首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
In Drosophila, dosage compensation is controlled by the male-specific lethal (MSL) complex consisting of MSL proteins and roX RNAs. The MSL complex is specifically localized on the male X chromosome to increase its expression approximately 2-fold. We recently proposed a model for the targeted assembly of the MSL complex, in which initial binding occurs at approximately 35 dispersed chromatin entry sites, followed by spreading in cis into flanking regions. Here, we analyze one of the chromatin entry sites, the roX1 gene, to determine which sequences are sufficient to recruit the MSL complex. We found association and spreading of the MSL complex from roX1 transgenes in the absence of detectable roX1 RNA synthesis from the transgene. We mapped the recruitment activity to a 217 bp roX1 fragment that shows male-specific DNase hypersensitivity and can be preferentially cross-linked in vivo to the MSL complex. When inserted on autosomes, this small roX1 segment is sufficient to produce an ectopic chromatin entry site that can nucleate binding and spreading of the MSL complex hundreds of kilobases into neighboring regions.  相似文献   

3.
4.
5.
J. R. Bone  M. I. Kuroda 《Genetics》1996,144(2):705-713
In the fruitfly Drosophila melanogaster, the four male-specific lethal (msl) genes are required to achieve dosage compensation of the male X chromosome. The MSL proteins are thought to interact with cis-acting sites that confer dosage compensation to nearby genes, as they are detected at hundreds of discrete sites along the length of the polytene X chromosome in males but not in females. The histone H4 acetylated isoform, H4Ac16, colocalizes with the MSL proteins at a majority of sites on the D. melanogaster X chromosome. Using polytene chromosome immunostaining of other species from the genus Drosophila, we found that X chromosome association of MSL proteins and H4Ac16 is conserved despite differences in the sex chromosome karyotype between species. Our results support a model in which cis-acting regulatory sites for dosage compensation evolve on a neo-X chromosome arm in response to the degeneration of its former homologue.  相似文献   

6.
MSL complexes bind hundreds of sites along the single male X chromosome to achieve dosage compensation in Drosophila. Previously, we proposed that approximately 35 "high-affinity" or "chromatin entry" sites (CES) might nucleate spreading of MSL complexes in cis to paint the X chromosome. This was based on analysis of the first characterized sites roX1 and roX2. roX transgenes attract MSL complex to autosomal locations where it can spread long distances into flanking chromatin. roX1 and roX2 also produce noncoding RNA components of the complex. Here we identify a third site from the 18D10 region of the X chromosome. Like roX genes, 18D binds full and partial MSL complexes in vivo and encompasses a male-specific DNase I hypersensitive site (DHS). Unlike roX genes, the 510 bp 18D site is apparently not transcribed and shows high affinity for MSL complex and spreading only as a multimer. While mapping 18D, we discovered MSL binding to X cosmids that do not carry one of the approximately 35 high-affinity sites. Based on additional analyses of chromosomal transpositions, we conclude that spreading in cis from the roX genes or the approximately 35 originally proposed "entry sites" cannot be the sole mechanism for MSL targeting to the X chromosome.  相似文献   

7.
Sun MQ  Lin P  Chen Y  Wang YL  Zhang ZP 《遗传》2012,34(5):533-544
剂量补偿效应(Dosage compensation effect)广泛存在于两性真核生物,是基于性别决定、平衡不同性别间基因转录水平的遗传效应。MSL复合物(Male-specific lethal complex)是果蝇剂量补偿机制的核心,它乙酰化雄性果蝇X染色体上一些特定的位点,双倍激活X连锁活跃基因的转录,从而弥补雄性果蝇只具有单一条X染色体的不足。目前,已对果蝇MSL复合物各主要成分进行了结构分析,大体了解了各组分间的相互作用位点,并对该复合物的识别机制进行了大量的研究。与果蝇不同,哺乳动物是通过雌性个体一条X染色体的失活来实现剂量补偿。虽然哺乳动物MSL复合物的组成已被鉴定,但对其功能的研究还处于初步阶段。迄今为止,对硬骨鱼类剂量补偿及MSL复合物的研究极少。文章概括了线虫、果蝇和哺乳动物各物种剂量补偿机制的异同,综述了果蝇MSL复合物及其剂量补偿机制作用机理的研究进展,并提出有待解决的问题,同时利用同线性分析发现了不同鱼类msl3基因的多样性,为今后继续研究各物种的剂量补偿机制提供基础资料和研究方向。  相似文献   

8.
孙敏秋  林鹏  陈芸  王艺磊  张子平 《遗传》2012,34(5):533-544
剂量补偿效应(Dosage compensation effect)广泛存在于两性真核生物, 是基于性别决定、平衡不同性别间基因转录水平的遗传效应。MSL复合物(Male-specific lethal complex)是果蝇剂量补偿机制的核心, 它乙酰化雄性果蝇X染色体上一些特定的位点, 双倍激活X连锁活跃基因的转录, 从而弥补雄性果蝇只具有单一条X染色体的不足。目前, 已对果蝇MSL复合物各主要成分进行了结构分析, 大体了解了各组分间的相互作用位点, 并对该复合物的识别机制进行了大量的研究。与果蝇不同, 哺乳动物是通过雌性个体一条X染色体的失活来实现剂量补偿。虽然哺乳动物MSL复合物的组成已被鉴定, 但对其功能的研究还处于初步阶段。迄今为止, 对硬骨鱼类剂量补偿及MSL复合物的研究极少。文章概括了线虫、果蝇和哺乳动物各物种剂量补偿机制的异同, 综述了果蝇MSL复合物及其剂量补偿机制作用机理的研究进展, 并提出有待解决的问题, 同时利用同线性分析发现了不同鱼类msl3基因的多样性, 为今后继续研究各物种的剂量补偿机制提供基础资料和研究方向。  相似文献   

9.
10.
11.
12.
13.
The Drosophila MSL complex associates with active genes specifically on the male X chromosome to acetylate histone H4 at lysine 16 and increase expression approximately 2-fold. To date, no DNA sequence has been discovered to explain the specificity of MSL binding. We hypothesized that sequence-specific targeting occurs at "chromatin entry sites," but the majority of sites are sequence independent. Here we characterize 150 potential entry sites by ChIP-chip and ChIP-seq and discover a GA-rich MSL recognition element (MRE). The motif is only slightly enriched on the X chromosome ( approximately 2-fold), but this is doubled when considering its preferential location within or 3' to active genes (>4-fold enrichment). When inserted on an autosome, a newly identified site can direct local MSL spreading to flanking active genes. These results provide strong evidence for both sequence-dependent and -independent steps in MSL targeting of dosage compensation to the male X chromosome.  相似文献   

14.
15.
16.
17.
18.
19.
The rox1 and rox2 RNAs have been suggested to be components of the dosage compensation machinery in Drosophila. We show that both rox RNAs colocalize with the male-specific lethal proteins at hundreds of specific bands along the male X chromosome. The rox RNAs and MSL proteins also colocalize with the X chromosome in all somatic cells and are expressed in the same temporal pattern throughout development. Genetic analysis shows that the functions of the rox genes are redundant and required for the association of the MSL proteins with the male X chromosome. These data provide compelling evidence for a direct function of the rox RNAs in dosage compensation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号