首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For most species and gustatory papillae denervation resultsin a virtual disappearance of taste buds. This is not the casefor hamster fungiform papillae, which contain taste buds thatsurvive denervation. To characterize these taste buds, in thisstudy, counts and measurements were made of all buds on theanterior 3 mm of the hamster tongue at 36 or 91 days after resectingthe chorda/lingual nerve. Taste bud numbers were, at both timeperiods, unaffected by denervation. However, bud dimensionswere affected with denervated buds 25–30% smaller thancontrol ones. Counts of taste bud cells indicated that decreasesin bud size may result from shrinkage, but not a loss of cells.Tritiated thymidine autoradiography was used to evaluate whetherdenervation influences the mitotic activity or the migratorypattern of bud cells. For every animal, the average number oflabelled cells per bud was slightly lower on the denervatedthan the control side of the tongue. However, when labelledcell positions were evaluated at 0.25, 3 and 6 days after thymidine,the distances from the sides of the bud increased at increasingtimes after injection for both the innervated and the denervatedbuds. Stem cells were located laterally or basally in the bud.Labelled cells that migrated into the centers of the buds werefew and seen only at 6 days post-injection time in both controland experimental buds. The moderate effects of denervation ontaste bud sizes and mitotic activities may indicate a generalizedatrophy. Remarkably intact were taste bud numbers and the migratorypatterns of cells, features of anterior tongue taste buds inthe hamster that are relatively invulnerable to resection ofthe chorda /lingual nerve.  相似文献   

2.
Dietary sodium restriction has profound effects on the development of peripheral taste function and central taste system anatomy. This study examined whether early dietary sodium restriction also affects innervation of taste buds. The number of geniculate ganglion cells that innervate single fungiform taste buds were quantified for the midregion of the tongue in two groups of rats: those fed either a low-sodium diet and those fed a sodium replete diet (control rats) from early prenatal development through adulthood. The same mean number of ganglion cells in developmentally sodium-restricted and control adult rats innervated taste buds on the midregion of the tongue. However, the characteristic relationship of the larger the taste bud, the more neurons that innervate it did not develop in sodium-restricted rats. The failure to form such a relationship in experimental rats was likely due to a substantially smaller mean taste bud volume than controls and probably not to changes in innervation. Further experiments demonstrated that the altered association between number of innervating neurons and taste bud size in restricted rats was reversible. Feeding developmentally sodium-restricted rats a sodium replete diet at adulthood resulted in an increase in taste bud size. Accordingly, the high correlation between taste bud volume and innervation was established in sodium-replete rats. Findings from the current study reveal that early dietary manipulations influence neuron-target interactions; however, the effects of dietary sodium restriction on peripheral gustatory anatomy can be completely restored, even in adult animals.  相似文献   

3.
Summary Sections of neonatal, normal adult and denervated adult rat tongue were examined with lectin histochemistry. Attention was focused upon intragemmal cells (cells within the taste bud) and the surrounding perigemmal cells. Informative staining patterns were observed with four of 12 lectins:Ulex europaeus (UEA-I),Bauhinia purpurea (BPA),Helix pomatia (HPA) andLotus tetragonolobus (LTA) agglutinins. In normal adult tongues, BPA bound to those lingual epithelial cells lacking contact with the basal lamina. After they formed, vallate taste buds were laterally surrounded by distinctive BPA-positive cells. HPA reacted selectively with 28% and LTA with 23% of the intragemmal cells in vallate/foliate taste buds. In double-stained taste buds there was, a statistically significant overlap of LTA-positive cells and keratin 18-positive cells. The overlap between HPA binding and keratin 18 was more marked: double-stained cells comprized 67% of all stained cells. During taste bud development in neonates keratin 18 synthesis preceded HPA binding. In contrast, during the replacement of adult taste cells, keratin 18 synthesis and HPA binding were generally concurrent. Keratin 18 and HPA probably identify the same subset of older taste receptor cells. HPA may bind to glycoconjugates on the surface of keratin 18-positive cells. In denervated adult tongue the loss of all UEA-I-positive or BPA-positive perigemmal cells suggests that perigemmal as well as intragemmal cells are nerve-dependent.  相似文献   

4.
5.
Objectives: This investigation aimed to demonstrate age‐related changes of taste buds on the human epiglottis using histomorphometrical analysis. Methods: Histological observation and measurement of taste bud density were performed on oral and laryngeal surfaces of 237 human epiglottises (138 male and 99 females). The cases were divided into two age groups: 67 cases in the younger group, for subjects aged 10–39 years and 170 cases in the older group, for those aged 70–98 years. Each epiglottis was investigated at the upper and middle height levels. Results: The mean density of taste buds significantly decreased on the laryngeal surfaces in the older group. Most taste buds were present in the upper height level on the laryngeal surfaces which were covered with thin and flat stratified squamous epithelium. The covering epithelium revealed developed epithelial ridges on the oral surfaces without taste buds. These results suggest a relationship between the existence of taste buds and the thickness of the covering epithelium. Conclusions: The presence of taste buds in the epiglottises of elderly people was demonstrated. In addition, the decrease of these taste buds with advancing age was clarified.  相似文献   

