首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report here the results on N-acetyl-l-proline-N',N'-dimethylamide (Ac-Pro-NMe2) as a model for polyproline at the HF/6-31+G(d) level with the conductor-like polarizable continuum model of self-consistent reaction field methods to figure out the conformational preference and cis-trans isomerization of polyproline in the gas phase, chloroform, methanol, and water. The second methyl substitution at the carboxyl amide end results in different backbone structures and their populations from those of N-acetyl-L-proline-N-methylamide (Ac-Pro-NHMe). In particular, all conformations with the C7 hydrogen bond between acetyl and amide ends, which is the most probable conformations of Ac-Pro-NHMe in the gas phase and in nonpolar solvents, disappeared for Ac-Pro-NMe2 even in the gas phase due to the lack of amide hydrogen. The dominant conformation for Ac-Pro-NMe2 is the polyproline II structure with the trans prolyl peptide bond in the gas phase and in solutions. In methanol, the population of the polyproline I structure with the cis prolyl peptide bond is calculated to be larger than that in water, which is consistent with experiments. It should be noted that Ac-Pro-NMe2 has higher rotational barriers for the cis-trans isomerization of the Ac-Pro peptide bond than Ac-Pro-NHMe in the gas phase and in solutions, which could be due to the lack of the intramolecular hydrogen bond between prolyl nitrogen and carboxyl N-H group for the transition state of Ac-Pro-NMe2. The rotational barriers for Ac-Pro-NMe2 are increased with the increase of solvent polarity, as seen for Ac-Pro-NHMe.  相似文献   

2.
Conformational preferences of the (2S,4R)-4-chloroproline (Clp) and (2S,4S)-4-chloroproline (clp) residues are explored at the M06-2X/cc-pVTZ//M06-2X/6-31+G(d) level of theory in the gas phase and in water, where solvation free energies were calculated using the implicit solvation model, and by an X-ray diffraction study in the solid state. In the gas phase, the down-puckered γ-turn structure with the trans prolyl peptide bond is most preferred for both Ac-Clp-NHMe and Ac-clp-NHMe, in which the C(7) hydrogen bond between two terminal groups seems to play a role, as found for Ac-Pro-NHMe. In water, the Clp residue has a strong preference for the up-puckered PP(II) structure, whereas the up-puckered PP(II) structure prevails a little over the down-puckered PP(II) structure for the clp residue, similar to the Pro residue. Hence, our calculated results on the puckering preference of the Clp and clp residues in water are in accord with the observed results deduced from the relative stabilities of the triple helices of the collagen model peptides. The X-ray structure of Ac-clp-NHMe was found to be the most preferred in water but that of Ac-Clp-NHMe was located as a local minimum with ΔG = 2.0 kcal/mol. In particular, the X-ray structure of Ac-Clp-NHMe was quite different from that of Ac-Clp-OMe but similar to that of Ac-Pro-NHMe. The lowest rotational barriers to the prolyl cis-trans isomerization for Ac-Clp-NHMe become nearly the same as those for Ac-Pro-NHMe in water, whereas the barriers are lower by ~2 kcal/mol for Ac-clp-NHMe. It was found that the cis-trans isomerization may proceed through the clockwise or anticlockwise rotations for Ac-Clp-NHMe and the anticlockwise rotation for Ac-clp-NHMe and Ac-Pro-NHMe in water.  相似文献   

