首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fruit flies in the family Tephritidae are the economically important pests that have many species complexes. DNA barcoding has gradually been verified as an effective tool for identifying species in a wide range of taxonomic groups, and there are several publications on rapid and accurate identification of fruit flies based on this technique; however, comprehensive analyses of large and new taxa for the effectiveness of DNA barcoding for fruit flies identification have been rare. In this study, we evaluated the COI barcode sequences for the diagnosis of fruit flies using 1426 sequences for 73 species of Bactrocera distributed worldwide. Tree‐based [neighbour‐joining (NJ)]; distance‐based, such as Best Match (BM), Best Close Match (BCM) and Minimum Distance (MD); and character‐based methods were used to evaluate the barcoding success rates obtained with maintaining the species complex in the data set, treating a species complex as a single taxon unit, and removing the species complex. Our results indicate that the average divergence between species was 14.04% (0.00–25.16%), whereas within a species this was 0.81% (0.00–9.71%); the existence of species complexes largely reduced the barcoding success for Tephritidae, for example relatively low success rates (74.4% based on BM and BCM and 84.8% based on MD) were obtained when the sequences from species complexes were included in the analysis, whereas significantly higher success rates were achieved if the species complexes were treated as a single taxon or removed from the data set – BM (98.9%), BCM (98.5%) and MD (97.5%), or BM (98.1%), BCM (97.4%) and MD (98.2%).  相似文献   

2.
DNA barcoding has become a promising means for the identification of organisms of all life‐history stages. Currently, distance‐based and tree‐based methods are most widely used to define species boundaries and uncover cryptic species. However, there is no universal threshold of genetic distance values that can be used to distinguish taxonomic groups. Alternatively, DNA barcoding can deploy a “character‐based” method, whereby species are identified through the discrete nucleotide substitutions. Our research focuses on the delimitation of moth species using DNA‐barcoding methods. We analyzed 393 Lepidopteran specimens belonging to 80 morphologically recognized species with a standard cytochrome c oxidase subunit I (COI) sequencing approach, and deployed tree‐based, distance‐based, and diagnostic character‐based methods to identify the taxa. The tree‐based method divided the 393 specimens into 79 taxa (species), and the distance‐based method divided them into 84 taxa (species). Although the diagnostic character‐based method found only 39 so‐identifiable species in the 80 species, with a reduction in sample size the accuracy rate substantially improved. For example, in the Arctiidae subset, all 12 species had diagnostics characteristics. Compared with traditional morphological method, molecular taxonomy performed well. All three methods enable the rapid delimitation of species, although they have different characteristics and different strengths. The tree‐based and distance‐based methods can be used for accurate species identification and biodiversity studies in large data sets, while the character‐based method performs well in small data sets and can also be used as the foundation of species‐specific biochips.  相似文献   

3.
Biodiversity reduction and loss continues to progress at an alarming rate, and thus, there is widespread interest in utilizing rapid and efficient methods for quantifying and delimiting taxonomic diversity. Single‐locus species delimitation methods have become popular, in part due to the adoption of the DNA barcoding paradigm. These techniques can be broadly classified into tree‐based and distance‐based methods depending on whether species are delimited based on a constructed genealogy. Although the relative performance of these methods has been tested repeatedly with simulations, additional studies are needed to assess congruence with empirical data. We compiled a large data set of mitochondrial ND4 sequences from horned lizards (Phrynosoma) to elucidate congruence using four tree‐based (single‐threshold GMYC, multiple‐threshold GMYC, bPTP, mPTP) and one distance‐based (ABGD) species delimitation models. We were particularly interested in cases with highly uneven sampling and/or large differences in intraspecific diversity. Results showed a high degree of discordance among methods, with multiple‐threshold GMYC and bPTP suggesting an unrealistically high number of species (29 and 26 species within the P. douglasii complex alone). The single‐threshold GMYC model was the most conservative, likely a result of difficulty in locating the inflection point in the genealogies. mPTP and ABGD appeared to be the most stable across sampling regimes and suggested the presence of additional cryptic species that warrant further investigation. These results suggest that the mPTP model may be preferable in empirical data sets with highly uneven sampling or large differences in effective population sizes of species.  相似文献   

4.
Plant DNA barcoding: from gene to genome   总被引:2,自引:0,他引:2       下载免费PDF全文
DNA barcoding is currently a widely used and effective tool that enables rapid and accurate identification of plant species; however, none of the available loci work across all species. Because single‐locus DNA barcodes lack adequate variations in closely related taxa, recent barcoding studies have placed high emphasis on the use of whole‐chloroplast genome sequences which are now more readily available as a consequence of improving sequencing technologies. While chloroplast genome sequencing can already deliver a reliable barcode for accurate plant identification it is not yet resource‐effective and does not yet offer the speed of analysis provided by single‐locus barcodes to unspecialized laboratory facilities. Here, we review the development of candidate barcodes and discuss the feasibility of using the chloroplast genome as a super‐barcode. We advocate a new approach for DNA barcoding that, for selected groups of taxa, combines the best use of single‐locus barcodes and super‐barcodes for efficient plant identification. Specific barcodes might enhance our ability to distinguish closely related plants at the species and population levels.  相似文献   

