首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
大突肩瓢虫5ynonycha grandis(Thunberg)在云南开远1年发生4代,以成虫在蔗茎老叶鞘内越冬.日均温26.6~27.8℃下,卵期3~4天,幼虫期9~12天,预蛹期1天,蛹期4~5天,成虫产卵前期20~25天,1个世代历期37~46天;日均温24.5~25.5℃下,卵期5~9天,幼虫期14~21天,预蛹期1~2天,蛹期5~8天,成虫产卵前期25~30天,1个世代历期45~55天.(第4代)(越冬代)各虫态历期延长,全代历期长达250余天.成虫、幼虫均捕食甘蔗绵蚜.大突肩瓢虫田间种群动态:6月初开始在蔗田出现,8~10月种群数量明显增长,11月间形成高峰,12月开始越冬.  相似文献   

2.
枯叶蛱蝶Kallima inachus的生物学研究   总被引:14,自引:0,他引:14  
枯叶蛱蝶在四川峨眉山海拔450~1200 m地带一年发生3代,以第1代和第2代为主,以滞育成虫越冬.第2代成虫大部分在7月中旬后进入滞育状态,但3个世代的个体都可能存在于越冬种群中.在室内饲养条件下,第1代历期约为45~54天,第2、3代历期较长,越冬个体可达5~7个月.在日平均温度26.4~28.2℃,相对湿度63.2% ~84.7%条件下,卵期4~6天,幼虫期21~36天,蛹期10~15天.其寄主包括爵床科马兰属等多种植物.主要天敌有赤眼蜂、蜘蛛、蚂蚁和鸟类.  相似文献   

3.
白翅叶蝉(Thaia subrufa Motschulsky)在浙江省东阳县,一年大部发生二代。第一、二代成虫分别于6月下旬至7月上、中旬和8月下旬至9月中旬盛发于早稻和双季晚稻,第二代成虫大部分越冬,少数早发的才能发生第三代。第一、二和三代卵历期分别为17—19、11—12和15一19天,若虫历期分别为19、16和24天。成虫4℃开始活动,10℃开始取食,15℃开始羽化和产卵。卵开始发育温度在20℃左右。成虫无孤雌生殖现象,产卵前期在第一、二代分别为23和17天,越冬成虫则长达6—8月之久。每雌产卵量以越冬代最高,以后各代急剧下降。越冬后成虫在4月下旬几乎全部集中于早、中稻秧田,产卵盛期在5月即早稻本田分蘗期。繁殖寄主仅限于水稻。 因白翅叶蝉具有这些生物学特性,所以防治适期为早季秧田。1964—1965年在东阳县早季秧田大面积防治结果,可减低早、中稻本田虫口90%以上,且能压低双季晚稻田的虫口密度。  相似文献   

4.
华南冠网蝽的生物学特性和发生规律   总被引:3,自引:0,他引:3  
李友恭  廖学勤 《昆虫知识》1990,27(2):104-107
华南冠网蝽一年发生5代。卵期13~23天(越冬代170~180天)。若虫5龄,若虫期14~25天。成虫寿命8~26天。每雌产卵3~69粒。发育起点温度为12.18℃,完成一代的有效积温为566.2日度。在郁闭度大的林分为害严重。及时抚育间伐可减免受害。大发生时可喷洒乐果、敌百虫等农药,杀死若虫和成虫。  相似文献   

5.
茶脊冠网蝽是西南茶区重要害虫。该虫年发生2~3代,以卵在茶丛中,下部成叶背越冬。卵期30.5~34.8天(越冬卵180~190天);若虫15.3~29天;雌成虫产卵前期7.8~12天;成虫寿命25~78天;雄虫18~38天。防治方法主要是保护利用捕食性天敌军配盲蝽,配合药剂挑治。  相似文献   

6.
《环境昆虫学报》2013,35(5):643-649
虾钳菜日龟甲 Cassida japana Baly是农田杂草藜 Chenopodium album L.的重要天敌。该虫在江苏地区一年发生4代,以成虫越冬。成虫产卵期一般为16~31 d,每雌产卵量最多为482粒,平均为175粒。各虫态历期因代别而异,卵期3~13d,幼虫期8~16 d,蛹期3~6 d,成虫寿命一般为15~35 d,越冬代成虫寿命长达200余d。该虫全年盛发期在6月中、下旬至8月中旬,发生为害与温度关系密切,高温对其不利。本文选择15科26种植物进行寄主专一性测定,结果表明:虾钳菜日龟甲对藜的嗜食程度很高,并能在藜上完成世代;而其它供试植物不是虾钳菜日龟甲的寄主,因此可以将该虫安全用于杂草藜的生物防治。  相似文献   

