首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Pterosaurs, a Mesozoic group of flying archosaurs, have become a focal point for debates pertaining to the impact of sampling biases on our reading of the fossil record, as well as the utility of sampling proxies in palaeo‐diversity reconstructions. The completeness of the pterosaur fossil specimens themselves potentially provides additional information that is not captured in existing sampling proxies, and might shed new light on the group's evolutionary history. Here we assess the quality of the pterosaur fossil record via a character completeness metric based on the number of phylogenetic characters that can be scored for all known skeletons of 172 valid species, with averaged completeness values calculated for each geological stage. The fossil record of pterosaurs is observed to be strongly influenced by the occurrence and distribution of Lagerstätten. Peaks in completeness correlate with Lagerstätten deposits, and a recovered correlation between completeness and observed diversity is rendered non‐significant when Lagerstätten species are excluded. Intervals previously regarded as potential extinction events are shown to lack Lagerstätten and exhibit low completeness values: as such, the apparent low diversity in these intervals might be at least partly the result of poor fossil record quality. A positive correlation between temporal patterns in completeness of Cretaceous pterosaurs and birds further demonstrates the prominent role that Lagerstätten deposits have on the preservation of smaller bodied organisms, contrasting with a lack of correlation with the completeness of large‐bodied sauropodomorphs. However, we unexpectedly find a strong correlation between sauropodomorph and pterosaur completeness within the Triassic–Jurassic, but not the Cretaceous, potentially relating to a shared shift in environmental preference and thus preservation style through time. This study highlights the importance of understanding the relationship between various taphonomic controls when correcting for sampling bias, and provides additional evidence for the prominent role of sampling on observed patterns in pterosaur macroevolution.  相似文献   

2.
The 24 extant crocodylian species are the remnants of a once much more diverse and widespread clade. Crocodylomorpha has an approximately 230 million year evolutionary history, punctuated by a series of radiations and extinctions. However, the group's fossil record is biased. Previous studies have reconstructed temporal patterns in subsampled crocodylomorph palaeobiodiversity, but have not explicitly examined variation in spatial sampling, nor the quality of this record. We compiled a dataset of all taxonomically diagnosable non‐marine crocodylomorph species (393). Based on the number of phylogenetic characters that can be scored for all published fossils of each species, we calculated a completeness value for each taxon. Mean average species completeness (56%) is largely consistent within subgroups and for different body size classes, suggesting no significant biases across the crocodylomorph tree. In general, average completeness values are highest in the Mesozoic, with an overall trend of decreasing completeness through time. Many extant taxa are identified in the fossil record from very incomplete remains, but this might be because their provenance closely matches the species’ present‐day distribution, rather than through autapomorphies. Our understanding of nearly all crocodylomorph macroevolutionary ‘events’ is essentially driven by regional patterns, with no global sampling signal. Palaeotropical sampling is especially poor for most of the group's history. Spatiotemporal sampling bias impedes our understanding of several Mesozoic radiations, whereas molecular divergence times for Crocodylia are generally in close agreement with the fossil record. However, the latter might merely be fortuitous, i.e. divergences happened to occur during our ephemeral spatiotemporal sampling windows.  相似文献   

3.
The accurate reconstruction of palaeobiodiversity patterns is central to a detailed understanding of the macroevolutionary history of a group of organisms. However, there is increasing evidence that diversity patterns observed directly from the fossil record are strongly influenced by fluctuations in the quality of our sampling of the rock record; thus, any patterns we see may reflect sampling biases, rather than genuine biological signals. Previous dinosaur diversity studies have suggested that fluctuations in sauropodomorph palaeobiodiversity reflect genuine biological signals, in comparison to theropods and ornithischians whose diversity seems to be largely controlled by the rock record. Most previous diversity analyses that have attempted to take into account the effects of sampling biases have used only a single method or proxy: here we use a number of techniques in order to elucidate diversity. A global database of all known sauropodomorph body fossil occurrences (2024) was constructed. A taxic diversity curve for all valid sauropodomorph genera was extracted from this database and compared statistically with several sampling proxies (rock outcrop area and dinosaur‐bearing formations and collections), each of which captures a different aspect of fossil record sampling. Phylogenetic diversity estimates, residuals and sample‐based rarefaction (including the first attempt to capture ‘cryptic’ diversity in dinosaurs) were implemented to investigate further the effects of sampling. After ‘removal’ of biases, sauropodomorph diversity appears to be genuinely high in the Norian, Pliensbachian–Toarcian, Bathonian–Callovian and Kimmeridgian–Tithonian (with a small peak in the Aptian), whereas low diversity levels are recorded for the Oxfordian and Berriasian–Barremian, with the Jurassic/Cretaceous boundary seemingly representing a real diversity trough. Observed diversity in the remaining Triassic–Jurassic stages appears to be largely driven by sampling effort. Late Cretaceous diversity is difficult to elucidate and it is possible that this interval remains relatively under‐sampled. Despite its distortion by sampling biases, much of sauropodomorph palaeobiodiversity can be interpreted as a reflection of genuine biological signals, and fluctuations in sea level may account for some of these diversity patterns.  相似文献   

