首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Pto gene of tomato (Solanum lycopersicum) confers specific recognition of the unrelated bacterial effector proteins AvrPto and AvrPtoB. Pto resides in a constitutive molecular complex with the nucleotide binding site-leucine rich repeats protein Prf. Prf is absolutely required for specific recognition of both effectors. Here, using stable transgenic lines, we show that expression of Pto from its genomic promoter in susceptible tomatoes was sufficient to complement recognition of Pseudomonas syringae pv. tomato (Pst) bacteria expressing either avrPto or avrPtoB. Pto kinase activity was absolutely required for specific immunity. Expression of the Pto N-myristoylation mutant, pto(G2A), conferred recognition of Pst (avrPtoB), but not Pst (avrPto), although bacterial growth in these lines was intermediate between resistant and susceptible lines. Overexpression of pto(G2A) complemented recognition of avrPto. Transgenic tomato plants overexpressing wild-type Pto exhibited constitutive growth phenotypes, but these were absent in lines overexpressing pto(G2A). Therefore, Pto myristoylation is a quantitative factor for effector recognition in tomato, but is absolutely required for overexpression phenotypes. Native expression of Pto in the heterologous species Nicotiana benthamiana did not confer resistance to P. syringae pv. tabaci (Pta) expressing avrPto or avrPtoB, but recognition of both effectors was complemented by Prf co-expression. Thus, specific resistance conferred solely by Pto in N. benthamiana is an artefact of overexpression. Finally, pto(G2A) did not confer recognition of either avrPto or avrPtoB in N. benthamiana, regardless of the presence of Prf. Thus, co-expression of Prf in N. benthamiana complements many but not all aspects of normal Pto function.  相似文献   

2.
3.
4.
Several reports have recently contributed to determine the effector inventory of the sequenced strain Pseudomonas syringae pv. phaseolicola (Pph) 1448a. However, the contribution to virulence of most of these effectors remains to be established. Genetic analysis of the contribution to virulence of individual P. syringae effectors has been traditionally hindered by the lack of phenotypes of the corresponding knockout mutants, largely attributed to a high degree of functional redundancy within their effector inventories. In support of this notion, effectors from Pseudomonas syringae pv. tomato (Pto) DC3000 have been classified into redundant effector groups (REGs), analysing virulence of polymutants in the model plant Nicotiana benthamiana. However, using competitive index (CI) as a virulence assay, we were able to establish the individual contribution of AvrPto1(Pto) (DC3000) to Pto DC3000 virulence in tomato, its natural host, even though typically, contribution to virulence of AvrPto1 is only shown in strains also lacking AvrPtoB (also called HopAB2), a member of its REG. This report raised the possibility that even effectors targeting the same defence signalling pathway may have an individual contribution to virulence, and pointed out to CI assays as the means to establish such a contribution for individual effectors. In this work, we have analysed the individual contribution to virulence of the majority of previously uncharacterised Pph 1448a effectors, by monitoring the development of disease symptoms and determining the CI of single knockout mutants at different stages of growth within bean, its natural host. Despite their potential functional redundancy, we have found individual contributions to virulence for six out of the fifteen effectors analysed. In addition, we have analysed the functional relationships between effectors displaying individual contribution to virulence, highlighting the diversity that these relationships may present, and the interest of analysing their functions within the context of the infection.  相似文献   

5.
6.
Successful pathogens have evolved strategies to interfere with host immune systems. For example, the ubiquitous plant pathogen Pseudomonas syringae injects two sequence-distinct effectors, AvrPto and AvrPtoB, to intercept convergent innate immune responses stimulated by multiple microbe-associated molecular patterns (MAMPs). However, the direct host targets and precise molecular mechanisms of bacterial effectors remain largely obscure. We show that AvrPto and AvrPtoB bind the Arabidopsis receptor-like kinase BAK1, a shared signaling partner of both the flagellin receptor FLS2 and the brassinosteroid receptor BRI1. This targeting interferes with ligand-dependent association of FLS2 with BAK1 during infection. It also impedes BAK1-dependent host immune responses to diverse other MAMPs and brassinosteroid signaling. Significantly, the structural basis of AvrPto-BAK1 interaction appears to be distinct from AvrPto-Pto association required for effector-triggered immunity. These findings uncover a unique strategy of bacterial pathogenesis where virulence effectors block signal transmission through a key common component of multiple MAMP-receptor complexes.  相似文献   