3.
The conformational study on Ac‐pSer‐Pro‐NHMe and Ac‐pThr‐Pro‐NHMe peptides has been carried out using hybrid density functional methods with the implicit solvation reaction field theory at the B3LYP/ 6‐311++G(d,p)//B3LYP/6‐31+G(d) level of theory in the gas phase and in solution (chloroform and water). For both pSer‐Pro and pThr‐Pro peptides in the gas phase and in chloroform, the most preferred conformation has the α‐helical structure for the pSer/pThr residue, the down‐puckered polyproline I structure for the Pro residue, and the cis prolyl peptide bond between the two residues, in which two hydrogen bonds between the phosphate oxygens with the backbone N? H groups seem to play a role. However, the trans conformations that have a single hydrogen bond of the phosphate oxygen with either of two backbone N? H groups become most preferred for both peptides in water. This is because the hydration free energy of the anionic oxygen of the phosphate group is expected to dramatically decrease for the cis conformation upon formation of the hydrogen bond with the backbone N? H groups. These calculated results are consistent with the observations by NMR and IR experiments, suggesting the existence of hydrogen bonds between the charged phosphoryl group and the backbone amide protons in solution. The calculated cis populations of 14.7 and 14.2% and rotational barriers of 19.87 and 20.57 kcal/mol to the cis‐to‐trans isomerization for pSer‐Pro and pThr‐Pro peptides in water, respectively, are consistent with the observed values for pSer‐Pro and pThr‐Pro containing peptides from NMR experiments. However, the hydrogen bond between the prolyl nitrogen and the following amide N? H group, which was suggested to be capable of catalyzing the prolyl isomerization, does not play a role in stabilizing the preferred transition state for the pSer/pThr‐Pro peptides in water. Instead, the amide hydrogen of the NHMe group is involved in a bifurcated hydrogen bond with the anionic oxygen and phosphoester oxygen of the phosphate group. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 330–339, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

4.
Conformational preferences and prolyl cis?trans isomerizations of the (2S,4S)‐4‐methylproline (4S‐MePro) and (2S,4R)‐4‐methylproline (4R‐MePro) residues are explored at the M06‐2X/cc‐pVTZ//M06‐2X/6‐31+G(d) level of theory in the gas phase and in water, where solvation free energies were calculated using the implicit SMD model. In the gas phase, the down‐puckered γ‐turn structure with the trans prolyl peptide bond is most preferred for both Ac‐4S‐MePro‐NHMe and Ac‐4R‐MePro‐NHMe, in which the C7 hydrogen bond between two terminal groups seems to play a role, as found for Ac‐Pro‐NHMe. Because of the C7 hydrogen bonds weakened by the favorable direct interactions between the backbone C?O and H? N groups and water molecules, the 4S‐MePro residue has a strong preference of the up‐puckered polyproline II (PPII) structure over the down‐puckered PPII structure in water, whereas the latter somewhat prevails over the former for the 4R‐MePro residue. However, these two structures are nearly equally populated for Ac‐Pro‐NHMe. The calculated populations for the backbone structures of Ac‐4S‐MePro‐NHMe and Ac‐4R‐MePro‐NHMe in water are reasonably consistent with CD and NMR experiments. In particular, our calculated results on the puckering preference of the 4S‐MePro and 4R‐MePro residues with the PPII structures are in accord with the observed results for the stability of the (X‐Y‐Gly)7 triple helix with X = 4R‐MePro or Pro and Y = 4S‐MePro or Pro. The calculated rotational barriers indicate that the cis?trans isomerization may in common proceed through the anticlockwise rotation for Ac‐4S‐MePro‐NHMe, Ac‐4R‐MePro‐NHMe, and Ac‐Pro‐NHMe in water. The lowest rotational barriers become higher by 0.24?1.43 kcal/mol for Ac‐4S‐MePro‐NHMe and Ac‐4R‐MePro‐NHMe than those for Ac‐Pro‐NHMe in water. © 2010 Wiley Periodicals, Inc. Biopolymers 95: 51–61, 2011.  相似文献   