4.
Many palaeobiological analyses have concluded that modern birds (Neornithes) radiated no earlier than the Maastrichtian, whereas molecular clock studies have argued for a much earlier origination. Here, we assess the quality of the fossil record of Mesozoic avian species, using a recently proposed character completeness metric which calculates the percentage of phylogenetic characters that can be scored for each taxon. Estimates of fossil record quality are plotted against geological time and compared to estimates of species level diversity, sea level, and depositional environment. Geographical controls on the avian fossil record are investigated by comparing the completeness scores of species in different continental regions and latitudinal bins. Avian fossil record quality varies greatly with peaks during the Tithonian-early Berriasian, Aptian, and Coniacian-Santonian, and troughs during the Albian-Turonian and the Maastrichtian. The completeness metric correlates more strongly with a 'sampling corrected' residual diversity curve of avian species than with the raw taxic diversity curve, suggesting that the abundance and diversity of birds might influence the probability of high quality specimens being preserved. There is no correlation between avian completeness and sea level, the number of fluviolacustrine localities or a recently constructed character completeness metric of sauropodomorph dinosaurs. Comparisons between the completeness of Mesozoic birds and sauropodomorphs suggest that small delicate vertebrate skeletons are more easily destroyed by taphonomic processes, but more easily preserved whole. Lagerst?tten deposits might therefore have a stronger impact on reconstructions of diversity of smaller organisms relative to more robust forms. The relatively poor quality of the avian fossil record in the Late Cretaceous combined with very patchy regional sampling means that it is possible neornithine lineages were present throughout this interval but have not yet been sampled or are difficult to identify because of the fragmentary nature of the specimens.  相似文献   

5.
Foote M  Raup DM 《Paleobiology》1996,22(2):121-140
The incompleteness of the fossil record hinders the inference of evolutionary rates and patterns. Here, we derive relationships among true taxonomic durations, preservation probability, and observed taxonomic ranges. We use these relationships to estimate original distributions of taxonomic durations, preservation probability, and completeness (proportion of taxa preserved), given only the observed ranges. No data on occurrences within the ranges of taxa are required. When preservation is random and the original distribution of durations is exponential, the inference of durations, preservability, and completeness is exact. However, reasonable approximations are possible given non-exponential duration distributions and temporal and taxonomic variation in preservability. Thus, the approaches we describe have great potential in studies of taphonomy, evolutionary rates and patterns, and genealogy. Analyses of Upper Cambrian-Lower Ordovician trilobite species, Paleozoic crinoid genera, Jurassic bivalve species, and Cenozoic mammal species yield the following results: (1) The preservation probability inferred from stratigraphic ranges alone agrees with that inferred from the analysis of stratigraphic gaps when data on the latter are available. (2) Whereas median durations based on simple tabulations of observed ranges are biased by stratigraphic resolution, our estimates of median duration, extinction rate, and completeness are not biased.(3) The shorter geologic ranges of mammalian species relative to those of bivalves cannot be attributed to a difference in preservation potential. However, we cannot rule out the contribution of taxonomic practice to this difference. (4) In the groups studied, completeness (proportion of species [trilobites, bivalves, mammals] or genera [crinoids] preserved) ranges from 60% to 90%. The higher estimates of completeness at smaller geographic scales support previous suggestions that the incompleteness of the fossil record reflects loss of fossiliferous rock more than failure of species to enter the fossil record in the first place.  相似文献   

