首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 453 毫秒
1.
目的:检测脊神经切断大鼠背根节(DRG)神经元重复放电能力和钠电流的变化,并研究介导其电流变化的钠通道亚型的表达情况。方法:脊神经切断术后2~8d慢性痛大鼠模型背根节急性分离,对中等直径DRG神经元运用全细胞膜片钳技术记录神经元放电和钠电流的变化。对背根节神经元进行RT-PCR检测,分析其钠通道亚型的表达情况。结果:电流钳下,实验组DRG神经元在电流刺激下产生重复放电,而对照组神经元多诱发单个动作电位,电压钳记录发现实验组背根节神经元快钠电流和持续性钠电流幅值均明显大于对照组,PCR结果显示,Nav1.3、Nav1.7和Nav1.8通道亚型mRNA表达显著增高。结论:钠通道介导了脊神经受损模型的DRG神经元兴奋性增高,持续性钠电流可能通过调节阈下膜电位振荡的产生调节神经元兴奋性。  相似文献   

2.
缓激肽对背根节神经元钠通道电流的作用   总被引:1,自引:0,他引:1  
目的:观察缓激肽(bradykinin,BK)对大鼠背根节神经元电压依赖性钠通道电流的作用。方法:采用全细胞膜片钳技术,记录钠通道电流。结果:缓激肽剂量依赖性(0.01~10μmol/L)增高小细胞背根节神经元诱发放电频率;缓激肽剂量依赖性(O.01~10μmol/L)增加小细胞背根节神经元的河豚毒素不敏感(TTX—resistant,TTX—R)钠电流,对TTX敏感(TTX—sensitive,TTX-S)钠电流无明显影响。结论:缓激肽引起炎性痛的机制可能与TTX-R钠通道电流有关。  相似文献   

3.
目的:观察人参皂甙Rd(ginsenoside Rd)对大鼠坐骨神经分支选择性损伤(spared sciatic nerve injury,SNI)引起的痛敏的影响及其作用机制。方法:坐骨神经分支选择性损伤术后7天,观察腹腔注射不同浓度人参皂甙Rd后大鼠后足的机械性缩足反应阈值(paw withdrawl mechanical threshold,PWMT)的变化;在术后7天,急性分离并取出大鼠腰4和腰5段背根节,对整节DRG上的中小型神经元运用全细胞膜片钳技术进行记录。结果:坐骨神经分支选择性损伤术后7天,大鼠出现明显的机械性痛敏,腹腔注射5 mg/ml和10 mg/ml的人参皂甙Rd能剂量依赖性的翻转大鼠机械性痛敏;坐骨神经分支选择性损伤能明显地增大SNI大鼠DRG中小型神经元上的钠电流以及减小电压依赖性钾电流,而100μM人参皂甙Rd能有效翻转该钠、钾电流的变化。结论:人参皂甙Rd能有效地改善坐骨神经分支选择性损伤引起的机械性痛敏,其机制可能与人参皂甙Rd明显地调节SNI大鼠DRG中小型神经元上的电压依赖性钠、钾电流有关。  相似文献   

4.
目的:观察人参皂甙Rd(ginsenoside Rd)对大鼠坐骨神经分支选择性损伤(spared sciatic nerve injury,SNI)引起的痛敏的影响及其作用机制。方法:坐骨神经分支选择性损伤术后7天,观察腹腔注射不同浓度人参皂甙Rd后大鼠后足的机械性缩足反应阈值(paw withdrawl mechanical threshold,PWMT)的变化;在术后7天,急性分离并取出大鼠腰4和腰5段背根节,对整节DRG上的中小型神经元运用全细胞膜片钳技术进行记录。结果:坐骨神经分支选择性损伤术后7天,大鼠出现明显的机械性痛敏,腹腔注射5 mg/ml和10 mg/ml的人参皂甙Rd能剂量依赖性的翻转大鼠机械性痛敏;坐骨神经分支选择性损伤能明显地增大SNI大鼠DRG中小型神经元上的钠电流以及减小电压依赖性钾电流,而100μM人参皂甙Rd能有效翻转该钠、钾电流的变化。结论:人参皂甙Rd能有效地改善坐骨神经分支选择性损伤引起的机械性痛敏,其机制可能与人参皂甙Rd明显地调节SNI大鼠DRG中小型神经元上的电压依赖性钠、钾电流有关。  相似文献   