6.
根据近年来有关大鼠、小鼠味觉发育方面的大量研究,对哺乳动物味蕾(taste buds)发育的情况进行了综述和讨论.哺乳动物舌面上的味蕾分布在菌状乳头(fungiform papillae,FF)、叶状乳头(foliate papillae,FL)、轮廓状乳头(circumvallate papillae,CV)之中,味蕾细胞(taste bud cells)不断地进行着周期性的更新,味蕾的形态、数量和功能随动物随年龄而变化.有关味孔头的研究表明,味乳头(gustatory papillae)在味蕾形成和维持味蕾存在及正常发育方面有着独特的功能.味乳头和味蕾的发育过程与细胞信号分子(signaling molecules)、味觉神经(gustatory nerve fibers)等许多因素有着密切的关系,其中有些作用机理至今尚无定论.  相似文献   

7.
8.
The structure of catecholamine-containing dumb-bell shaped cells of the taste buds was studied by luminescent microscopy in the epithelial layer of the frog's tongue (Rana temporaria). On the unilateral section of the lingual nerve, a maintained adrenergic innervation of vessels and of the epithelium was observed, a decreased number of dumb-bell shaped cells in the taste bud, and their significant enlargement, and increased cathecholamine luminescence. With desympathization, no adrenergic nerves were observed on the vessels and the epithelium of the tongue. The size of the taste buds in desympathized cells of the tongue is sharply decreased and their number is increased. There is a tendency to grouping of the dumbbell shaped cells into 3--4 taste buds in one fungiform papillina. The experiments with sensory and sympathetic denervation of the frog tongue distinctly showed the trophic action of sensory and sympathetic nerves on the taste organ of the frog.  相似文献   

9.
This study demonstrated that individual diversities of tastesensitivity on the anterior tongue are due, in part, to variationsin fungiform taste bud density. Citric acid solutions were deliveredto a closed, spatially-matched (each test site was 43 mm2) flowchamber attached to the surface of the anterior tongue in 84subjects. A two-alternative forced choice, modified staircaseprocedure was used to derive a detection threshold value forcitric acid. The same session also included a visual analograting procedure to scale the taste intensity judgement of fiveconcentrations of citric acid. The taste buds within the chamberwere distinguished by methylene blue stain and recorded by videomicroscopy.The sip-and-spit method was used to contrast the spatially-matchedcondition with whole mouth stimulation. We found that detectionthreshold values were inversely related to the number of fungiformtaste buds, independent of gender or age. Whole-mouth thresholdvalues determined for each subject were always well below thespatially-matched threshold values. In addition, the data demonstratedthat subjects were able to scale the dynamic range of citricacid solutions. However, y-intercept approached zero intensityas the number of fungiform papillae decreased. The observeddifferences in citric acid sensitivity and fungiform taste buddensity indicated that taste performance on the anterior tonguein humans varies, in part, with the number of taste buds.  相似文献   

10.
The epithelium of mammalian tongue hosts most of the taste buds that transduce gustatory stimuli into neural signals. In the field of taste biology, taste bud cells have been described as arising from "local epithelium", in distinction from many other receptor organs that are derived from neurogenic ectoderm including neural crest (NC). In fact, contribution of NC to both epithelium and mesenchyme in the developing tongue is not fully understood. In the present study we used two independent, well-characterized mouse lines, Wnt1-Cre and P0-Cre that express Cre recombinase in a NC-specific manner, in combination with two Cre reporter mouse lines, R26R and ZEG, and demonstrate a contribution of NC-derived cells to both tongue mesenchyme and epithelium including taste papillae and taste buds. In tongue mesenchyme, distribution of NC-derived cells is in close association with taste papillae. In tongue epithelium, labeled cells are observed in an initial scattered distribution and progress to a clustered pattern between papillae, and within papillae and early taste buds. This provides evidence for a contribution of NC to lingual epithelium. Together with previous reports for the origin of taste bud cells from local epithelium in postnatal mouse, we propose that NC cells migrate into and reside in the epithelium of the tongue primordium at an early embryonic stage, acquire epithelial cell phenotypes, and undergo cell proliferation and differentiation that is involved in the development of taste papillae and taste buds. Our findings lead to a new concept about derivation of taste bud cells that include a NC origin.  相似文献   