6.
The Mesozoic fossil record has proved critical for understanding the early evolution and subsequent radiation of birds. Little is known, however, about its relative completeness: just how 'good' is the fossil record of birds from the Mesozoic? This question has come to prominence recently in the debate over differences in estimated dates of origin of major clades of birds from molecular and palaeontological data. Using a dataset comprising all known fossil taxa, we present analyses that go some way towards answering this question. Whereas avian diversity remains poorly represented in the Mesozoic, many relatively complete bird specimens have been discovered. New taxa have been added to the phylogenetic tree of basal birds, but its overall shape remains constant, suggesting that the broad outlines of early avian evolution are consistently represented: no stage in the Mesozoic is characterized by an overabundance of scrappy fossils compared with more complete specimens. Examples of Neornithes (modern orders) are known from later stages in the Cretaceous, but their fossils are rarer and scrappier than those of basal bird groups, which we suggest is a biological, rather than a geological, signal.  相似文献   

7.
Bridging the gap between the fossil record and conservation biology has recently become of great interest. The enormous number of documented extinctions across different taxa can provide insights into the extinction risk of living species. However, few studies have explored this connection. We used generalised boosted modelling to analyse the impact of several traits that are assumed to influence extinction risk on the stratigraphic duration of amphibian species in the fossil record. We used this fossil‐calibrated model to predict the extinction risk for living species. We observed a high consensus between our predicted species durations and the current IUCN Red List status of living amphibian species. We also found that today's Data Deficient species are mainly predicted to experience short durations, hinting at their likely high threat status. Our study suggests that the fossil record can be a suitable tool for the evaluation of current taxa‐specific Red Listing status.  相似文献   

8.
9.
Non‐avian theropods were a highly successful clade of bipedal, predominantly carnivorous, dinosaurs. Their diversity and macroevolutionary patterns have been the subject of many studies. Changes in fossil specimen completeness through time and space can bias our understanding of macroevolution. Here, we quantify the completeness of 455 non‐avian theropod species using the skeletal completeness metric (SCM), which calculates the proportion of a complete skeleton preserved for a specimen. Temporal patterns of theropod skeletal completeness show peaks in the Carnian, Oxfordian–Kimmeridgian and Barremian–Aptian, and lows in the Berriasian and Hauterivian. Lagerstätten primarily drive the peaks in completeness and observed taxonomic diversity in the Oxfordian–Kimmeridgian and the Barremian–Aptian. Theropods have a significantly lower distribution of completeness scores than contemporary sauropodomorph dinosaurs but change in completeness through time for the two groups shows a significant correlation when conservation Lagerstätten are excluded, possibly indicating that both records are primarily driven by geology and sampling availability. Our results reveal relatively weak temporal sampling biases acting on the theropod record but relatively strong spatial and environmental biases. Asia has a significantly more complete record than any other continent, the mid northern latitudes have the highest abundance of finds, and most complete theropod skeletons come from lacustrine and aeolian environments. We suggest that these patterns result from historical research focus, modern climate dynamics, and depositional transportation energy plus association with conservation Lagerstätten, respectively. Furthermore, we find possible ecological biases acting on different theropod subgroups, but body size does not influence theropod completeness on a global scale.  相似文献   