5.
藜芦碱和乌头碱在受损背根节神经元诱发不同的放电模式   总被引:4,自引:0,他引:4  
Duan JH  Xing JL  Yang J  Hu SJ 《生理学报》2005,57(2):169-174
为了研究钠通道失活门阻断后受损背根节神经元放电模式的变化特征,在大鼠背根节慢性压迫模型上采用单纤维技术记录A类神经元的自发放电。藜芦碱和乌头碱是钠通道失活门的抑制剂,但二者作用于不同的位点,前者结合于D2-S6,后者结合于D3-S6。我们比较了这两种试剂引发的放电模式。结果发现,在同一神经元,藜芦碱(1.5~5.0μmol/L)可以引起放电峰峰间期的慢波振荡,即峰峰间期由大逐渐减小,然后又逐渐增大,形成重复的振荡波形,每个振荡持续约数十秒至数分钟:而乌头碱(10~200μmol/L)则引起强直性放电,即峰峰间期逐渐减小,然后维持在一个稳定的水平。这两种不同的放电模式不因背景放电或试剂浓度的不同而发生明显的改变。实验结果表明,藜芦碱和乌头碱在受损的背根节神经元可以引发不同的放电模式,这可能与它们结合于钠通道上不同位点的抑制作用有关。  相似文献   

6.
Yan N  Li XH  Cheng Q  Yan J  Ni X  Sun JH 《生理学报》2007,59(2):240-246
慢性压迫大鼠背根神经节(chronic compression of the dorsal root,ganglion,CCD)后,背根神经节细胞兴奋性升高,但引起神经元兴奋性改变的离子通道机制还需进一步探索。本实验采用胞内记录以及全细胞膜片钳记录方法,研究急性分离的大鼠背根神经节细胞兴奋性改变与瞬时外向钾电流(A-type potassium current,ⅠA)的关系。结果表明,CCD术后背根神经节细胞兴奋性升高,在急性分离的体外细胞中仍继续存在,表现为对辣椒素敏感的背根神经节细胞产生动作电位的最小电流刺激强度,即阈电流(current threshold)及阈电位(voltage threshold)降低;给予正常对照组神经元(未压迫损伤)瞬时外向钾通道阻断剂4-氨基吡啶,出现了类似CCD术后兴奋性升高的改变。进一步用两步电压钳方法分离ⅠA,研究CCD术后神经元ⅠA的变化,结果表明,CCD组神经元的ⅠA比对照组神经元ⅠA降低,并且与其阈电位的改变一致。以上结果提示,背根神经节压迫受损后,神经节细胞ⅠA降低可能参与介导了神经节细胞兴奋性的升高。  相似文献   

7.
目的:观察坐骨神经慢性压榨损伤(CCI)致神经病理痛后,大鼠背根节神经元GABAA受体(γ-氨基丁酸A受体)激活电流的变化。方法:运用全细胞膜片钳技术记录CCI模型手术侧、手术对侧及假手术组大鼠背根神经节细胞GABAx受体激活电流,比较坐骨神经慢性压榨损伤后GABAA受体激活电流的变化。结果:①CCI模型组大鼠手术侧DRG神经元在不同浓度(0.1-1000μmol/L)GABAA受体激活电流幅值均显著小于假手术组。②CCI模型组大鼠手术对侧DRG神经元在不同浓度(0.01-1000μmol/L)GABAA受体激活电流幅值均显著大于手术同侧及假手术组。结论:在坐骨神经慢性压榨损伤的过程中,不仅损伤侧的DRG神经元GABAA受体激活电流显著减小,这种损伤同时还引起了手术对侧的DRG神经元GABA激活电流代偿性的增强,GABAA受体功能的改变导致的突触前抑制作用的减弱可能是神经病理痛产生的根本原因之一。  相似文献   