5.
The puckering transitions of pesudoprolines such as oxazolidine and thiazolidine residues (Oxa and Thz dipeptides) with trans and cis prolyl peptide bonds were explored by optimizations along the endocyclic torsion angle χ1 using quantum‐chemical methods in the gas phase and in water. The overall shapes of the potential energy surfaces for Oxa and Thz dipeptides in the gas phase and in water are similar to those for the Pro dipeptide, although there are some differences in relative stabilities of local minima and in barriers to puckering transition. On the whole, the barriers to puckering transition for Oxa and Thz dipeptides are computed to be 0.8–3.2 kcal/mol at the B3LYP/6‐311++G(d,p) level in the gas phase and in water, which are lower by 0.5–1.9 kcal/mol than those for the Pro dipeptide. The n → σ* interactions for the delocalization of the lone pair of the prolyl amide nitrogen into the antibonding orbitals that are anti to the lone pair appear to play a role in stabilizing the nonplanar puckered transition states over the corresponding planar structures. The calculated barriers indicate that the down‐to‐up puckering transition can proceed in the orders Pro < Oxa < Thz in the gas phase and Pro ≈ Oxa < Thz in water. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 444–455, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

6.
The conformational study on 20 Ac-Xaa-Pro-NHMe dipeptides has been carried out using an empirical potential function ECEPP/3 in order to investigate the factors responsible for the preference of proline puckering of the peptides with the trans or cis imide bond preceding the proline. The general conformational preference for down- and up-puckered dipeptides is calculated as trans-down > trans-up > cis-down > cis-up, which is reasonably in accord with that estimated by analyzing X-ray structures of proteins and the result for the single proline residue. The overestimated occurrence of trans-down conformations of proline seems to be caused by excluding long-range interactions that short dipeptides cannot have. The average computed occurrence of dipeptides with cis imide bonds is about 3%, somewhat lower than the value calculated for Ac-Pro-NHMe, which is close to experimental estimates obtained from X-ray structures of proteins. In particular, the interaction of the aromatic side chain of Xaa residue with the proline ring appears not to be strong enough to stabilize the stacked conformations of small dipeptides with cis imide bonds. The propensity to adopt trans or cis imide bond and to form secondary structures of Xaa-Pro sequences is discussed and compared with results obtained from X-ray structures of proteins.  相似文献   

7.
In folded proteins, prolyl peptide bonds are usually thought to be either trans or cis because only one of the isomers can be accommodated in the native folded protein. For the N-terminal domain of the gene-3 protein of the filamentous phage fd (N2 domain), Pro161 resides at the tip of a beta hairpin and was found to be cis in the crystal structure of this protein. Here we show that Pro161 exists in both the cis and the trans conformations in the folded form of the N2 domain. We investigated how conformational folding and prolyl isomerization are coupled in the unfolding and refolding of N2 domain. A combination of single-mixing and double-mixing unfolding and refolding experiments showed that, in unfolded N2 domain, 7% of the molecules contain a cis-Pro161 and 93% of the molecules contain a trans-Pro161. During refolding, the fraction of molecules with a cis-Pro161 increases to 85%. This implies that 10.3 kJ mol(-1) of the folding free energy was used to drive this 75-fold change in the Pro161 cis/trans equilibrium constant during folding. The stabilities of the forms with the cis and the trans isomers of Pro161 and their folding kinetics could be determined separately because their conformational folding is much faster than the prolyl isomerization reactions in the native and the unfolded proteins. The energetic coupling between conformational folding and Pro161 isomerization is already fully established in the transition state of folding, and the two isomeric forms are thus truly native forms. The folding kinetics are well described by a four-species box model, in which the N2 molecules with either isomer of Pro161 can fold to the native state and in which cis/trans isomerization occurs in both the unfolded and the folded proteins.  相似文献   

