首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The balance between bone resorption and bone formation involves the coordinated activities of osteoblasts and osteoclasts. Communication between these two cell types is essential for maintenance of normal bone homeostasis; however, the mechanisms regulating this cross talk are not completely understood. Many factors that mediate differentiation and function of both osteoblasts and osteoclasts have been identified. The LIM protein Limd1 has been implicated in the regulation of stress osteoclastogenesis through an interaction with the p62/sequestosome protein. Here we show that Limd1 also influences osteoblast progenitor numbers, differentiation, and function. Limd1−/− calvarial osteoblasts display increased mineralization and accelerated differentiation. While no significant differences in osteoblast number or function were detected in vivo, bone marrow stromal cells isolated from Limd1−/− mice contain significantly more osteoblast progenitors compared to wild type controls when cultured ex vivo. Furthermore, we observed a significant increase in nuclear β-catenin staining in differentiating Limd1−/− calvarial osteoblasts suggesting that Limd1 is a negative regulator of canonical Wnt signaling in osteoblasts. These results demonstrate that Limd1 influences not only stress osteoclastogenesis but also osteoblast function and osteoblast progenitor commitment. Together, these data identify Limd1 as a novel regulator of both bone osetoclast and bone osteoblast development and function.  相似文献   

2.
3.
4.
Tumor necrosis factor-alpha (TNF) and the ligand for receptor activator of NF-kappaB (RANKL) are abundant in sites of inflammatory bone erosion. Because these cytokines are potent osteoclastogenic factors and because their signaling pathways are considerably overlapping, we postulated that under pro-inflammatory conditions RANKL and TNF might synergistically orchestrate enhanced osteoclastogenesis via cooperative mechanisms. We found TNF, via TNF type 1 receptor (TNFr1), prompts robust osteoclastogenesis by osteoclast precursors pretreated with RANKL, and deletion of TNFr1 abrogates this response. Enhanced osteoclastogenesis is associated with high expression of otherwise TNF and RANKL-induced mediators, including c-Src, TRAF2, TRAF6, and MEKK-1, levels of which were notably reduced in TNFr1 knockouts. Recruitment of TRAFs and MEKK1 leads to activation of downstream pathways, primarily I kappa B/NF-kappa B, ERKs, and cJun/AP-1. Consistent with impaired osteoclastogenesis and reduced expression of TRAFs and MEKK1, we found that phosphorylation and activation of I kappa B, NF-kappa B, ERKs, and cJun/AP-1 are severely reduced in RANKL-treated TNFr1-null osteoclast precursors compared with wild type counterparts. Finally, we found that TNF and RANKL synergistically up-regulate RANK expression in wild type precursors, whereas basal and stimulated levels of RANK are significantly lower in TNFr1 knockout cells. Our data suggest that exuberant TNF-induced osteoclastogensis is the result of coupling between RANK and TNFr1 and is dependent upon signals transmitted by the latter receptor.  相似文献   

5.
6.
7.
8.
Xiao G  Cheng H  Cao H  Chen K  Tu Y  Yu S  Jiao H  Yang S  Im HJ  Chen D  Chen J  Wu C 《The Journal of biological chemistry》2012,287(25):21450-21460
Bone remodeling is a complex process that must be precisely controlled to maintain a healthy life. We show here that filamin-binding LIM protein 1 (FBLP-1, also known as migfilin), a kindlin- and filamin-binding focal adhesion protein, is essential for proper control of bone remodeling. Genetic inactivation of FBLIM1 (the gene encoding FBLP-1) in mice resulted in a severe osteopenic phenotype. Primary FBLP-1 null bone marrow stromal cells (BMSCs) exhibited significantly reduced extracellular matrix adhesion and migration compared with wild type BMSCs. Loss of FBLP-1 significantly impaired the growth and survival of BMSCs in vitro and decreased the number of osteoblast (OB) progenitors in bone marrow and OB differentiation in vivo. Furthermore, the loss of FBLP-1 caused a dramatic increase of osteoclast (OCL) differentiation in vivo. The level of receptor activator of nuclear factor κB ligand (RANKL), a key regulator of OCL differentiation, was markedly increased in FBLP-1 null BMSCs. The capacity of FBLP-1 null bone marrow monocytes (BMMs) to differentiate into multinucleated OCLs in response to exogenously supplied RANKL, however, was not different from that of WT BMMs. Finally, we show that a loss of FBLP-1 promotes activating phosphorylation of ERK1/2. Inhibition of ERK1/2 activation substantially suppressed the increase of RANKL induced by the loss of FBLP-1. Our results identify FBLP-1 as a key regulator of bone homeostasis and suggest that FBLP-1 functions in this process through modulating both the intrinsic properties of OB/BMSCs (i.e., BMSC-extracellular matrix adhesion and migration, cell growth, survival, and differentiation) and the communication between OB/BMSCs and BMMs (i.e., RANKL expression) that controls osteoclastogenesis.  相似文献   

