNA sequences analyzed. (2) No major difference was observed in IgG subclass distribution of antibodies from symptomatic P. falciparum-infected patients, asymptomatic parasite carriers, and non-infected subjects. (3) Antibodies to all block 2 antigens, but not to MSP-1(19), were biased towards IgG3 across different strata of cumulative malaria exposure. (4) Similar proportions of symptomatic and asymptomatic subjects failed to recognize the block 2 variant expressed by infecting parasites. These negative results underscore the limits of conventional antibody assays to evaluate clinical immunity to malaria.  相似文献   

9.
The genetic polymorphism of the surface merozoite protein 2 (MSP-2) was evaluated in Plasmodium falciparum isolates from individuals with uncomplicated malaria living in a Brazilian endemic area of Peixoto de Azevedo. The frequency of MSP-2 alleles and the survival of genetically different populations clones in 104 isolates were verified by Southern blot and SSCP-PCR. Single and mixed infections were observed in similar frequencies and the rate of detection of FC27 and 3D7 allelic families was equivalent. Eight alleles were identified and among them, the sequence polymorphism was mainly attributed to variations in the repetitive region. Interestingly, in three alleles nucleotide polymorphism was identical to that detected in a previous study, conducted in 1992, in a near Brazilian endemic area. This finding demonstrated the genetic similarity between two isolate groups, besides the certain temporal stability in the allelic patterns. The implications of these data for studies on the genetic diversity are also discussed.  相似文献   

10.
The major surface protein MSP-1 of Plasmodium falciparum blood-stage malaria parasites contains notably conserved sequence blocks with unknown function. The recombinant protein 190L, which represents such a block, exhibits a high affinity for red blood cell membranes. We demonstrate that both 190L and native MSP-1 protein bind to the inner red blood cell membrane skeleton protein spectrin. By using overlapping peptides covering the 190L molecule, we show that the spectrin contact site of 190L is included in a linear sequence of 30 amino acid residues. Association of 190L with naturally occurring spectrin deficient red blood cells is drastically reduced. In the same cells parasite invasion is normal, but the intracellular parasite development arrests late in the trophozoite stage. A similar situation arises when synthetic peptides covering the spectrin recognition sequence of 190L are added to P.falciparum cultures. These data and the cellular localization of MSP-1 suggest the possibility that MSP-1 associates with spectrin under natural conditions.  相似文献   

11.
ABSTRACT: BACKGROUND: The factors involved in the progression from Plasmodium falciparum infection to severe malaria (SM) are still incompletely understood. Altered antibody and cellular immunity against P. falciparum might contribute to increase the risk of developing SM. METHODS: To identify immune responses associated with SM, a sex- and age-matched case-control study was carried out in 134 Mozambican children with SM (cerebral malaria, severe anaemia, acidosis and/or respiratory distress, prostration, hypoglycaemia, multiple seizures) or uncomplicated malaria (UM). IgG and IgM against P. falciparum lysate, merozoite antigens (MSP-119, AMA-1 and EBA-175), a Duffy binding like (DBL)-alpha rosetting domain and antigens on the surface of infected erythrocytes were measured by ELISA or flow cytometry. Plasma concentrations of IL-12p70, IL-2, IFN-gamma, IL-4, IL-5, IL-10, IL-8, IL-6, IL- 1beta, TNF, TNF-beta and TGF-beta1 were measured using fluorescent bead immunoassays. Data was analysed using McNemar's and Signtest. RESULTS: Compared to UM, matched children with SM had reduced levels of IgG against DBLalpha (P < 0.001), IgM against MSP-119 (P = 0.050) and AMA-1 (P = 0.047), TGF-beta1 (P <0.001) and IL-12 (P = 0.039). In addition, levels of IgG against P. falciparum lysate and IL-6 concentrations were increased (P = 0.004 and P = 0.047, respectively). Anti-DBLalpha IgG was the only antibody response associated to reduced parasite densities in a multivariate regression model (P = 0.026). CONCLUSIONS: The lower levels of antibodies found in children with SM compared to children with UM were not attributable to lower exposure to P. falciparum in the SM group. IgM against P. falciparum and specific IgG against a rosetting PfEMP1 domain may play a role in the control of SM, whereas an imbalanced pro-inflammatory cytokine response may exacerbate the severity of infection. A high overlap in symptoms together with a limited sample size of different SM clinical groups reduced the power to identify immunological correlates for particular forms of SM.  相似文献   