7.
柑砧术虱是柑桔新梢期重要害虫,刺吸为害。福建福州在柑桔上一年发生8代,在月桔、九里香上一年约发生10代左右,世代重叠,以成虫在柑桔叶背群集越冬,无完全滞育。4—5月气温22.3℃世代历期42.5天.6-7月27.2℃为24.4天.8月28.1℃为23.2天。10-12月19.6℃为52.9天。成虫寿命长,约历1个月半,越冬代长达半年。田间种群消长与柑桔芽梢抽发期相对应.一年中虫口数量出现3个高峰期,第一峰期3-4月为柑桔春梢主要抽发期,第二峰期5-6月为夏梢主要抽发期,第三峰期8~9月为秋梢主要抽发期,其中以秋梢期虫口数量最大.秋芽受害最重,次为春梢期。本还对柑桔术虱天敌进行调查,并对柑桔术虱卵、若虫和成虫进行药剂防治试验。  相似文献   

8.
性诱剂监测吉林省水稻二化螟成虫动态及发生世代研究   总被引:6,自引:0,他引:6  
1998~1999年在吉林省用性诱剂水盆监测二化螟雄蛾季节动态和发生世代,结果发现,1998年长春市越冬代成虫始见期在5月电旬,柳河县在5月底左右,长春市成虫终见期。1998和1999年分别为9月下旬和上旬。可见长春市二化螟成虫伞季活动朔可能长达4个月,而1个世代的历期约为2个月。1999年长春市出现两个相距55天的明显蛾峰,表明存在相当高的二代转化率,从而有助于改变该地二化螟常年只发生1代的传统观点。  相似文献   

9.
甘蔗异背长蝽在我区年发生不完整3代,以卵在蔗蔸基部及部分蔗种和残梢上越冬。成虫不能完全越冬。翌年主要虫源是越冬卵。在室温28.5~29.5℃条件下,各虫态平均历期为:雌成虫21.7天,雄成虫19.1天,卵14.7天,若虫34.3天,全世代70天左右。成虫产卵量一般在20~40粒,最高近100拉。防治适期为二龄若虫高峰期,用21%灭杀毙800倍稀释液喷雾,5天后效果仍达94.4%。  相似文献   

10.
新疆菜蝽在新疆发生普通,是油菜和蔬菜的重要害虫。该虫在南疆沙雅地区一年发生三代,世代重迭,主要以第三代成虫在田边、田埂、青苔落叶下面越冬,翌年四月下旬迁飞至田间为害油菜幼苗,以第一、二代为害油菜最烈。 越冬成虫和第一代成虫交配期,平均分别为30.5天及2.4天。产卵前期的越冬成虫为3.8天;第一代为10.2天;第二代为4.7天。越冬成虫每雌产卵平均103.8粒;第一代32.0粒;第二代10.3粒。产卵期的长短因世代而异,第三代、第一代、第二代平均分别为35.9天、2.6天、2.9天。第一代卵主要产于地面的土块上,第二代主要产于植株的中下部叶面上。第一代与第二代成虫寿命平均分别为13天及71.3天。当平均温度在24.4℃时,第一代卵期平均9天,在27.5℃时,第二代卵期平均5.8天。若虫共五龄,若虫期第一代平均31.5天,第二代平均26.9天。 有一种卵蜂在田间平均寄生率达55.0%,有利用价值。防治时,消灭田内的杂草,结合人工捕采成虫和卵块以及浸水淹杀第一代卵。田间化学防治可用6%可湿性666的200-400倍液,对若虫及成虫效果很好。  相似文献   

11.
褐飞虱在山东稻区一年发生3-4代.当地不能越冬,第二代是主要为害世代,发生在8月下旬至9月中旬。将影响发生的因子如虫源,降水量、气温等输入微机.筛选出的预报因子.用模糊列联表方法建立的预报矩阵,经1994年应用.准确率为100%:  相似文献   