8.
Stress and strain in staphylococcal nuclease.   总被引:5,自引:5,他引:0       下载免费PDF全文
Protein molecules generally adopt a tertiary structure in which all backbone and side chain conformations are arranged in local energy minima; however, in several well-refined protein structures examples of locally strained geometries, such as cis peptide bonds, have been observed. Staphylococcal nuclease A contains a single cis peptide bond between residues Lys 116 and Pro 117 within a type VIa beta-turn. Alternative native folded forms of nuclease A have been detected by NMR spectroscopy and attributed to a mixture of cis and trans isomers at the Lys 116-Pro 117 peptide bond. Analyses of nuclease variants K116G and K116A by NMR spectroscopy and X-ray crystallography are reported herein. The structure of K116A is indistinguishable from that of nuclease A, including a cis 116-117 peptide bond (92% populated in solution). The overall fold of K116G is also indistinguishable from nuclease A except in the region of the substitution (residues 112-117), which contains a predominantly trans Gly 116-Pro 117 peptide bond (80% populated in solution). Both Lys and Ala would be prohibited from adopting the backbone conformation of Gly 116 due to steric clashes between the beta-carbon and the surrounding residues. One explanation for these results is that the position of the ends of the residue 112-117 loop only allow trans conformations where the local backbone interactions associated with the phi and psi torsion angles are strained. When the 116-117 peptide bond is cis, less strained backbone conformations are available. Thus the relaxation of the backbone strain intrinsic to the trans conformation compensates for the energetically unfavorable cis X-Pro peptide bond. With the removal of the side chain from residue 116 (K116G), the backbone strain of the trans conformation is reduced to the point that the conformation associated with the cis peptide bond is no longer favorable.  相似文献   

9.
K Langsetmo  J Fuchs  C Woodward 《Biochemistry》1989,28(8):3211-3220
The urea-induced denaturation of Escherichia coli thioredoxin and thioredoxin variants has been examined by electrophoresis on urea gradient slab gels by the method of Creighton [Creighton, T. (1986) Methods Enzymol. 131, 156-172]. Thioredoxin has only two cysteine residues, and these form a redox-active disulfide at the active site. Oxidized thioredoxin-S2 and reduced thioredoxin-(SH)2 each show two folded isomers with a large difference in stability to urea denaturation. The difference in stability is greater for the isomers of oxidized than for the isomers of reduced thioredoxin. At 2 degrees C, the urea concentrations at the denaturation midpoint are approximately 8 and 4.3 M for the oxidized isomers and 4.8 and 3.7 M for the reduced isomers. The difference between the gel patterns of samples applied in native versus denaturing buffer, and at 2 and 25 degrees C, is characteristic for the involvement of a cis-proline-trans-proline isomerization. The data very strongly suggest that the two folded forms of different stabilities correspond to the cis and trans isomers of the highly conserved Pro 76 peptide bond, which is cis in the crystal structure of oxidized thioredoxin. Urea gel experiments with the mutant thioredoxin P76A, with alanine substituted for proline at position 76, corroborate this interpretation. The electrophoretic banding pattern diagnostic for an involvement of proline isomerization in urea denaturation is not observed for oxidized P76A. In broad estimates of delta G degree for the native-denatured transition, the difference in delta G degree (no urea) between the putative cis and trans isomers of the Ile 75-Pro 76 peptide bond is approximately 3 kcal/mol for oxidized thioredoxin and approximately 1.5 kcal/mol for reduced thioredoxin. Since cis oxidized thioredoxin is much more stable than trans, folded oxidized thioredoxin is essentially all cis. In folded reduced thioredoxin, cis and trans interconvert slowly, on the minute time scale at 2 and 25 degrees C. In the absence of urea, the folded reduced thioredoxin is less than a few percent trans. Three additional mutants with additions or substitutions at the active site also show electrophoresis banding patterns consistent with a difference in stability between cis and trans isomers.  相似文献   

10.
Non-proline cis peptide bonds have been observed in numerous protein crystal structures even though the energetic barrier to this conformation is significant and no non-prolyl-cis/trans-isomerase has been identified to date. While some external factors, such as metal binding or co-factor interaction, have been identified that appear to induce cis/trans isomerization of non-proline peptide bonds, the intrinsic structural basis for their existence and the mechanism governing cis/trans isomerization in proteins remains poorly understood. Here, we report the crystal structure of a newly isolated neurotoxin, the scorpion alpha-like toxin Buthus martensii Karsch (BmK) M7, at 1.4A resolution. BmK M7 crystallizes as a dimer in which the identical non-proline peptide bond between residues 9 and 10 exists either in the cis conformation or as a mixture of cis and trans conformations in either monomer. We also determined the crystal structures of several mutants of BmK M1, a representative scorpion alpha-like toxin that contains an identical non-proline cis peptide bond as that observed in BmK M7, in which residues within or neighboring the cis peptide bond were altered. Substitution of an aspartic acid residue for lysine at residue 8 in the BmK M1 (K8D) mutant converted the cis form of the non-proline peptide bond 9-10 into the trans form, revealing an intramolecular switch for cis-to-trans isomerization. Cis/trans interconversion of the switch residue at position 8 appears to be sequence-dependent as the peptide bond between residues 9 and 10 retains its wild-type cis conformation in the BmK M1 (K8Q) mutant structure. The structural interconversion of the isomeric states of the BmK M1 non-proline cis peptide bond may relate to the conversion of the scorpion alpha-toxins subgroups.  相似文献   