5.
Valid fish species identification is an essential step both for fundamental science and fisheries management. The traditional identification is mainly based on external morphological diagnostic characters, leading to inconsistent results in many cases. Here, we provide a sequence reference library based on mitochondrial cytochrome c oxidase subunit I (COI) for a valid identification of 93 North Atlantic fish species originating from the North Sea and adjacent waters, including many commercially exploited species. Neighbour‐joining analysis based on K2P genetic distances formed nonoverlapping clusters for all species with a ≥99% bootstrap support each. Identification was successful for 100% of the species as the minimum genetic distance to the nearest neighbour always exceeded the maximum intraspecific distance. A barcoding gap was apparent for the whole data set. Within‐species distances ranged from 0 to 2.35%, while interspecific distances varied between 3.15 and 28.09%. Distances between congeners were on average 51‐fold higher than those within species. The validation of the sequence library by applying BOLDs barcode index number (BIN) analysis tool and a ranking system demonstrated high taxonomic reliability of the DNA barcodes for 85% of the investigated fish species. Thus, the sequence library presented here can be confidently used as a benchmark for identification of at least two‐thirds of the typical fish species recorded for the North Sea.  相似文献   

6.
The use of genetic distances to identify species within the framework of DNA barcoding has to some extent improved the development of biodiversity studies. However, using a fixed empirical threshold to delimit species may lead to overestimating species diversity. In this study, we use a new data set of COI sequences for 366 specimens within the genus of Cletus as well as conduct an analysis on the same genetic data for collected morphologically defined species from previous phylogeographical studies, to test whether high intraspecific genetic divergences are common with the premises of comprehensive sampling. The results indicate C. graminis Hsiao & Cheng 1964 , is the same species with C. punctiger (Dallas, 1852) and should be synonymized and that the distributional record of C. pugnator (Fabricius, 1787) in China is correct. High intraspecific genetic differentiations (0%–4.35%) were found in C. punctiger. Furthermore, as to the mined data, the maximum intraspecific K2P distances of 186 species (48.44% of 384) exceed 3%, and 101 species (26.30%) can be divided into two or more clusters with a threshold of 3% in cluster analysis. If genetic distance is used to delimit species boundaries, the minimum interspecific K2P distance of the congeneric species should be considered rather than only using the fixed empirical value; otherwise, the species richness may be overestimated in some cases.  相似文献   

7.
Each holotype specimen provides the only objective link to a particular Linnean binomen. Sequence information from them is increasingly valuable due to the growing usage of DNA barcodes in taxonomy. As type specimens are often old, it may only be possible to recover fragmentary sequence information from them. We tested the efficacy of short sequences from type specimens in the resolution of a challenging taxonomic puzzle: the Elachista dispunctella complex which includes 64 described species with minuscule morphological differences. We applied a multistep procedure to resolve the taxonomy of this species complex. First, we sequenced a large number of newly collected specimens and as many holotypes as possible. Second, we used all >400 bp examine species boundaries. We employed three unsupervised methods (BIN, ABGD, GMYC) with specified criteria on how to handle discordant results and examined diagnostic bases from each delineated putative species (operational taxonomic units, OTUs). Third, we evaluated the morphological characters of each OTU. Finally, we associated short barcodes from types with the delineated OTUs. In this step, we employed various supervised methods, including distance‐based, tree‐based and character‐based. We recovered 658 bp barcode sequences from 194 of 215 fresh specimens and recovered an average of 141 bp from 33 of 42 holotypes. We observed strong congruence among all methods and good correspondence with morphology. We demonstrate potential pitfalls with tree‐, distance‐ and character‐based approaches when associating sequences of varied length. Our results suggest that sequences as short as 56 bp can often provide valuable taxonomic information. The results support significant taxonomic oversplitting of species in the Elachista dispunctella complex.  相似文献   

8.
Identification of North Sea molluscs with DNA barcoding   总被引:1,自引:0,他引:1       下载免费PDF全文
Sequence‐based specimen identification, known as DNA barcoding, is a common method complementing traditional morphology‐based taxonomic assignments. The fundamental resource in DNA barcoding is the availability of a taxonomically reliable sequence database to use as a reference for sequence comparisons. Here, we provide a reference library including 579 sequences of the mitochondrial cytochrome c oxidase subunit I for 113 North Sea mollusc species. We tested the efficacy of this library by simulating a sequence‐based specimen identification scenario using Best Match, Best Close Match (BCM) and All Species Barcode (ASB) criteria with three different threshold values. Each identification result was compared with our prior morphology‐based taxonomic assignments. Our simulation resulted in 87.7% congruent identifications (93.8% when excluding singletons). The highest number of congruent identifications was obtained with BCM and ASB and a 0.05 threshold. We also compared identifications with genetic clustering (Barcode Index Numbers, BINs) computed by the Barcode of Life Datasystem (BOLD). About 68% of our morphological identifications were congruent with BINs created by BOLD. Forty‐nine sequences were clustered in 16 discordant BINs, and these were divided in two classes: sequences from different species clustered in a single BIN and conspecific sequences divided in more BINs. Whereas former incongruences were probably caused by BOLD entries in need of a taxonomic update, the latter incongruences regarded taxa requiring further investigations. These include species with amphi‐Atlantic distribution, whose genetic structure should be evaluated over their entire range to produce a reliable sequence‐based identification system.  相似文献   