9.
Nutritional factors influence bone development. Previous studies demonstrated that bone mass significantly increased with suppressed bone resorption in early life of rats fed with AIN-93G semi-purified diets supplemented with 10% whole blueberry (BB) powder for 2 weeks. However, the effects of increased phenolic acids in animal serum due to this diet on bone and bone resorption were unclear. This in vitro and in ex vivo study examined the effects of phenolic hippuric acid (HA) and 3-(3-hydroxyphenyl) propionic acid (3-3-PPA) on osteoclastic cell differentiation and bone resorption. We cultured murine osteoclast (macrophage) cell line, RAW 264.7 cells, and hematopoietic osteoclast progenitor cells (isolated from 4-week-old C57BL6/J mice) with 50 ng/ml of receptor activator of nuclear factor κ-Β ligand (RANKL). Morphologic studies showed decreased osteoclast number with treatment of 2.5% mouse serum from BB diet–fed animals compared with those treated with serum from standard casein diet–fed mice in both RAW 264.7 cell and primary cell cultures. HA and 3-3-PPA, but not 3–4-PPA, had dose-dependent suppressive effects on osteoclastogenesis and osteoclast resorptive activity in Corning osteo-assay plates. Signaling pathway analysis showed that after pretreatment with HA or 3-3-PPA, RANKL-stimulated increase of osteoclastogenic markers, such as nuclear factor of activated T-cells, cytoplasmic 1 and matrix metallopeptidase 9 gene/protein expression were blunted. Inhibitory effects of HA and 3-3-PPA on osteoclastogenesis utilized RANKL/RANK independent mediators. The study revealed that HA and 3-3-PPA significantly inhibited osteoclastogenesis and bone osteoclastic resorptive activity.  相似文献   

10.
11.
12.
NOTCH signaling is a key regulator of cell fate decisions in prenatal skeletal development and is active during adult tissue renewal. In addition, its association with neoplasia suggests that it is a candidate therapeutic target. We find that attenuated NOTCH signaling enhances osteoclastogenesis and bone resorption in vitro and in vivo by a combination of molecular mechanisms. First, deletion of Notch1-3 in bone marrow macrophages directly promotes their commitment to the osteoclast phenotype. These osteoclast precursors proliferate more rapidly than the wild type in response to macrophage colony-stimulating factor and are sensitized to RANKL and macrophage colony-stimulating factor, undergoing enhanced differentiation in response to low doses of either cytokine. Conforming with a role for NOTCH in this process, presentation of the NOTCH ligand JAGGED1 blunts the capacity of wild-type bone marrow macrophages to become osteoclasts. Combined, these data establish that NOTCH suppresses osteoclastogenesis via ligand-mediated receptor activation. Although NOTCH1 and NOTCH3 collaborate in regulating osteoclast formation, NOTCH1 is the dominant paralog. In addition, NOTCH1 deficiency promotes osteoclastogenesis indirectly by enhancing the ability of osteoblast lineage cells to stimulate osteoclastogenesis. This is achieved by decreasing the osteoprotegerin/RANKL expression ratio. Thus, NOTCH1 acts as a net inhibitor of bone resorption, exerting its effect both directly in osteoclast precursors and indirectly via osteoblast lineage cells. These observations raise caution that therapeutic inhibition of NOTCH signaling may adversely accelerate bone loss in humans.  相似文献   