10.
Actinopterygii (ray‐finned fishes) and Elasmobranchii (sharks, skates and rays) represent more than half of today's vertebrate taxic diversity (approximately 33000 species) and form the largest component of vertebrate diversity in extant aquatic ecosystems. Yet, patterns of ‘fish’ evolutionary history remain insufficiently understood and previous studies generally treated each group independently mainly because of their contrasting fossil record composition and corresponding sampling strategies. Because direct reading of palaeodiversity curves is affected by several biases affecting the fossil record, analytical approaches are needed to correct for these biases. In this review, we propose a comprehensive analysis based on comparison of large data sets related to competing phylogenies (including all Recent and fossil taxa) and the fossil record for both groups during the Mesozoic–Cainozoic interval. This approach provides information on the ‘fish’ fossil record quality and on the corrected ‘fish’ deep‐time phylogenetic palaeodiversity signals, with special emphasis on diversification events. Because taxonomic information is preserved after analytical treatment, identified palaeodiversity events are considered both quantitatively and qualitatively and put within corresponding palaeoenvironmental and biological settings. Results indicate a better fossil record quality for elasmobranchs due to their microfossil‐like fossil distribution and their very low diversity in freshwater systems, whereas freshwater actinopterygians are diverse in this realm with lower preservation potential. Several important diversification events are identified at familial and generic levels for elasmobranchs, and marine and freshwater actinopterygians, namely in the Early–Middle Jurassic (elasmobranchs), Late Jurassic (actinopterygians), Early Cretaceous (elasmobranchs, freshwater actinopterygians), Cenomanian (all groups) and the Paleocene–Eocene interval (all groups), the latter two representing the two most exceptional radiations among vertebrates. For each of these events along with the Cretaceous‐Paleogene extinction, we provide an in‐depth review of the taxa involved and factors that may have influenced the diversity patterns observed. Among these, palaeotemperatures, sea‐levels, ocean circulation and productivity as well as continent fragmentation and environment heterogeneity (reef environments) are parameters that largely impacted on ‘fish’ evolutionary history, along with other biotic constraints.  相似文献   

11.
Morphometric and stratigraphic analyses that encompass the known fossil record of enantiornithine birds (Enantiornithes) are presented. These predominantly flighted taxa were the dominant birds of the second half of the Mesozoic; the enantiornithine lineage is known to have lasted for at least 60 million years (Ma), up until the end of the Cretaceous. Analyses of fossil record dynamics show that enantiornithine 'collectorship' since the 1980s approaches an exponential distribution, indicating that an asymptote in proportion of specimens has yet to be achieved. Data demonstrate that the fossil record of enantiornithines is complete enough for the extraction of biological patterns. Comparison of the available fossil specimens with a large data set of modern bird (Neornithes) limb proportions also illustrates that the known forelimb proportions of enantiornithines fall within the range of extant taxa; thus these birds likely encompassed the range of flight styles of extant birds. In contrast, most enantiornithines had hindlimb proportions that differ from any extant taxa. To explore this, ternary diagrams are used to graph enantiornithine limb variation and to identify some morphological oddities ( Otogornis , Gobipteryx ); taxa not directly comparable to modern birds. These exceptions are interesting – although anatomically uniform, and similar to extant avians in their wing proportions, some fossil enantiornithines likely had flight styles not seen among their living counterparts.  相似文献   

12.
Bats (Chiroptera) are one of the most successful extant mammalian orders, uniquely capable of powered flight and laryngeal echolocation. The timing and evidence for evolution of their novel adaptations have been difficult to ascertain from the fossil record due to chronological gaps and the fragmentary nature of most fossil bat material. Here, we quantify the quality of the bat fossil record using skeletal and character completeness metrics, which respectively document for each taxon what proportion of a complete skeleton is preserved, and the proportion of phylogenetic characters that can be scored. Completeness scores were collected for 441 valid fossil bat species in 167 genera from the Eocene to the Pleistocene. All metrics record similar temporal patterns: peak completeness in the Lutetian stage reflects the presence of Lagerstätten, while subsequent stages have very low completeness, except an Aquitanian high and a Pleistocene peak in skeletal completeness. Bat completeness is not correlated with intensity of sampling through geological time but has a weak negative correlation with publication date. There is no correlation between taxonomic richness and completeness, as the bat record predominately consists of diagnostic but isolated teeth. Consequently, bat skeletal completeness is the lowest of any previously assessed tetrapod group, but character completeness is similar to parareptiles and birds. Bats have significantly higher character completeness in the northern hemisphere, probably due to heightened historical interest and presence of Lagerstätten. Taxa derived from caves are more complete than those from fluviolacustrine and marine deposits, but do not preserve highly complete specimens.  相似文献   