12.
One strategy to develop a multi-antigen malaria vaccine is to employ live vectors to carry putative protective Plasmodium falciparum antigens to the immune system. The 19 kDa carboxyl terminus of P. falciparum merozoite surface protein 1 (MSP-1), which is essential for erythrocyte invasion and is a leading antigen for inclusion in a multivalent malaria vaccine, was genetically fused to fragment C of tetanus toxin and expressed within attenuated Salmonella typhi CVD 908. Under conditions in the bacterial cytoplasm, the fragment C-MSP-1 fusion did not form the epidermal growth factor (EGF)-like domains of MSP-1; monoclonal antibodies failed to recognize these conformational domains in immunoblots of non-denatured protein extracted from live vector sonicates. The MSP-1 was nevertheless immunogenic. One month following intranasal immunization of BALB/c mice with the live vector construct, four out of five mice exhibited > or =four-fold rises in anti-MSP-1 by ELISA (GMT=211); a single intranasal booster raised titers further (GMT=1280). Post-immunization sera recognized native MSP-1 on merozoites as determined by indirect immunofluorescence. These data encourage efforts to optimize MSP-1 expression in S. typhi (e.g. as a secreted protein), so that the EGF-like epitopes, presumably necessary for stimulating protective antibodies, can form.  相似文献   

13.
Merozoite Surface Protein-1 (MSP-1) has been considered as a malaria vaccine candidate. It is processed during the Plasmodium falciparum invasion process of red blood cells (RBCs). A conserved MSP-1 C-terminal peptide was identified as a high-activity erythrocyte-binding peptide (HAEBP) termed 1585. Since conserved HAEBPs are neither antigenic nor immunogenic we decided to assess the significance of a single peptide bond replacement in 1585. Thus, two pseudopeptides were obtained by introducing a Y[CH2-NH] reduced amide isoster into the 1585 critical binding motif. The pseudopeptides bound to different HLA-DR alleles, suggesting that backbone modifications affect MHC-II binding patterns. Pseudopeptide-antibodies inhibit in vitro parasite RBC invasion by recognizing MSP-1. Each pseudopeptide-induced antibody shows distinct recognition patterns. 1H-NMR studies demonstrated that isoster bonds modulate the pseudopeptides' structure and thus their immunological properties, therefore representing a possible subunit malaria vaccine component.  相似文献   

14.
Antibodies to polymorphic block 2 of the Plasmodium falciparum merozoite surface protein 1 (MSP-1) present a paradoxical association with acquired protection against clinical malaria, while showing restricted and fixed specificity, reminiscent of antigenic sin. We report here that these antibodies present a highly imbalanced, peptide-specific light chain distribution. This was not observed with several other parasite-derived peptides or antigens. These data point to a skewed immune response to MSP-1 block 2 that is constrained both in specificity and chain usage. This is the first report of a biased response to polymorphic epitopes of a surface antigen in malaria parasites.  相似文献   

15.
The recent evolution of Plasmodium falciparum is at odds with the extensive polymorphism found in most genes coding for antigens. Here, we examined the patterns and putative mechanisms of sequence diversification in the merozoite surface protein-2 (MSP-2), a major malarial repetitive surface antigen. We compared the msp-2 gene sequences from closely related clones derived from sympatric parasite isolates from Brazilian Amazonia and used microsatellite typing to examine, in these same clones, the haplotype background of chromosome 2, where msp-2 is located. We found examples of msp-2 sequence rearrangements putatively created by nonreciprocal recombinational events, such as replication slippage and gene conversion, while maintaining the chromosome haplotype. We conclude that these nonreciprocal recombination events may represent a major source of antigenic diversity in MSP-2 in P. falciparum populations with low rates of classical meiotic recombination.  相似文献   