11.
Few sensory modalities appear to engage in cross‐modal interactions within the peripheral nervous system, making the integrated relationship between the peripheral gustatory and trigeminal systems an ideal model for investigating cross‐sensory support. The present study examined taste system anatomy following unilateral transection of the trigeminal lingual nerve (LX) while leaving the gustatory chorda tympani intact. At 10, 25, or 65 days of age, rats underwent LX with outcomes assessed following various survival times. Fungiform papillae were classified by morphological feature using surface analysis. Taste bud volumes were calculated from histological sections of the anterior tongue. Differences in papillae morphology were evident by 2 days post‐transection of P10 rats and by 8 days post in P25 rats. When transected at P65, animals never exhibited statistically significant morphological changes. After LX at P10, fewer taste buds were present on the transected side following 16 and 24 days survival time and remaining taste buds were smaller than on the intact side. In P25 and P65 animals, taste bud volumes were reduced on the denervated side by 8 and 16 days postsurgery, respectively. By 50 days post‐transection, taste buds of P10 animals had not recovered in size; however, all observed changes in papillae morphology and taste buds subsided in P25 and P65 rats. Results indicate that LX impacts taste receptor cells and alters epithelial morphology of fungiform papillae, particularly during early development. These findings highlight dual roles for the lingual nerve in the maintenance of both gustatory and non‐gustatory tissues on the anterior tongue. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 626–641, 2016  相似文献   

12.
Growth factors regulate cell growth and differentiation in many tissues. In the taste system, as yet unknown growth factors are produced by neurons to maintain taste buds. A number of growth factor receptors are expressed at greater levels in taste buds than in the surrounding epithelium and may be receptors for candidate factors involved in taste bud maintenance. We determined that the ligands of eight of these receptors were expressed in the E14.5 geniculate ganglion and that four of these ligands were expressed in the adult geniculate ganglion. Of these, the insulin-like growth factors (IGF1, IGF2) were expressed in the ganglion and their receptor, insulin-like growth factor receptor 1 (IGF1R), were expressed at the highest levels in taste buds. To determine whether IGF1R regulates taste bud number or structure, we conditionally eliminated IGF1R from the lingual epithelium of mice using the keratin 14 (K14) promoter (K14-Cre::Igf1rlox/lox). While K14-Cre::Igf1rlox/lox mice had significantly fewer taste buds at P30 compared with control mice (Igf1rlox/lox), this difference was not observed by P80. IGF1R removal did not affect taste bud size or cell number, and the number of phospholipase C β2- (PLCβ2) and carbonic anhydrase 4- (Car4) positive taste receptor cells did not differ between genotypes. Taste buds at the back of the tongue fungiform taste field were larger and contained more cells than those at the tongue tip, and these differences were diminished in K14-Cre::Igf1rlox/lox mice. The epithelium was thicker at the back versus the tip of the tongue, and this difference was also attenuated in K14-Cre::Igf1rlox/lox mice. We conclude that, although IGFs are expressed at high levels in the taste system, they likely play little or no role in maintaining adult taste bud structure. IGFs have a potential role in establishing the initial number of taste buds, and there may be limits on epithelial thickness in the absence of IGF1R signaling.  相似文献   

13.
14.
Taste bud quantitation may provide useful parameters for interspecies comparisons of the gustatory system. The present study is a morphometric analysis of bovine taste papillae. Circumvallate and fungiform papillae from six bovine tongues were serially sectioned and, following staining, analyzed. Circumvallate papillae were found to have a mean volume of 3.66 +/- 2.82 mm3, a mean number of taste buds per papilla of 445 +/- 279, and a mean taste bud density of 155 +/- 112 buds/mm3. Values for lateral fungiform papillae for the same three parameters were 0.384 +/- 0.184 mm3, 13.2 +/- 13.4, and 40.8 +/- 46.6 buds/mm3, respectively. Values for dorsal fungiform papillae were 0.438 +/- 0.246 mm3, 4.39 +/- 4.78, and 14.0 +/- 17.1 buds/mm3, respectively. Circumvallate papillae were found to have a significantly greater volume, number of taste buds per papilla, and taste bud density than either type of fungiform papilla. These data should serve as background for biochemical, endocrinological, or neurological studies involving the bovine tongue.  相似文献   

15.
Do Unique Proteins Exist in Taste Buds?   总被引:2,自引:1,他引:1  
Proteins in papillae on the bovine tongue were analyzed by semi-micro, polyacrylamide gel electrophoresis. All the proteins in the papillae with taste buds were observed to be common to proteins in the surrounding epithelium without taste buds. The protein band which was reported to form a weak complex with compounds called sweet by man was also found in all parts of the tongue epithelium. The receptor molecules for chemical stimuli may be distributed in all the cells of the tongue epithelium or the content of receptor molecules in taste bud papillae may be extremely low.  相似文献   