13.
Kim K  Kim JH  Moon JB  Lee J  Kwak HB  Park YW  Kim N 《Molecules and cells》2012,33(4):401-406
RANKL induces the formation of osteoclasts, which are responsible for bone resorption. Herein we investigate the role of the transmembrane adaptor proteins in RANKL-induced osteoclastogenesis. LAT positively regulates osteoclast differentiation and is up-regulated by RANKL via c-Fos and NFATc1, whereas LAB and LIME act as negative modulators of osteoclastogenesis. In addition, silencing of LAT by RNA interference or overexpression of a LAT dominant negative in bone marrow-derived macrophage cells attenuates RANKL-induced osteoclast formation. Furthermore, LAT is involved in RANKL-induced PLC(γ) activation and NFATc1 induction. Thus, our data suggest that LAT acts as a positive regulator of RANKL-induced osteoclastogenesis.  相似文献   

14.
Interleukin (IL)-6-type cytokines stimulate osteoclastogenesis by activating gp130 in stromal/osteoblastic cells and may mediate some of the osteoclastogenic effects of other cytokines and hormones. To determine whether STAT3 is a downstream effector of gp130 in the osteoclast support function of stromal/osteoblastic cells and whether the gp130/STAT3 pathway is utilized by other osteoclastogenic agents, we conditionally expressed dominant negative (dn)-STAT3 or dn-gp130 in a stromal/osteoblastic cell line (UAMS-32) that supports osteoclast formation. Expression of either dominant negative protein abolished osteoclast formation stimulated by IL-6 + soluble IL-6 receptor, oncostatin M, or IL-1 but not by parathyroid hormone or 1,25-dihydroxyvitamin D3. Because previous studies suggested that IL-6-type cytokines may stimulate osteoclastogenesis by inducing expression of the tumor necrosis factor-related protein, receptor activator of NF-kappaB ligand (RANKL), we conditionally expressed RANKL in UAMS-32 cells and found that this was sufficient to stimulate osteoclastogenesis. Moreover, dn-STAT3 blocked the ability of either IL-6 + soluble IL-6 receptor or oncostatin M to induce RANKL. These results establish that STAT3 is essential for gp130-mediated osteoclast formation and that the target of STAT3 during this process is induction of RANKL. In addition, this study demonstrates that activation of the gp130-STAT3 pathway in stromal/osteoblastic cells mediates the osteoclastogenic effects of IL-1, but not parathyroid hormone or 1, 25-dihydroxyvitamin D3.  相似文献   

15.
An excess of osteoclastic bone resorption relative to osteoblastic bone formation results in progressive bone loss, characteristic of osteoporosis. Understanding the mechanisms of osteoclast differentiation is essential to develop novel therapeutic approaches to prevent and treat osteoporosis. We showed previously that Wrch1/RhoU is the only RhoGTPase whose expression is induced by RANKL during osteoclastogenesis. It associates with podosomes and the suppression of Wrch1 in osteoclast precursors leads to defective multinucleated cell formation. Here we further explore the functions of this RhoGTPase in osteoclasts, using RAW264.7 cells and bone marrow macrophages as osteoclast precursors. Suppression of Wrch1 did not prevent induction of classical osteoclastic markers such as NFATc1, Src, TRAP (Tartrate-Resistant Acid Phosphatase) or cathepsin K. ATP6v0d2 and DC-STAMP, which are essential for fusion, were also expressed normally. Similar to the effect of RANKL, we observed that Wrch1 expression increased osteoclast precursor aggregation and reduced their adhesion onto vitronectin but not onto fibronectin. We further found that Wrch1 could bind integrin ß3 cytoplasmic domain and interfered with adhesion-induced Pyk2 and paxillin phosphorylation. Wrch1 also acted as an inhibitor of M-CSF-induced prefusion osteoclast migration. In mature osteoclasts, high Wrch1 activity inhibited podosome belt formation. Nevertheless, it had no effect on mineralized matrix resorption. Our observations suggest that during osteoclastogenesis, Wrch1 potentially acts through the modulation of αvß3 signaling to regulate osteoclast precursor adhesion and migration and allow fusion. As an essential actor of osteoclast differentiation, the atypical RhoGTPase Wrch1/RhoU could be an interesting target for the development of novel antiresorptive drugs.  相似文献   