16.
BACKGROUND: In areas of high-level, year-round malaria transmission, morbidity and mortality due to malaria decrease after the first two to three years of life. This reduction may be related to the development of cellular immunity to specific antigens expressed in the different life-cycle stages of Plasmodium falciparum. METHODS: A cross sectional study was conducted to evaluate T cell cytokine responses to the P. falciparum pre-erythrocytic antigen liver-stage antigen-1 (LSA-1) and the blood-stage antigen merozoite-surface protein-1 (MSP-1) in children under five years of age residing in a malaria holoendemic region of western Kenya. Interferon-gamma (IFN-gamma) and interleukin-10 (IL-10) responses to the LSA-1 T3 peptide (aa 1813-1835) and the MSP-1 aa20-39 peptide were tested in 48 children. RESULTS: The proportion of children producing IFN-gamma to LSA-1 and to MSP-1 increased with age: in the 0-12, 13-24, 25-36 and 37-48 month age groups, zero, 11.1, 36.4 and 40% of children had IFN-gamma responses to LSA-1 (p = 0.019), and 10, 10, 27.7 and 40% of children had IFN-gamma responses to MSP-1 (p = 0.07), respectively. In contrast, the proportion of children producing IL-10 to LSA-1 and MSP-1 was similar in all age groups. CONCLUSION: The data suggest that development of IFN-gamma responses to LSA-1 and MSP-1 requires increased age and/or repeated exposure, whereas IL-10 responses to these antigens may occur at any age and with limited exposure. The data also demonstrate that by the age of 4 years, children in a malaria holoendemic area develop frequencies of IFN-gamma responses to LSA-1 and MSP-1 similar to those seen in adults in the area.  相似文献   

17.
The merozoite surface protein-2 (MSP-2) is a major vaccine candidate for the asexual blood stage of Plasmodium falciparum. MSP-2 is essentially dimorphic, and allelic families are named after the representative isolates FC27 and IC1. The polymorphic central region contains immunodominant repeats, which vary in number, length, and sequence within and between allelic families. We have examined the antibody recognition of repeat regions from both MSP-2 allelic families expressed as recombinant fusion peptides. The results are summarized as follows. (1) Immunization of mice with the fusion peptides elicited IgG antibodies that cross-reacted with the native MSP-2 molecule in an allelic family-specific manner. (2) These mouse antibodies recognized the recombinant proteins in both a variant-specific and a family-specific manner, as shown in inhibition immunoassays. Antibodies raised against the peptide FC27 seemed to be essentially variant-specific, since the soluble form of the S20 antigen (a member of FC27 family) had relatively little inhibitory effect on them. (3) The overall pattern of human IgG antibody responses to MSP-2 in Karitiana Indians, a population continuously exposed to hypoendemic malaria in the Brazilian Amazon Region, differs from that described in hyperendemic areas in Africa and Papua New Guinea in two important features: there was no clear age-dependent increase in the prevalence and mean concentration of specific IgG antibodies, and there was no skewing towards the IgG3 subclass in antibody responses. (4) The relatively poor correlation between concentrations of IgG antibodies that are specific for members of the same allelic family suggests that recognition of MSP-2 peptides by naturally acquired antibodies was largely variant-specific in this population. The potential role of naturally acquired variant-specific antibodies in immune evasion, by selecting mutant parasites carrying insertions or deletions of repeat sequences, is briefly discussed.  相似文献   