12.
重引入狗獾秋冬季行为的初步研究   总被引:1,自引:0,他引:1  
2010年11月至2011年2月在上海奉贤申亚生态园内,对从山东重引入的狗獾(Meles meles)在围栏内进行了秋冬季行为的初步研究。结果表明,重引入狗獾在冬季活动时间低,取食食物以肉类饲料为主,平均2~4 d出洞活动一次,受温度影响大。研究表明,重引入狗獾能适应人工饲养并顺利越冬。  相似文献   

13.
芦禾草螟生物学特性及防治   总被引:1,自引:1,他引:0  
毕福祥  宋开峰 《昆虫知识》1995,32(3):147-148
芦禾草螟是山东滨湖芦苇产区主要害虫之一,1年发生1代,以2~3龄幼虫越冬。幼虫分为五龄,历期331天左右。采用烧苇茬、50%甲基对硫磷或50%辛硫磷乳油1000倍稀释液在其孵化初期和盛期2次喷雾,效果达90%以上。  相似文献   

14.
武文一  吉红 《水生生物学报》2022,46(11):1618-1630
为了探讨草鱼(Ctenopharyngodon idellus)在越冬期间能量利用的代谢适应机制, 将草鱼初始体重[(1053.33±16.11) g]置于室外水泥培育池, 分别在自然越冬饥饿0、1、2、4、8、12和16周后进行采样, 进行肌肉常规成分、血清能量代谢物、组织糖原、甘油三酯含量及AMP活化蛋白激酶和糖脂蛋白代谢相关基因转录水平的检测。结果显示: 越冬饥饿1周后, 草鱼肌肉各常规成分含量显著变化(P<0.05); 随着越冬饥饿时间的延长, 血清甘油三酯(TG)、甘油(Glycerol)、总蛋白(TP)、总胆固醇(TCHO)和血糖(GLU)含量先显著降低(P<0.05), 随后保持稳定, 游离脂肪酸(Free fatty acids)含量显著上升(P<0.05); 肝胰脏糖原和肌肉糖原及肝胰脏、肌肉和脂肪组织TG含量显著降低(P<0.05); 血清ATP、ADP和AMP含量显著降低, ADP+AMP/ATP比值显著升高(P<0.05); 肝胰脏、肌肉及腹腔脂肪ampk α1、ampk α2基因表达显著上升(P<0.05), 下游糖脂及蛋白代谢相关基因转录水平显著上升(包括atgl、hsl、cpt1α、cd36等脂分解相关基因; gk、pfk、pk等糖酵解相关基因; gldh、 igf-1等蛋白分解相关基因)或显著下调(acc、fas等脂合成相关基因; creb、foxo1、pgc-1α、pepck、g6pase、glut2等糖异生相关基因; tor、s6k等蛋白合成相关基因)(P<0.05)。研究表明, 草鱼在越冬饥饿期间, 血清、肝胰脏、肌肉和脂肪组织生化组成发生了上述变化的同时, 越冬饥饿胁迫激活了AMPK通路, 促进了各组织糖酵解、脂质分解、脂肪酸β氧化、脂肪酸转运及蛋白分解的进程, 抑制了糖原合成、脂质合成和蛋白合成的过程, 进而维持了机体能量稳态。  相似文献   

15.
Cold-hardy insects overwinter by one of two main strategies: freeze tolerance and freeze avoidance by supercooling. As a general model, many freeze-tolerant species overwinter in extreme climates, freeze above -10 degrees C via induction by ice-nucleating agents, and once frozen, can survive at temperatures of up to 40 degrees C or more below the initial freezing temperature or supercooling point (SCP). It has been assumed that the SCP of freeze-tolerant insects is unaffected by the freezing process and that the freeze-tolerant state is therefore retained in winter though successive freeze-thaw cycles of the body tissues and fluids. Studies on the freeze-tolerant larva of the hoverfly Syrphus ribesii reveal this assumption to be untrue. When a sample with a mean 'first freeze' SCP of -7.6 degrees C (range of -5 degrees C to -9.5 degrees C) were cooled, either to -10 degrees C or to their individual SCP, on five occasions, the mean SCP was significantly depressed, with some larvae subsequently freezing as low as -28 degrees C. Only larvae that froze at the same consistently high temperature above -10 degrees C were alive after being frozen five times. The wider occurrence of this phenomenon would require a fundamental reassessment of the dynamics and distinctions of the freeze-tolerant and freeze-avoiding strategies of insect overwintering.  相似文献   