8.
藜芦碱引起神经元放电峰峰间期慢波振荡   总被引:4,自引:0,他引:4  
为了研究Na通道失活门与受损背根节神经元放电型式的关系,在大鼠背根节慢性压迫模型上记录单纤维自发放电,观察与分析了Na通道失活门抑制剂藜芦碱(veratridine)引起峰峰间期慢波振荡的型式的特征。结果表明:在阻断Na通道失活门之后,受损背根节神经元产生的慢波振荡具有变化幅度大和振荡时程长的特征,可分成Ⅴ,倒П,整数倍,弥散和复合等5种基本形式。  相似文献   

9.
《生命科学研究》2016,(3):196-201
敬钊毒素-Ⅲ(JingzhaotoxinⅢ,JZTX-Ⅲ)是从敬钊缨毛蛛毒液中分离到的一种门控调节型毒素,能选择性抑制钠通道亚型Nav1.5激活,但对其他6种钠通道亚型(Nav1.1 Nav1.4 Nav1.6和Nav1.7)无抑制作用。为了更好地研究钠通道结构与功能之间的关系,采用全细胞膜片钳技术检测了JZTX-Ⅲ对表达在ND7123细胞上的Nav1.8画道的影响。结果显示,JZTX-Ⅲ抑制Nav1.8电流,并且这种抑制作用具有时间和浓度依赖性,抑制时间常数和IC_(50)值分别为41.15±0.6 s和1.4±0.23μmol/L;1μmol/JZTX-Ⅲ使Nav1.8画道的电流-电压关系曲线和激活曲线分别向去极化方向漂移10 mV和9mV,使Nav.1.8通道的稳态失活曲线向超极化方向漂移16 mV,明显改变Nav1.8通道的激活和稳态失活动力学。此外,钠通道序列比对结果提示JZTX-Ⅲ可能通过结合Nav1.8通道DIIS3~S4连接环上的Lys(K)残基抑制Nav1.8通道。以上研究结果为进一步探索钠通道结构与功能之间的关系奠定了基础。  相似文献   

10.
本文旨在研究右美托咪啶(dexmedetomidine,DEX)对慢性压迫背根神经节(chronic compression of dorsal root ganglion,CCD)引起的机械性触诱发痛的作用及机制。制备Sprague Dawley(SD)大鼠CCD模型,用痛行为学方法检测机械性触诱发痛,用全细胞膜片钳技术检测背根神经节(dorsal root ganglion,DRG)C类和A_δ类神经元兴奋性和超极化激活内向电流(hyperpolarization-activated inward currents,I_h)的变化。结果显示:鞘内注射DEX显著减轻CCD大鼠机械性触诱发痛(P0.05);在CCD大鼠DRG C类和A_δ类神经元上,DEX显著提高细胞基强度和后超极化电位,降低I_h电流密度。上述结果提示,DEX可能通过抑制C类和A_δ类DRG神经元I_h电流,降低神经元兴奋性,从而减轻神经病理性疼痛。  相似文献   

11.
We have previously reported that enhanced excitability of dorsal root ganglia (DRG) neurons contributes to the development of bone cancer pain, which severely decreases the quality of life of cancer patients. Nav1.8, a tetrodotoxin-resistant (TTX-R) sodium channel, contributes most of the sodium current underlying the action potential upstroke and accounts for most of the current in later spikes in a train. We speculate that the Nav1.8 sodium channel is a potential candidate responsible for the enhanced excitability of DRG neurons in rats with bone cancer pain. Here, using electrophysiology, Western blot and behavior assays, we documented that the current density of TTX-R sodium channels, especially the Nav1.8 channel, increased significantly in DRG neurons of rats with cancer-induced bone pain. This increase may be due to an increased expression of Nav1.8 on the membrane of DRG neurons. Accordantly, blockade of Nav1.8 sodium channels by its selective blocker A-803467 significantly alleviated the cancer-induced mechanical allodynia and thermal hyperalgesia in rats. Taken together, these results suggest that functional upregulation of Nav1.8 channels on the membrane of DRG neurons contributes to the development of cancer-induced bone pain.  相似文献   