11.
Fluorine-19 magnetization transfer experiments have been used to determine the rates of cis/trans isomerization about the X-Pro7 peptide bond in [p-fluoro-Phe8]bradykinin (cis/trans ratio approximately 0.1) and its Gly6 analogue (cis/trans ratio approximately 0.4). The measurements were carried out both prior to and after the addition of cyclophilin, which has recently been shown to have peptidyl-proline cis/trans isomerase activity and is the apparent target enzyme of the immunosuppressive agent cyclosporin A. Magnetization transfer measurements over the temperature range 40-75 degrees C in the absence of enzyme give activation energies of 22.8 and 23.0 kcal/mol for [p-fluoro-Phe8]bradykinin and its Gly6 analogue, respectively. The values for the uncatalyzed cis----trans rate constant, kc, are determined by extrapolation to be 4.8 x 10(-2) and 2.1 x 10(-2) s-1 for the two peptides at 25 degrees C. The enzyme-catalyzed enhancement of the cis/trans interconversion rate was proportional to added cyclophilin concentration and was strongly sequence specific, with bradykinin a much better substrate than [Gly6]bradykinin. At a peptide concentration of 2.2 mM, the catalytic activity expressed as kc per micromolar cyclophilin was determined to be 1.2 s-1/microM for [p-fluoro-Phe8]bradykinin and 0.13 s-1/microM for the Gly6 analogue. The increased cis----trans interconversion rates were strongly inhibited by cyclosporin A and the 6-(methylalanine) derivative, which bind to cyclophilin, but not by the 1-(tetrahydrofurfuryl) derivative of cyclosporin that binds weakly.  相似文献   

12.
The propensity for peptide bonds to adopt the trans configuration in native and unfolded proteins, and the relatively slow rates of cis-trans isomerization reactions, imply that the formation of cis peptide bonds in native conformations are likely to limit folding reactions. The role of the conserved cis Gly95-Gly96 peptide bond in dihydrofolate reductase (DHFR) from Escherichia coli was examined by replacing Gly95 with alanine. The introduction of a beta carbon at position 95 is expected to increase the propensity for the trans isomer and perturb the isomerization reaction required to reach the native conformation. Although G95A DHFR is 1.30 kcal mol(-1) less stable than the wild-type protein, it adopts a well-folded structure that can be chemically denatured in a cooperative fashion. The mutant protein also retains the complex refolding kinetic pattern attributed to a parallel-channel mechanism in wild-type DHFR. The spectroscopic response upon refolding monitored by Trp fluorescence and the absence of a Trp/Trp exciton coupling apparent in the far-UV CD spectrum of the wild-type protein, however, indicated that the tertiary structure of the folded state for G95A DHFR is altered. The addition of methotrexate (MTX), a tight-binding inhibitor, to folded G95A DHFR restored the exciton coupling and the fluorescence properties through five slow kinetic events whose relaxation times are independent of the ligand and the denaturant concentrations. The results were interpreted to mean that MTX-binding drives the formation of the cis isomer of the peptide bond between Ala95 and Gly96 in five compact and stable but not wild-type-like conformations that contain the trans isomer. Folding studies in the presence of MTX for both wild-type and G95A DHFR support the notion that the cis peptide bond between Gly95 and Gly96 in the wild-type protein forms during four parallel rate-limiting steps, which are primarily controlled by folding reactions, and lead directly to a set of native, or native-like, conformers. The isomerization of the cis peptide bond is not a source of the parallel channels that characterize the complex folding mechanism for DHFR.  相似文献   