13.
The quality of the fossil record affects our understanding of macroevolutionary patterns. Palaeodiversity is filtered through geological and human processes; efforts to correct for these biases are part of a debate concerning the role of sampling proxies and standardization in biodiversity models. We analyse the fossil record of mosasaurs in terms of fossil completeness as a measure of fossil quality, using three novel, correlating metrics of fossil completeness and 4083 specimens. A new qualitative measure of character completeness (QCM) correlates with the phylogenetic character completeness metric. Mean completeness by species decreases with specimen count; average completeness by substage varies significantly. Mean specimen completeness is higher for species‐named fossils than those identified to genus and family. We consider the effect of tooth‐only specimens. Importantly, we find that completeness of species does not correlate with completeness of specimens. Completeness varies by palaeogeography: North American specimens show higher completeness than those from Eurasia and Gondwana. These metrics can be used to identify exceptional preservation; specimen completeness varies significantly by both formation and lithology. The Belgian Ciply Formation displays the highest completeness; clay lithologies show higher completeness values. Neither species diversity nor sea level correlates significantly with fossil completeness. A generalized least squares (GLS) analysis using multiple variables agrees with this result, but reveals two variables with significant predictive value for modelling averaged diversity: sea level, and mosasaur and plesiosaur‐bearing formations (the latter is redundant with diversity). Mosasaur completeness is not driven by sea level, nor does completeness limit the mosasaur diversity signal.  相似文献   

14.
Ichthyosaurs were highly successful marine reptiles with an abundant and well‐studied fossil record. However, their occurrences through geological time and space are sporadic, and it is important to understand whether times of apparent species richness and rarity are real or the result of sampling bias. Here, we explore the skeletal completeness of 351 dated and identified ichthyosaur specimens, belonging to all 102 species, the first time that such a study has been carried out on vertebrates from the marine realm. No correlations were found between time series of different skeletal metrics and ichthyosaur diversity. There is a significant geographical variation in completeness, with the well‐studied northern hemisphere producing fossils of much higher quality than the southern hemisphere. Medium‐sized ichthyosaurs are significantly more complete than small or large taxa: the incompleteness of small specimens was expected, but it was a surprise that larger specimens were also relatively incomplete. Completeness varies greatly between facies, with fine‐grained, siliciclastic sediments preserving the most complete specimens. These findings may explain why the ichthyosaur diversity record is low at times, corresponding to facies of poor preservation potential, such as in the Early Cretaceous. Unexpectedly, we find a strong negative correlation between skeletal completeness and sea level, meaning the most complete specimens occurred at times of global low sea level, and vice versa. Completeness metrics, however, do not replicate the sampling signal and have limited use as a global‐scale sampling proxy.  相似文献   

15.
《Palaeoworld》2008,17(2):142-152
The important question of early angiosperm growth habit (i.e., trees, shrubs or herbs?) remains unanswered. Various theories have been based on data from both living and fossil plants. The Early Cretaceous fossil wood record, however, was seldom used to investigate early angiosperm habit. We set up a database for the Early Cretaceous and Cenomanian of Europe, as this area has the most complete and stratigraphically well-constrained record. The database has 170 entries, based on a bibliographical survey and on the examination of more than 600 new fossil wood specimens from a wide range of palaeoenvironments. In our record the woody characteristic in angiosperms appeared during the Albian, whereas most of the angiosperm's early evolution took place earlier, during the earliest Cretaceous. From the European fossil wood record for the Early Cretaceous and Cenomanian, the global extension and dominance of angiosperms in the Cenomanian is concomitant with a sharp increase in heteroxylous wood diversity. It appears that small stature and weak wood limited the angiosperm ecological radiation for some time.  相似文献   

16.
One way the effects of both ecology and environment on species can be observed in the fossil record is as changes in geographical distribution and range size. The prevalence of competitive interactions and species replacements in the fossil record has long been investigated and many evolutionary perspectives, including those of Darwin, have emphasized the importance of competitive interactions that ultimately lead one species to replace another. However, evidence for such phenomena in the fossil record is not always manifest. Here we use new quantitative analytical techniques based on Geographical Information Systems and PaleoGIS tectonic reconstructions to consider this issue in greater detail. The abundant, well-preserved fossil marine vertebrates of the Late Cretaceous Western Interior Seaway of North America provide the component data for this study. Statistical analysis of distributional and range size changes in taxa confirms earlier ideas that the relative frequency of competitive replacement in the fossil record is limited to non-existent. It appears that typically, environmental gradients played the primary role in determining species distributions, with competitive interactions playing a more minor role.  相似文献   