12.
13.
Voltage-gated sodium channels (VGSCs) in primary sensory neurons play a key role in transmitting pain signals to the central nervous system. BmK I, a site-3 sodium channel-specific toxin from scorpion Buthus martensi Karsch, induces pain behaviors in rats. However, the subtypes of VGSCs targeted by BmK I were not entirely clear. We therefore investigated the effects of BmK I on the current amplitude, gating and kinetic properties of Nav1.8, which is associated with neuronal hyperexcitability in DRG neurons. It was found that BmK I dose-dependently increased Nav1.8 current in smallsized (<25 μm) acutely dissociated DRG neurons, which correlated with its inhibition on both fast and slow inactivation. Moreover, voltage-dependent activation and steady-state inactivation curves of Nav1.8 were shifted in a hyperpolarized direction. Thus, BmK I reduced the threshold of neuronal excitability and increased action potential firing in DRG neurons. In conclusion, our data clearly demonstrated that BmK I modulated Nav1.8 remarkably, suggesting BmK I as a valuable probe for studying Nav1.8. And Nav1.8 is an important target related to BmK I-evoked pain.  相似文献   

14.
Inflammation is known to be responsible for the sensitization of peripheral sensory neurons, leading to spontaneous pain and invalidating pain hypersensitivity. Given its role in regulating neuronal excitability, the voltage-gated Nav1.9 channel is a potential target for the treatment of pathological pain, but its implication in inflammatory pain is yet not fully described. In the present study, we examined the role of the Nav1.9 channel in acute, subacute and chronic inflammatory pain using Nav1.9-null mice and Nav1.9 knock-down rats. In mice we found that, although the Nav1.9 channel does not contribute to basal pain thresholds, it plays an important role in heat pain hypersensitivity induced by subacute paw inflammation (intraplantar carrageenan) and chronic ankle inflammation (complete Freund's adjuvant-induced monoarthritis). We showed for the first time that Nav1.9 also contributes to mechanical hypersensitivity in both models, as assessed using von Frey and dynamic weight bearing tests. Consistently, antisense-based Nav1.9 gene silencing in rats reduced carrageenan-induced heat and mechanical pain hypersensitivity. While no changes in Nav1.9 mRNA levels were detected in dorsal root ganglia (DRGs) during subacute and chronic inflammation, a significant increase in Nav1.9 immunoreactivity was observed in ipsilateral DRGs 24 hours following carrageenan injection. This was correlated with an increase in Nav1.9 immunolabeling in nerve fibers surrounding the inflamed area. No change in Nav1.9 current density could be detected in the soma of retrolabeled DRG neurons innervating inflamed tissues, suggesting that newly produced channels may be non-functional at this level and rather contribute to the observed increase in axonal transport. Our results provide evidence that Nav1.9 plays a crucial role in the generation of heat and mechanical pain hypersensitivity, both in subacute and chronic inflammatory pain models, and bring new elements for the understanding of its regulation in those models.  相似文献   