7.
Kim YJ  Lin NC  Martin GB 《Cell》2002,109(5):589-598
The Pto serine/threonine kinase of tomato confers resistance to speck disease by recognizing strains of Pseudomonas syringae that express the protein AvrPto. Pto and AvrPto physically interact, and this interaction is required for activation of host resistance. We identified a second Pseudomonas protein, AvrPtoB, that interacts specifically with Pto and is widely distributed among plant pathogens. AvrPtoB is delivered into the plant cell by the bacterial type III secretion system, and it elicits Pto-specific defenses. AvrPtoB has little overall sequence similarity with AvrPto. However, AvrPto amino acids, which are required for interaction with Pto, are present in AvrPtoB and required for its interaction with Pto. Thus, two distinct bacterial effectors activate plant immunity by interacting with the same host protein kinase through a similar structural mechanism.  相似文献   

8.
Cytoplasmic recognition of pathogen virulence effectors by plant NB‐LRR proteins leads to strong induction of defence responses termed effector triggered immunity (ETI). In tomato, a protein complex containing the NB‐LRR protein Prf and the protein kinase Pto confers recognition of the Pseudomonas syringae effectors AvrPto and AvrPtoB. Although structurally unrelated, AvrPto and AvrPtoB interact with similar residues in the Pto catalytic cleft to activate ETI via an unknown mechanism. Here we show that the Prf complex is oligomeric, containing at least two molecules of Prf. Within the complex, Prf can associate with Pto or one of several Pto family members including Fen, Pth2, Pth3, or Pth5. The dimerization surface for Prf is the novel N‐terminal domain, which also coordinates an intramolecular interaction with the remainder of the molecule, and binds Pto kinase or a family member. Thus, association of two Prf N‐terminal domains brings the associated kinases into close promixity. Tomato lines containing Prf complexed with Pth proteins but not Pto possessed greater immunity against P. syringae than tomatoes lacking Prf. This demonstrates that incorporation of non‐Pto kinases into the Prf complex extends the number of effector proteins that can be recognized.  相似文献   

9.
Many gram-negative bacterial pathogens rely on a type III secretion system to deliver a number of effector proteins into the host cell. Though a number of these effectors have been shown to contribute to bacterial pathogenicity, their functions remain elusive. Here we report that AvrPto, an effector known for its ability to interact with Pto and induce Pto-mediated disease resistance, inhibited the hypersensitive response (HR) induced by nonhost pathogen interactions. Pseudomonas syringae pv. tomato T1 causes an HR-like cell death on Nicotiana benthamiana. This rapid cell death was delayed significantly in plants inoculated with P. syringae pv. tomato expressing avrPto. In addition, P. syringae pv. tabaci expressing avrPto suppressed nonhost HR on tomato prf3 and ptoS lines. Transient expression of avrPto in both N. benthamiana and tomato prf3 plants also was able to suppress nonhost HR. Interestingly, AvrPto failed to suppress cell death caused by other elicitors and nonhost pathogens. AvrPto also failed to suppress cell death caused by certain gene-for-gene disease resistance interactions. Experiments with avrPto mutants revealed several residues important for the suppression effects. AvrPto mutants G2A, G99V, P146L, and a 12-amino-acid C-terminal deletion mutant partially lost the suppression ability, whereas S94P and 196T enhanced suppression of cell death in N. benthamiana. These results, together with other discoveries, demonstrated that suppression of host-programmed cell death may serve as one of the strategies bacterial pathoens use for successful invasion.  相似文献   