18.
The Plasmodium falciparum malaria parasite is the causative agent of malaria tropica. Merozoites, one of the extracellular developmental stages of this parasite, expose at their surface the merozoite surface protein-1 complex (MSP-1), which results from the proteolytic processing of a 190-200 kDa precursor. MSP-1 is highly immunogenic in humans and numerous studies suggest that this protein is an effective target for a protective immune response. Although its function is unknown, there are indications that it may play a role during invasion of erythrocytes by merozoites. The parasite-derived msp-1 gene, which is approximately 5000 bp long, contains 74% AT. This high AT content has prevented stable cloning of the full-size gene in Escherichia coli and consequently its expression in heterologous systems. Here, we describe the synthesis of a 4917 bp gene encoding MSP-1 from the FCB-1 strain of P. falciparum adjusted for human codon preferences. The synthetic msp-1 gene (55% AT) was cloned, maintained and expressed in its entirety in E.coli as well as in CHO and HeLa cells. The purified protein is soluble and appears to possess native conformation because it reacts with a panel of mAbs specific for conformational epitopes. The strategy we used for synthesizing the full-length msp-1 gene was toassemble it from DNA fragments encoding all of the major proteolytic fragments normally generated at the parasite's surface. Thus, after subcloning we also obtained each of these MSP-1 processing products as hexahistidine fusion proteins in E.coli and isolated them by affinity chromatography on Ni2+agarose. The availability of defined preparations of MSP-1 and its major processing products open up new possibilities for in-depth studies at the structural and functional level of this important protein, including the exploration of MSP-1-based experimental vaccines.  相似文献   

19.
Merozoite surface protein 1 (MSP-1) is a high-molecular-weight protein expressed on the surface of the malaria merozoite in a noncovalent complex with other protein molecules. MSP-1 undergoes a series of proteolytic processing events, but no precise biological role for the various proteolytic fragments of MSP-1 or for the additional proteins present in the complex is known. Through the use of the yeast two-hybrid system, we have isolated genes encoding proteins that interact with a region of the amino-terminal proteolytic fragment of MSP-1 from the mouse parasite Plasmodium yoelii. This analysis has led to the isolation of two sequence-related molecules, one of which is the P. yoelii homologue of MSP-7 originally described in Plasmodium falciparum. BLAST analysis of the P. falciparum database has revealed that there are six related protein molecules present in this species encoded near each other on chromosome 13. In P. falciparum, we designated these molecules MSRP-1 to -5. Analysis of the P. yoelii database indicates a similar chromosomal organization for the two genes in the mouse parasite species. The three P. falciparum sequences with the highest degree of homology to the P. yoelii sequences isolated in the two-hybrid screen have been characterized at the molecular level (MSRP-1 to -3). Expression analysis indicated that the mRNAs are expressed at various levels in the different asexual stages. Immunofluorescence studies colocalized the expression of the MSRP molecules and the amino-terminal portion of MSP-1 to the surfaces of trophozoites. In vitro binding experiments confirmed the interaction between MSRP-1, MSRP-2, and the amino-terminal region of P. falciparum MSP-1.  相似文献   

20.
Antigen structure modulation represents an approach towards designing subunit malaria vaccines. A specific epitope's alpha carbon stereochemistry, as well as its backbone topochemistry, was assessed for obtaining novel malarial immunogens. A variety of MSP-1(38-61) Plasmodium falciparum epitope pseudopeptides derived were synthesised, based on solid-phase pseudopeptide chemistry strategies; these included all-L, all-D, partially-D substituted, all-Psi-[NH-CO]-Retro, all-Psi-[NH-CO]-Retro-inverso, and Psi-[CH2NH] reduced amide surrogates. We demonstrate that specific recombinant MSP-1(34-469) fragment binding to red blood cells (RBCs) is specifically inhibited by non-modified MSP-1(42-61), as well as by its V52-L53, M51-V52 reduced amide surrogates and partial-D substitutions in K48 and E49. In vivo tests revealed that reduced amide pseudopeptide-immunised Aotus monkeys induced neutralising antibodies specifically recognising the MSP-1 N-terminus region. These findings support the role of molecular conformation in malaria vaccine development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号