17.
Bats are unique among mammals in their use of powered flight and their widespread capacity for laryngeal echolocation. Understanding how and when these and other abilities evolved could be improved by examining the bat fossil record. However, the fossil record of bats is commonly believed to be very poor. Quantitative analyses of this record have rarely been attempted, so it has been difficult to gauge just how depauperate the bat fossil record really is. A crucial step in analyzing the quality of the fossil record is to be able to accurately estimate completeness. Measures of completeness of the fossil record have important consequences for our understanding of evolutionary rates and patterns among bats. In this study, we applied previously developed statistical methods of analyzing completeness to the bat fossil record. The main utility of these methods over others used to study completeness is their independence from phylogeny. This phylogenetic-independence is desirable, given the recent state of flux in the higher-level phylogenetic relationships of bats. All known fossil bat genera were tabulated at the geologic stage or sub-epoch level. This binning strategy allowed an estimate of the extinction rate for each bat genus per bin. Extinction rate—together with per-genus estimates of preservation probability and original temporal distributions—was used to calculate completeness. At the genus level, the bat fossil record is estimated to be 12% complete. Within the order, Pteropodidae is missing most of its fossil history, while Rhinolophoidea and Vespertilionoidea are missing the least. These results suggest that 88% of bats that existed never left a fossil record, and that the fossil record of bats is indeed poor. Much of the taxonomic and evolutionary history of bats has yet to be uncovered.  相似文献   

18.
We report here on new cranial data relevant to hominoid taxonomic analyses, based on a study of 438 skulls belonging to 13 nonhuman living hominoid taxa. Nineteen landmarks were selected to describe the overall shape of the maxillofacial complex, in order to investigate its discriminative power in taxonomic analyses. We used a geometric morphometrics approach to depict morphological variation from the genus down to the subspecific level, and we evaluated whether our morphologic criteria are relevant to discriminating species and subspecies among living hominoids. Considering previous genetic studies, we discuss whether our results can be extrapolated to the hominin fossil record, providing a reference for species and subspecies morphologic differentiation. Our results indicate that the relative warp method, as applied to facial landmarks, provides a powerful tool to discriminate taxa down to a subspecific level. Results show a noticeable divergence of P. t. verus compared to P. t. troglodytes and P. t. schweinfurthii. According to our data, the distance between eastern and western gorilla populations as well as between Bornean and Sumatran orangutan subspecies is as great as between the two species of Pan. In the same manner, differences between Hylobates and Symphalangus are similar to those between Pan and Gorilla genera. Congruence between the morphological distances computed in this study and previous morphological and genetical studies strongly supports their relevance for morphological species recognition in paleoanthropology. Our data provide an objective standard for assessing taxonomic differences among hominoids, and will enable us to define more precisely the significance of morphological differences in the fossil record.  相似文献   

19.
Only one species of Elasmobranchii, Ptychodus cyclodontis Mutter, Iturralde-Vinent and Carmona (2005), has been reported so far from the Late Cretaceous of Cuba. Herein we describe the first record of a Maastrichtian Serratolamna serrata (Agassiz, 1843) as well as non-diagnostic remains which include a tooth referred to a lamniform shark and an isolated vertebra of an indeterminate elasmobranch. These fossils expand the temporal distribution of Cretaceous fossil sharks known from Cuba and increase our understanding of the group’s fossil diversity.  相似文献   

20.

Choice of method in phylogenetic analysis should involve some consideration of the quality or completeness of the available fossil record. If it is poor, cladistic methods are preferable; if it is good, stratophenetic methods may be valid. A concept of paleontological completeness, defined herein, is useful for judging the quality of a given fossil record. This paper considers eight possible measures of paleontological completeness, and evaluates their value as phylogenetically useful estimates of the quality of the fossil record. Of the eight measures, Sadler‐Schindel type analysis of stratigraphic completeness and analysis of geographic ranges appear to be the most useful and reliable. The remaining six are useful only as rough approximations of the quality of the record, or as supporting evidence for conclusions based on other methods. Use of these eight measures on the lower Tertiary molluscan record of the U.S. Gulf and Atlantic coastal plains indicates that this record is approximately 30–50% complete. This is probably not complete enough to trust purely stratophenetic approaches to phylogenetic analysis, but is too complete to ignore the record in favor of a purely atemporal, cladistic approach. The concept of paleontological completeness may be useful in estimating the quality of this and other fossil records for non‐phylogenetic purposes, such as studies of evolutionary rates and diversity and extinction patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号