16.
Mash1, a mammalian homologue of the Drosophila achaete-scute proneural gene complex, plays an essential role in differentiation of subsets of peripheral neurons. In this study, using RT-PCR and in situ RT-PCR, we investigated if Mash1 gene expression occurs in rat taste buds. Further, we examined dynamics of Mash1 expression in the process of degeneration and regeneration in denervated rat taste buds. In rat tongue epithelium, Mash1 gene expression is confined to circumvallate, foliate, and fungiform papilla epithelia that include taste buds. In taste buds, Mash1-expressing cells are round cells in the basal compartment. In contrast, the mature taste bud cells do not express the Mash1 gene. Denervation and regeneration experiments show that the expression of Mash1 requires gustatory innervation. We conclude that Mash1 is expressed in cells of the taste bud lineage, and that the expression of Mash1 in rat taste buds is dependent upon gustatory innervation.  相似文献   

17.
In almost all mammals a well developed, paired and blind ending vomeronasal Organ (VNO) situated within the basement of the nasal septum, communicates with the oral cavity. This contact is established by two nasopalatine ducts, which penetrate the rostral palate close to the incisors. These ducts open orally into the sulcus which moulds the palatine papilla. In several mammals taste buds were found in the epithelium of the patatine papilla located within the nasopalatine ducts or close to their oral openings. Presumably these taste buds interact with the vomeronasal olfaction. It is likely that they are leading to a chemosensory sensation comparable to the combination of normal taste and smell. As not all mammals with a functionable VNO possess taste buds in this position, an inspection of the rostral part of the tongue which touches the palatine papilla presented an interesting situation concerning the distribution of taste buds. This region of the tongue is almost completely free of taste buds in species like Tupaia glis and Didelphis marsupialis virginiana, which have taste buds in the epithelium of their palatine papilla. In Lemur catta however, where the palatine papilla is lacking taste buds, the respective tongue part is densely covered with them. In this case it appears likely that they in a way of substitution functionally are connected with vomeronasal olfaction.  相似文献   

18.
Apoptotic cells in the taste buds of mouse circumvallate papillae after the sectioning of bilateral glossopharyngeal nerves were examined by the method of DNA nick-end labeling (TUNEL), together with standard electron microscopy. The taste buds decreased in number and size 3–11 days after denervation and disappeared at 11 days. The TUNEL method revealed only a few positively stained nuclei in normal taste buds but, in those of mice 1–5 days after denervation, the number of positive nuclei had increased to 3–5 times that of taste buds from normal mice. Electron-microscopic observation after denervation demonstrated taste bud cells containing condensed and fragmentary nuclei in a cytoplasm with increased density. The results show that taste bud cells under normal conditions die by apoptosis at the end of their life span, and that gustatory nerve sectioning causes apoptosis of taste bud cells with taste buds decreasing in number and ultimately disappearing. Received: 20 November 1995 / Accepted: 15 May 1996  相似文献   

19.
Taste buds are composed of a variety of taste receptor cell types that develop from tongue epithelium and are regularly replenished under normal homeostatic conditions as well as after injury. The characteristics of cells that give rise to regenerating taste buds are poorly understood. Recent studies have suggested that Lgr5 (leucine-rich repeat-containing G-protein coupled receptor 5) identifies taste bud stem cells that contribute to homeostatic regeneration in adult circumvallate and foliate taste papillae, which are located in the posterior region of the tongue. Taste papillae in the adult anterior region of the tongue do not express Lgr5. Here, we confirm and extend these studies by demonstrating that Lgr5 cells give rise to both anterior and posterior taste buds during development, and are capable of regenerating posterior taste buds after injury induced by glossopharyngeal nerve transection.  相似文献   

20.
Chorda tympani nerve transection (CTX) results in morphological changes to fungiform papillae and associated taste buds. When transection occurs during neonatal development in the rat, the effects on fungiform taste bud and papillae structure are markedly more severe than observed following a comparable surgery in the adult rat. The present study examined the potential "sensitive period" for morphological modifications to tongue epithelium following CTX. Rats received unilateral transection at 65, 30, 25, 20, 15, 10, or 5 days of age. With each descending age at the time of transection, the effects on the structural integrity of fungiform papillae were more severe. Significant losses in total number of taste buds and filiform-like papillae were observed when transection occurred 5-30 days of age. Significant reduction in the number of taste pores was indicated at every age of transection. Another group of rats received chorda tympani transection at 10, 25, or 65 days of age to determine if the time course of taste bud degeneration differed depending on the age of the rat at the time of transection. Taste bud volumes differed significantly from intact sides of the tongue at 2, 8, and 50 days post-transection after CTX at 65 days of age. Volume measurements did not differ 2 days post-transection after CTX at 10 or 25 days of age, but were significantly reduced at the other time points. Findings demonstrate a transitional period throughout development wherein fungiform papillae are highly dependent upon the chorda tympani for maintenance of morphological integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号