10.
Basal resistance in plants is induced by flagellin and several other common bacterial molecules and is implicated in the immunity of plants to most bacteria and other microbes. However, basal resistance can be suppressed by effector proteins that are injected by the type III secretion system (TTSS) of pathogens such as Pseudomonas syringae. This study demonstrates that basal resistance in the leaves of Nicotiana benthamiana is accompanied by reduced vascular flow into minor veins. Reduced vascular flow was assayed by feeding leaves, via freshly excised petioles, with 1% (weight in volume, w/v) neutral red (NR) and then observing differential staining of minor veins or altered levels of extractable dye in excised leaf samples. The reduced vascular staining was localized to tissues expressing basal resistance and was observable when resistance was induced by either the non-pathogen Pseudomonas fluorescens, a TTSS-deficient mutant of P. syringae pv. tabaci, or flg22 (a flagellin-derived peptide elicitor of basal resistance). Nicotiana benthamiana leaf areas expressing basal resistance no longer elicited the hypersensitive response when challenge inoculated with P. syringae pv. tomato DC3000. The reduced vascular staining effect was suppressed by wild-type P. syringae pv. tabaci and P. fluorescens heterologously expressing a P. syringae TTSS and AvrPto1(PtoJL1065). TTSS-proficient P. fluorescens was used to test the ability of several P. syringae pv. tomato DC3000 effectors for their ability to suppress the basal resistance-associated reduced vascular staining effect. AvrE(PtoDC3000), HopM1(PtoDC3000) (formerly known as HopPtoM), HopF2(PtoDC3000) (HopPtoF) and HopG1(PtoDC3000) (HopPtoG) suppressed basal resistance by this test, whereas HopC1(PtoDC3000) (HopPtoC) did not. In summary, basal resistance locally alters vascular function and the vascular dye uptake assay should be a useful tool for characterizing effectors that suppress basal resistance.  相似文献   

11.
Non-host disease resistance involves the production of hypersensitive response (HR), a programmed cell death (PCD) that occurs at the site of pathogen infection. Plant mitochondrial reactive oxygen species (ROS) production and red-ox changes play a major role in regulating such cell death. Proline catabolism reactions, especially pyrroline-5-carboxylate (P5C) accumulation, are known to produce ROS and contribute to cell death. Here we studied important genes related to proline synthesis and catabolism in the defence against host and non-host strains of Pseudomonas syringae in Nicotiana benthamiana and Arabidopsis. Our results show that ornithine delta-aminotransferase (δOAT) and proline dehydrogenases (ProDH1 and ProDH2) are involved in the defence against non-host pathogens. Silencing of these genes in N. benthamiana delayed occurrence of HR and favoured non-host pathogen growth. Arabidopsis mutants for these genes compromised non-host resistance and showed a decrease in non-host pathogen-induced ROS. Some of the genes involved in proline metabolism were also induced by a pathogen-carrying avirulence gene, indicating that proline metabolism is influenced during effector-triggered immunity (ETI). Our results demonstrate that δOAT and ProDH enzyme-mediated steps produce ROS in mitochondria and regulate non-host HR, thus contributing to non-host resistance in plants.  相似文献   

12.
To study the role of type III-secreted effectors in the host adaptation of the tobacco ( Nicotiana sp.) pathogen Pseudomonas syringae pv. tabaci , a selection of seven strains was first characterized by multilocus sequence typing (MLST) to determine their phylogenetic affinity. MLST revealed that all strains represented a tight phylogenetic group and that the most closely related strain with a completely sequenced genome was the bean ( Phaseolus vulgaris ) pathogen P. syringae pv. phaseolicola 1448A. Using primers designed to 21 P. syringae pv. phaseolicola 1448A effector genes, it was determined that P. syringae pv. phaseolicola 1448A shared at least 10 effectors with all tested P. syringae pv. tabaci strains. Six of the 11 effectors that failed to amplify from P. syringae pv. tabaci strains were individually expressed in one P. syringae pv. tabaci strain. Although five effectors had no effect on phenotype, growth in planta and disease severity of the transgenic P. syringae pv. tabaci expressing hopQ1-1 Pph1448A were significantly increased in bean, but reduced in tobacco. We conclude that hopQ1-1 has been retained in P. syringae pv. phaseolicola 1448A, as this effector suppresses immunity in bean, whereas hopQ1-1 is missing from P. syringae pv. tabaci strains because it triggers defences in Nicotiana spp. This provides evidence that fine-tuning effector repertoires during host adaptation lead to a concomitant reduction in virulence in non-host species.  相似文献   