13.
The peptidyl‐proyl isomerase Pin1 plays a key role in the regulation of phospho(p)‐Ser/Thr‐Pro proteins, acting as a molecular timer of the cell cycle. After recognition of these motifs, Pin1 catalyzes the rapid cis‐trans isomerization of proline amide bonds of substrates, contributing to maintain the equilibrium between the two conformations. Although a great interest has arisen on this enzyme, its catalytic mechanism has long been debated. Here, the cis‐trans isomerization of a model peptide system was investigated by means of umbrella sampling simulations in the Pin1‐bound and unbound states. We obtained free energy barriers consistent with experimental data, and identified several enzymatic features directly linked to the acceleration of the prolyl bond isomerization. In particular, an enhanced autocatalysis, the stabilization of perturbed ground state conformations, and the substrate binding in a procatalytic conformation were found as main contributions to explain the lowering of the isomerization free energy barrier. Proteins 2014; 82:2943–2956. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
P R Andrews 《Biopolymers》1971,10(11):2253-2267
The molecular orbital method PCILO is applied to eight. N-monsubstituted amides. Experimentally known geometric properties are reasonably predicted by minimization of total energy with respect to molecular geometry. The same procedure shows that molecular deformations during rotation around the peptide bond significantly lower calculated barriers. Experimental heats of activation and the free-energy changes associated with cis–trans isomerism are in good agreement with those calculated, which include qualitative estimates of configurational entropy contributions to the isomerism energies. Both the calculations and revised infrared data indicate that N-phenylurethane, which has been used as a model for the cis peptide bond, should be predominantly trans. However the variations in rotational barriers and cis–trans isomerism energies among the N-monosubstituted amides provide no reason to suppose that the cis peptide bond should be excluded from stable protein conformations.  相似文献   

15.
Proline is unique in the realm of amino acids in its ability to adopt completely distinct cis and trans conformations, which allows it to act as a backbone switch that is controlled by prolyl cis-trans isomerization. This intrinsically slow interconversion can be catalyzed by the evolutionarily conserved group of peptidyl prolyl cis-trans isomerase enzymes. These enzymes include cyclophilins and FK506-binding proteins, which are well known for their isomerization-independent role as cellular targets for immunosuppressive drugs. The significance of enzyme-catalyzed prolyl cis-trans isomerization as an important regulatory mechanism in human physiology and pathology was not recognized until the discovery of the phosphorylation-specific prolyl isomerase Pin1. Recent studies indicate that both phosphorylation-dependent and phosphorylation-independent prolyl cis-trans isomerization can act as a novel molecular timer to help control the amplitude and duration of a cellular process, and prolyl cis-trans isomerization might be a new target for therapeutic interventions.  相似文献   

16.
13CH2-multiplet nuclear magnetic resonance relaxation studies on proline (P)-containing glycine (G)-based peptides, GP, PG, GPG, PGG, and GPGG, provided numerous dipolar auto- and cross-correlation times for various motional model analyses of backbone and proline-ring bond rotations. Molecular dynamics simulations and bond rotation energy profiles were calculated to assess which motions could contribute most to observed relaxation phenomena. Results indicate that proline restricts backbone psi 1, psi 2, and phi 2 motions by 50% relative to those found for a polyglycine control peptide. psi 1 rotations are more restricted in the trans-proline isomer state than in the cis form. A two-state jump model best approximates proline ring puckering which in water could occur either by the C gamma endo-exo or by the C2 interconversion mechanism. The temperature dependence (5 degrees to 75 degrees C) of C beta, and C gamma, and C delta angular changes is rather flat, suggesting a near zero enthalpic contribution to the ring puckering process. In lower dielectric solvents, dimethylsulfoxide and methanol, which may mimic the hydrophobic environment within a protein, the endo-exo mechanism is preferred.  相似文献   