15.
Altered function of Na+ channels is responsible for increased hyperexcitability of primary afferent neurons that may underlie pathological pain states. Recent evidence suggests that the Nav1.9 subunit is implicated in inflammatory but not acute pain. However, the contribution of Nav1.9 channels to the cellular events underlying nociceptor hyperexcitability is still unknown, and there remains much uncertainty as to the biophysical properties of Nav1.9 current and its modulation by inflammatory mediators. Here, we use gene targeting strategy and computer modeling to identify Nav1.9 channel current signature and its impact on nociceptors' firing patterns. Recordings using internal fluoride in small DRG neurons from wild-type and Nav1.9-null mutant mice demonstrated that Nav1.9 subunits carry the TTX-resistant "persistent" Na+ current called NaN. Nav1.9(-/-) nociceptors showed no significant change in the properties of the slowly inactivating TTX-resistant SNS/Nav1.8 current. The loss in Nav1.9-mediated Na+ currents was associated with the inability of small DRG neurons to generate a large variety of electrophysiological behaviors, including subthreshold regenerative depolarizations, plateau potentials, active hyperpolarizing responses, oscillatory bursting discharges, and bistable membrane behaviors. We further investigated, using CsCl- and KCl-based pipette solutions, whether G-protein signaling pathways and inflammatory mediators upregulate the NaN/Nav1.9 current. Bradykinin, ATP, histamine, prostaglandin-E2, and norepinephrine, applied separately at maximal concentrations, all failed to modulate the Nav1.9 current. However, when applied conjointly as a soup of inflammatory mediators they rapidly potentiated Nav1.9 channel activity, generating subthreshold amplification and increased excitability. We conclude that Nav1.9 channel, the molecular correlate of the NaN current, is potentiated by the concerted action of inflammatory mediators that may contribute to nociceptors' hyperexcitability during peripheral inflammation.  相似文献   

16.
17.

Background

Members of the degenerin/epithelial (DEG/ENaC) sodium channel family are mechanosensors in C elegans, and Nav1.7 and Nav1.8 voltage-gated sodium channel knockout mice have major deficits in mechanosensation. ?? and ??ENaC sodium channel subunits are present with acid sensing ion channels (ASICs) in mammalian sensory neurons of the dorsal root ganglia (DRG). The extent to which epithelial or voltage-gated sodium channels are involved in transduction of mechanical stimuli is unclear.

Results

Here we show that deleting ?? and ??ENaC sodium channels in sensory neurons does not result in mechanosensory behavioural deficits. We had shown previously that Nav1.7/Nav1.8 double knockout mice have major deficits in behavioural responses to noxious mechanical pressure. However, all classes of mechanically activated currents in DRG neurons are unaffected by deletion of the two sodium channels. In contrast, the ability of Nav1.7/Nav1.8 knockout DRG neurons to generate action potentials is compromised with 50% of the small diameter sensory neurons unable to respond to electrical stimulation in vitro.

Conclusion

Behavioural deficits in Nav1.7/Nav1.8 knockout mice reflects a failure of action potential propagation in a mechanosensitive set of sensory neurons rather than a loss of primary transduction currents. DEG/ENaC sodium channels are not mechanosensors in mouse sensory neurons.  相似文献   

18.
钠通道NaV1.7是电压门控性钠通道的亚型之一。大多数钠离子通道NaV1.7表达在背根神经节(DRG)小C纤维的伤害性感受器上,具有缓慢开放和缓慢关闭失活的特点。它能够产生大量的斜坡电流,降低感觉神经元中动作电位产生的阈值,放大外来小的缓慢的去极化斜坡电流,从而增加神经元兴奋性,对疼痛的产生、传递、调节具有关键性作用。随着遗传学研究的不断深入,钠离子通道NaV1.7的功能获得性突变和功能缺失性突变,使其成为了新型镇痛疗法中一个的特别有吸引力的药物靶点,受到人们的广泛关注。而研究发现,NaV1.7通道在不同因素引起的神经病理性疼痛中通过不同途径提高神经元兴奋性,参与神经病理性疼痛,给NaV1.7选择性抑制剂研发带来了巨大阻碍。目前,虽然已有的NaV1.7选择性抑制剂具备有效镇痛作用,且无明显副作用或成瘾问题,但寻找NaV1.7选择性配体极其困难。此外,现有的NaV1.7选择性抑制剂也因神经病理性疼痛类型的不同在抑制效力、靶向性、安全性以及可行性等方面存在差异。提示寻找NaV1.7通道作用于不同神经病理性疼痛的普遍机制或NaV1.7通道特有的受体结合位点,可能是未来NaV1.7选择性抑制剂研发的主要方向。本文就NaV1.7通道在不同因素引起的神经病理性疼痛中的主要作用进行简要综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号