13.
AvrPto and AvrPtoB are type III effector proteins expressed by Pseudomonas syringae pv. tomato strain DC3000, a pathogen of both tomato and Arabidopsis spp. Each effector physically interacts with the tomato Pto kinase and elicits a hypersensitive response when expressed in tomato leaves containing Pto. An avrPto deletion mutant of DC3000 previously was shown to retain avirulence activity on Pto-expressing tomato plants. We developed an avrPtoB deletion mutant of DC3000 and found that it also retains Pto-specific avirulence on tomato. These observations suggested that avrPto and avrPtoB both contribute to avirulence. To test this hypothesis, we developed an deltaavrPtodeltaavrPtoB double mutant in DC3000. This double mutant was able to cause disease on a Pto-expressing tomato line. Thus, avrPto and avrPtoB are the only avirulence genes in DC3000 that elicit Pto-mediated defense responses in tomato. When inoculated onto susceptible tomato leaves and compared with wild-type DC3000, the mutants DC3000deltaavrPto and DC3000deltaavrPtoB each caused slightly less severe disease symptoms, although their growth rate was unaffected. However, DC3000deltaavr PtodeltaavrPtoB caused even less severe disease symptoms than the single mutants and grew more slowly than them on susceptible leaves. Our results indicate that AvrPto and AvrPtoB have phenotypically redundant avirulence activity on Pto-expressing tomato and additive virulence activities on susceptible tomato plants.  相似文献   

14.
Although interactions of plants with virulent and avirulent host pathogens are under intensive study, relatively little is known about plant interactions with non-adapted pathogens and the molecular events underlying non-host resistance. Here we show that two Pseudomonas syringae strains for which Arabidopsis is a non-host plant, P. syringae pathovar (pv.) glycinea (Psg) and P. syringae pv. phaseolicola (Psp),induce salicylic acid (SA) accumulation and pathogenesis-related gene expression at inoculation sites, and that induction of these defences is largely dependent on bacterial type III secretion. The defence signalling components activated by non-adapted bacteria resemble those initiated by host pathogens, including SA, non-expressor of PR-1, non-race specific disease resistance 1, phytoalexin-deficient 4 and enhanced disease susceptibility 1. However, some differences in individual defence pathways induced by Psg and Psp exist, suggesting that for each strain, distinct sets of type III effectors are recognized by the plant. Although induction of SA-related defences occurs, it does not directly contribute to bacterial non-host resistance, because Arabidopsis mutants compromised in SA signalling and other classical defence pathways do not permit enhanced survival of Psg or Psp in leaves. The finding that numbers of non-adapted bacteria in leaf extracellular spaces rapidly decline after inoculation suggests that they fail to overcome toxic or structural defence barriers preceding SA-related responses. Consistent with this hypothesis, rapid, type III secretion system-independent upregulation of the lignin biosynthesis genes, PAL1 and BCB, which might contribute to an early induced, cell wall-based defence mechanism, occurs in response to non-adapted bacteria. Moreover, knockout of PAL1 permits increased leaf survival of non-host bacteria. In addition, different survival rates of non-adapted bacteria in leaves from Arabidopsis accessions and mutants with distinct glucosinolate composition or hydrolysis exist. Possible roles for early inducible, cell wall-based defences and the glucosinolate/myrosinase system in bacterial non-host resistance are discussed.  相似文献   