16.
Tetraspanin CD9 has been shown to regulate cell-cell fusion in sperm-egg fusion and myotube formation. However, the role of CD9 in osteoclast, another multinucleated cell type, is not still clear. Therefore, we investigated the role of CD9 in osteoclast differentiation. CD9 was expressed in osteoclast lineage cells and its expression level increased during the progression of RANKL-induced osteoclastogenesis. KMC8, a neutralizing antibody specific to CD9, significantly suppressed RANKL-induced multinucleated osteoclast formation and the mRNA expression of osteoclast differentiation marker genes. To define CD9-regulated osteoclastogenic signaling pathway, MAPK pathways were examined. KMC8 induced long-term phosphorylation of p44/42 MAPK, but not of p38 MAPK. Constitutive activation of p44/42 MAPK by overexpressing constitutive-active mutant of MEK1 almost completely blocked osteoclast differentiation. Taken together, these results suggest that CD9 expressed on osteoclast lineage cells might positively regulate osteoclastogenesis via the regulation of p44/42 MAPK activity.  相似文献   

17.
We incidentally found that osteoclast precursors and mature osteoclasts express Fas ligand (FasL) as well as Fas, which was confirmed by flow cytometry, immunofluorescent staining, and RT-PCR. The aim of this study was to determine the role of FasL in differentiation and cell death of osteoclasts. To study the role of FasL in osteoclastogenesis, neutralizing anti-FasL mAb or rFasL was added during receptor activator of NF-kappaB ligand (RANKL)-induced osteoclastogenesis using bone marrow-derived macrophages. Neutralization of endogenous FasL by anti-FasL mAb decreased osteoclastogenesis, whereas rFasL enhanced osteoclast differentiation in a dose-dependent manner. In addition, rFasL up-regulated the secretion of osteoclastogenic cytokines, such as IL-1beta and TNF-alpha, and the activation of NF-kappaB. Functional blocking of IL-1beta and TNF-alpha using IL-1 receptor antagonist and soluble TNFR confirmed that those cytokines mediated the effect of FasL on osteoclastogenesis. The osteoclast precursors were relatively resistant to rFasL-induced apoptosis especially before RANKL treatment, resulting in minimal cell loss by rFasL treatment during osteoclastogenesis. Although rFasL increased the cell death of mature osteoclasts, growth factor withdrawal induced much more cell death. However, anti-FasL mAb did not affect the survival of mature osteoclasts, suggesting that the endogenous FasL does not have a role in the apoptosis of osteoclasts. Finally, in contrast to the effect on apoptosis, rFasL-assisted osteoclastogenesis was not mediated by caspases. In conclusion, FasL has a novel function in bone homeostasis by enhancing the differentiation of osteoclasts, which was not considered previously.  相似文献   

18.
Although RANK-L is essential for osteoclast formation, factors such as transforming growth factor-beta (TGF-beta) are potent modulators of osteoclastogenic stimuli. To systematically investigate the role of TGF-beta in human osteoclastogenesis, monocytes were isolated from peripheral blood by three distinct approaches, resulting in either a lymphocyte-rich, a lymphocyte-poor, or a pure osteoclast precursor (CD14-positive) cell population. In each of these osteoclast precursor populations, the effect of TGF-beta on proliferation, TRAP activity, and bone resorption was investigated with respect to time and length of exposure. When using the highly pure CD14 osteoclast precursor cell population, the effect of TGF-beta was strongly dependent on the stage of osteoclast maturation. When monocytes were exposed to TGF-beta during the initial culture period (days 1-7), TRAP activity and bone resorption were increased by 40%, whereas the cell number was reduced by 25%. A similar decrease in cell number was observed when TGF-beta was present during the entire culture period (days 1-21), but in direct contrast, TRAP activity, cell fusion, cathepsin K, and matrix metalloproteinase (MMP)-9 expression as well as bone resorption were almost completely abrogated. Moreover, we found that latent TGF-beta was strongly activated by incubation with MMP-9 and suggest this to be a highly relevant mechanism for regulating osteoclast activity. To further investigate the molecular mechanism responsible for the divergent effects of continuous versus discontinuous exposure to TGF-beta, we examined RANK expression and p38 MAPK activation. We found the TGF-beta strongly induced p38 MAPK in monocytes, but not in mature osteoclasts, and that continuous exposure of TGF-beta to monocytes down-regulated RANK expression. The current results suggest that TGF-beta promotes human osteoclastogenesis in monocytes through stimulation of the p38 MAPK, whereas continuous exposure to TGF-beta abrogates osteoclastogenesis through down-regulation of RANK expression and therefore attenuation of RANK-RANK-L signaling.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号