17.
The interplay between side-chain and main-chain conformations is a distinctive characteristic of proline residues. Here we report the results of a statistical analysis of proline conformations using a large protein database. In particular, we found that proline residues with the preceding peptide bond in the cis state preferentially adopt a down puckering. Indeed, out of 178 cis proline residues, as many as 145 (81%) are down. By analyzing the 1-4 and 1-5 nonbonding distances between backbone atoms, we provide a structural explanation for the observed trend. The observed correlation between proline puckering and peptide bond conformation suggests a new mechanism to explain the reported shift of the cis-trans equilibrium in proline derivatives. The implications of these results for the current models of collagen stability are also discussed.  相似文献   

18.
Thermally unfolded staphylococcal nuclease has been rapidly quenched to temperatures near 0 degree C and the refolding behavior examined using an NMR kinetic experiment. Unfolded protein, exhibiting random coil chemical shifts, persists following the quench and refolds in two distinct kinetic phases. A protein folding intermediate with a trans Lys 116-Pro 117 peptide bond is transiently overpopulated and relaxes to the predominantly cis native cis-trans equilibrium. The rate of trans-->cis isomerization in the native-like nuclease intermediate is approximately 100-fold faster than that observed in a Lys-Pro model peptide. The activation enthalpy of 20 kcal/mol observed for the nuclease Lys 116-Pro 117 peptide bond is comparable to that observed for other X-Pro isomerizations.  相似文献   

19.
多肽和蛋白质中Xaa-Pro片段肽脯酰胺键顺反异构对其构象与功能有重要影响.设计合成了一系列模型多肽及其磷酸化多肽,并采用核磁共振实验和分子动力学模拟的方法,研究了所合成多肽中肽脯酰胺键的顺反异构化.结果表明,对脯氨酸之前的Xaa残基进行侧链O-磷酸化会极大地影响该顺反异构化过程,进而调节肽链构象.此外,磷酸化使得多肽顺式构象比例增加,且当磷酸基团不带负电荷时顺式构象所占比例最大.同时,分子动力学模拟所得结果与核磁共振实验相一致,包括最稳定构象和顺反构象统计分布.磷酸基团所带电荷及其空间位阻可能是影响这类磷酸化多肽构象变化的主要因素.  相似文献   

20.
In the current study, the puckering states of the Proline ring occurring in diproline segments (LPro‐LPro) in proteins has been investigated with a segregation made on the basis of cis and trans states for the Pro‐Pro peptide bond and the conformational states for the diproline segment to investigate the effects of conformation of the diproline segment on the corresponding puckering state of the Proline ring in the segment if any. The value of the endocyclic ring torsional angles of the pyrrolidine ring has been used for calculating and visualizing various puckering states using a proposed new sign convention (+/?) nomenclature. The results have been compared to that obtained in a previous study on peptides from this group. In this study, quite interestingly, the Planar (G) conformation that was present in 14.3% of the cases in peptides, appears to be nearly a rare conformation in the case of proteins (1.9%). The present study indicates that the (Cγ‐exo/Cγ‐exo), (Cγ‐exo/Twisted Cγ‐exo‐Cβ‐endo) and (Twisted Cγ‐endo‐Cβ‐exo/Twisted Cγ‐endo‐Cβ‐exo) categories are the most preferred combinations. For Proline rings in proteins, the states Cγ‐exo, Twisted Cγ‐exo‐Cβ‐endo and Twisted Cγ‐endo‐Cβ‐exo are the most preferred states. Within diproline segments, the pyrrolidine ring conformations do not show a strong co‐relation to the backbone conformation in which they are observed. It is likely that five‐membered rings have a considerable plasticity of structure and are readily deformed to accommodate a variety of energetically preferred backbone conformations. © 2013 Wiley Periodicals, Inc. Biopolymers 99: 605–610, 2013.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号