15.
Plant cell surface-localized receptor kinases such as FLS2, EFR, and CERK1 play a crucial role in detecting invading pathogenic bacteria. Upon stimulation by bacterium-derived ligands, FLS2 and EFR interact with BAK1, a receptor-like kinase, to activate immune responses. A number of Pseudomonas syringae effector proteins are known to block immune responses mediated by these receptors. Previous reports suggested that both FLS2 and BAK1 could be targeted by the P. syringae effector AvrPto to inhibit plant defenses. Here, we provide new evidence further supporting that FLS2 but not BAK1 is targeted by AvrPto in plants. The AvrPto-FLS2 interaction prevented the phosphorylation of BIK1, a downstream component of the FLS2 pathway.  相似文献   

16.
17.
Resistance to bacterial speck disease in tomato is activated by the physical interaction of the host Pto kinase with either of the sequence-dissimilar type III effector proteins AvrPto or AvrPtoB (HopAB2) from Pseudomonas syringae pv. tomato. Pto-mediated immunity requires Prf, a protein with a nucleotide-binding site and leucine-rich repeats. The N-terminal 307 amino acids of AvrPtoB were previously reported to interact with the Pto kinase, and we show here that this region (AvrPtoB(1-307)) is sufficient for eliciting Pto/Prf-dependent immunity against P. s. pv. tomato. AvrPtoB(1-307) was also found to be sufficient for a virulence activity that enhances ethylene production and increases growth of P. s. pv. tomato and severity of speck disease on susceptible tomato lines lacking either Pto or Prf. Moreover, we found that residues 308-387 of AvrPtoB are required for the previously reported ability of AvrPtoB to suppress pathogen-associated molecular patterns-induced basal defenses in Arabidopsis. Thus, the N-terminal region of AvrPtoB has two structurally distinct domains involved in different virulence-promoting mechanisms. Random and targeted mutagenesis identified five tightly clustered residues in AvrPtoB(1-307) that are required for interaction with Pto and for elicitation of immunity to P. s. pv. tomato. Mutation of one of the five clustered residues abolished the ethylene-associated virulence activity of AvrPtoB(1-307). However, individual mutations of the other four residues, despite abolishing interaction with Pto and avirulence activity, had no effect on AvrPtoB(1-307) virulence activity. None of these mutations affected the basal defense-suppressing activity of AvrPtoB(1-387). Based on sequence alignments, estimates of helical propensity, and the previously reported structure of AvrPto, we hypothesize that the Pto-interacting domains of AvrPto and AvrPtoB(1-307) have structural similarity. Together, these data support a model in which AvrPtoB(1-307) promotes ethylene-associated virulence by interaction not with Pto but with another unknown host protein.  相似文献   

18.
Pseudomonas syringae pv. tomato strain DC3000 is a pathogen of tomato and Arabidopsis: The hrp-hrc-encoded type III secretion system (TTSS), which injects bacterial effector proteins (primarily called Hop or Avr proteins) into plant cells, is required for pathogenicity. In addition to being regulated by the HrpL alternative sigma factor, most avr or hop genes encode proteins with N termini that have several characteristic features, including (i) a high percentage of Ser residues, (ii) an aliphatic amino acid (Ile, Leu, or Val) or Pro at the third or fourth position, and (iii) a lack of negatively charged amino acids within the first 12 residues. Here, the well-studied effector AvrPto was used to optimize a calmodulin-dependent adenylate cyclase (Cya) reporter system for Hrp-mediated translocation of P. syringae TTSS effectors into plant cells. This system includes a cloned P. syringae hrp gene cluster and the model plant Nicotiana benthamiana. Analyses of truncated AvrPto proteins fused to Cya revealed that the N-terminal 16 amino acids and/or codons of AvrPto are sufficient to direct weak translocation into plant cells and that longer N-terminal fragments direct progressively stronger translocation. AvrB, tested because it is poorly secreted in cultures by the P. syringae Hrp system, was translocated into plant cells as effectively as AvrPto. The translocation of several DC3000 candidate Hop proteins was also examined by using Cya as a reporter, which led to identification of three new intact Hop proteins, designated HopPtoQ, HopPtoT1, and HopPtoV, as well as two truncated Hop proteins encoded by the naturally disrupted genes hopPtoS4::tnpA and hopPtoAG::tnpA. We also confirmed that HopPtoK, HopPtoC, and AvrPphE(Pto) are translocated into plant cells. These results increased the number of Hrp system-secreted proteins in DC3000 to 40. Although most of the newly identified Hop proteins possess N termini that have the same features as the N termini of previously described Hop proteins, HopPtoV has none of these characteristics. Our results indicate that Cya should be a useful reporter for exploring multiple aspects of the Hrp system in P. syringae.  相似文献   