16.
Glugea stephani requires temperatures above 15 C for development in juvenile pleuronectid flatfishes in Yaquina Bay, Oregon. The effect of low temperature (10 C) on the development of recently established parasites was tested experimentally in juvenile English sole (Parophrys vetulus). Low temperature arrested parasite development, but did not kill the protozoan which resumed development on return to 19-20 C after as long as 42 days at 10 C. No parasites detectable with the light microscope were found in fish examined after 70 days at 10 C. Although most juvenile English sole move permanently from the estuary to cooler ocean waters in fall and do not contribute to the continuation of the parasite life cycle, the cycle may be maintained by low numbers of English sole that overwinter in the estuary.  相似文献   

17.
Ecological processes are changing in response to climatic warming. Birds, in particular, have been documented to arrive and breed earlier in spring and this has been attributed to elevated spring temperatures. It is not clear, however, how long-distance migratory birds that overwinter thousands of kilometers to the south in the tropics cue into changes in temperature or plant phenology on northern breeding areas. We explored the relationships between the timing and rate of spring migration of long-distance migratory birds, and variables such as temperature, the North Atlantic Oscillation (NAO) and plant phenology, using mist net capture data from three ringing stations in North America over a 40-year period. Mean April/May temperatures in eastern North America varied over a 5°C range, but with no significant trend during this period. Similarly, we found few significant trends toward earlier median capture dates of birds. Median capture dates were not related to the NAO, but were inversely correlated to spring temperatures for almost all species. For every 1°C increase in spring temperature, median capture dates of migratory birds averaged, across species, one day earlier. Lilac (Syringa vulgaris) budburst, however, averaged 3 days earlier for every 1°C increase in spring temperature, suggesting that the impact of temperature on plant phenology is three times greater than on bird phenology. To address whether migratory birds adjust their rate of northward migration to changes in temperature, we compared median capture dates for 15 species between a ringing station on the Gulf Coast of Louisiana in the southern USA with two stations approximately 2,500 km to the north. The interval between median capture dates in Louisiana and at the other two ringing stations was inversely correlated with temperature, with an average interval of 22 days, that decreased by 0.8 days per 1°C increase in temperature. Our results suggest that, although the onset of migration may be determined endogenously, the timing of migration is flexible and can be adjusted in response to variation in weather and/or phenology along migration routes.  相似文献   

18.
槐豆木虱生物学特性及其防治   总被引:10,自引:1,他引:9  
槐豆木虱Cyamophilawillieti(Wu)近年来在山西中部发生逐年加重 ,造成国槐 (SophorajaponicaL .)、龙爪槐 (SophorajaponicaVar.)严重受害。该虫 1年发生 4代 ,以成虫在树冠杂草下、土缝中越冬。室内饲养观察 ,成虫单头产卵量为 1 1 0 0± 1 4 94粒 ,卵孵化率为 (88 0± 1 72 ) % ,若虫共 5龄。对 3龄左右若虫进行了室内、室外药剂防治试验 ,处理 48h后 ,若虫死亡率均在 90 %以上 ,以浓度为 3 3 3mg L的5 %高效氯氰菊酯常量喷雾防治效果最好  相似文献   

19.
Abstract Cold hardiness was investigated in overwintering field nests of the black carpenter ant Camponotus pennsylvanicus (De Geer) in the Commonwealth of Virginia. No active nest thermoregulation was observed: temperatures of galleries, worker bodies, worker clusters, and larval clusters were within 3°C of ambient temperature. Nest temperatures generally fluctuated less rapidly and severely than did ambient temperature; thus, the nest afforded protection from potentially fatal sudden temperature drops. Glycerol, the only polyol cryoprotectant detected, was found in all castes and larvae. Supercooling points were low and ranged from ? 17°C in major workers to ?22°C in larvae. A second heat release peak, occurring around ? 8°C, was seen in all adults, but it was not observed in larvae. This higher temperature peak in adults probably represents the freezing of the gut contents, as adults were found to overwinter with the crop full or partially full. Larvae did not overwinter with liquid food in the gut.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号