19.
The model pathogen Pseudomonas syringae pv. tomato DC3000 causes bacterial speck in tomato and Arabidopsis, but Nicotiana benthamiana, an important model plant, is considered to be a non-host. Strain DC3000 injects approximately 28 effector proteins into plant cells via the type III secretion system (T3SS). These proteins were individually delivered into N. benthamiana leaf cells via T3SS-proficient Pseudomonas fluorescens, and eight, including HopQ1-1, showed some capacity to cause cell death in this test. Four gene clusters encoding 13 effectors were deleted from DC3000: cluster II (hopH1, hopC1), IV (hopD1, hopQ1-1, hopR1), IX (hopAA1-2, hopV1, hopAO1, hopG1), and native plasmid pDC3000A (hopAM1-2, hopX1, hopO1-1, hopT1-1). DC3000 mutants deleted for cluster IV or just hopQ1-1 acquired the ability to grow to high levels and produce bacterial speck lesions in N. benthamiana. HopQ1-1 showed other hallmarks of an avirulence determinant in N. benthamiana: expression in the tobacco wildfire pathogen P. syringae pv. tabaci 11528 rendered this strain avirulent in N. benthamiana, and elicitation of the hypersensitive response in N. benthamiana by HopQ1-1 was dependent on SGT1. DC3000 polymutants involving other effector gene clusters in a hopQ1-1-deficient background revealed that clusters II and IX contributed to the severity of lesion symptoms in N. benthamiana, as well as in Arabidopsis and tomato. The results support the hypothesis that the host ranges of P. syringae pathovars are limited by the complex interactions of effector repertoires with plant anti-effector surveillance systems, and they demonstrate that N. benthamiana can be a useful model host for DC3000.  相似文献   

20.
Pseudomonas syringae pv. tomato DC3000 and its derivatives cause disease in tomato, Arabidopsis and Nicotiana benthamiana. The primary virulence factors include a repertoire of 29 effector proteins injected into plant cells by the type III secretion system and the phytotoxin coronatine. The complete repertoire of effector genes and key coronatine biosynthesis genes have been progressively deleted and minimally reassembled to reconstitute basic pathogenic ability in N. benthamiana, and in Arabidopsis plants that have mutations in target genes that mimic effector actions. This approach and molecular studies of effector activities and plant immune system targets have highlighted a small subset of effectors that contribute to essential processes in pathogenesis. Most notably, HopM1 and AvrE1 redundantly promote an aqueous apoplastic environment, and AvrPtoB and AvrPto redundantly block early immune responses, two conditions that are sufficient for substantial bacterial growth in planta. In addition, disarmed DC3000 polymutants have been used to identify the individual effectors responsible for specific activities of the complete repertoire and to more effectively study effector domains, effector interplay and effector actions on host targets. Such work has revealed that AvrPtoB suppresses cell death elicitation in N. benthamiana that is triggered by another effector in the DC3000 repertoire, highlighting an important aspect of effector interplay in native repertoires. Disarmed DC3000 polymutants support the natural delivery of test effectors and infection readouts that more accurately reveal effector functions in key pathogenesis processes, and enable the identification of effectors with similar activities from a broad range of other pathogens that also defeat plants with cytoplasmic effectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号