9.
DNA barcodes are widely used in taxonomy, systematics, species identification, food safety, and forensic science. Most of the conventional DNA barcode sequences contain the whole information of a given barcoding gene. Most of the sequence information does not vary and is uninformative for a given group of taxa within a monophylum. We suggest here a method that reduces the amount of noninformative nucleotides in a given barcoding sequence of a major taxon, like the prokaryotes, or eukaryotic animals, plants, or fungi. The actual differences in genetic sequences, called single nucleotide polymorphism (SNP) genotyping, provide a tool for developing a rapid, reliable, and high‐throughput assay for the discrimination between known species. Here, we investigated SNPs as robust markers of genetic variation for identifying different pigeon species based on available cytochrome c oxidase I (COI) data. We propose here a decision tree‐based SNP barcoding (DTSB) algorithm where SNP patterns are selected from the DNA barcoding sequence of several evolutionarily related species in order to identify a single species with pigeons as an example. This approach can make use of any established barcoding system. We here firstly used as an example the mitochondrial gene COI information of 17 pigeon species (Columbidae, Aves) using DTSB after sequence trimming and alignment. SNPs were chosen which followed the rule of decision tree and species‐specific SNP barcodes. The shortest barcode of about 11 bp was then generated for discriminating 17 pigeon species using the DTSB method. This method provides a sequence alignment and tree decision approach to parsimoniously assign a unique and shortest SNP barcode for any known species of a chosen monophyletic taxon where a barcoding sequence is available.  相似文献   

10.
Identification of rodents is very difficult mainly due to high similarities in morphology and controversial taxonomy. In this study, mitochondrial cytochrome oxidase subunit I (COI) was used as DNA barcode to identify the Murinae and Arvicolinae species distributed in China and to facilitate the systematics studies of Rodentia. In total, 242 sequences (31 species, 11 genera) from Murinae and 130 sequences (23 species, 6 genera) from Arvicolinae were investigated, of which 90 individuals were novel. Genetic distance, threshold method, tree‐based method, online BLAST and BLOG were employed to analyse the data sets. There was no obvious barcode gap. The average K2P distance within species and genera was 2.10% and 12.61% in Murinae, and 2.86% and 11.80% in Arvicolinae, respectively. The optimal threshold was 5.62% for Murinae and 3.34% for Arvicolinae. All phylogenetic trees exhibited similar topology and could distinguish 90.32% of surveyed species in Murinae and 82.60% in Arvicolinae with high support values. BLAST analyses yielded similar results with identification success rates of 92.15% and 93.85% for Murinae and Arvicolinae, respectively. BLOG successfully authenticated 100% of detected species except Leopoldamys edwardsi based on the latest taxonomic revision. Our results support the species status of recently recognized Micromys erythrotis, Eothenomys tarquinius and E. hintoni and confirm the important roles of comprehensive taxonomy and accurate morphological identification in DNA barcoding studies. We believe that, when proper analytic methods are applied or combined, DNA barcoding could serve as an accurate and effective species identification approach for Murinae and Arvicolinae based on a proper taxonomic framework.  相似文献   

11.
DNA barcoding is a modern species identification technique that can be used to distinguish morphologically similar species, and is particularly useful when using small amounts of starting material from partial specimens or from immature stages. In order to use DNA barcoding in a surveillance program, a database containing mosquito barcode sequences is required. This study obtained Cytochrome Oxidase I (COI) sequences for 113 morphologically identified specimens, representing 29 species, six tribes and 12 genera; 17 of these species have not been previously barcoded. Three of the 29 species ─ Culex palpalis, Macleaya macmillani, and an unknown species originally identified as Tripteroides atripes ─ were initially misidentified as they are difficult to separate morphologically, highlighting the utility of DNA barcoding. While most species grouped separately (reciprocally monophyletic), the Cx. pipiens subgroup could not be genetically separated using COI. The average conspecific and congeneric p‐distance was 0.8% and 7.6%, respectively. In our study, we also demonstrate the utility of DNA barcoding in distinguishing exotics from endemic mosquitoes by identifying a single intercepted Stegomyia aegypti egg at an international airport. The use of DNA barcoding dramatically reduced the identification time required compared with rearing specimens through to adults, thereby demonstrating the value of this technique in biosecurity surveillance. The DNA barcodes produced by this study have been uploaded to the ‘Mosquitoes of Australia–Victoria’ project on the Barcode of Life Database (BOLD), which will serve as a resource for the Victorian Arbovirus Disease Control Program and other national and international mosquito surveillance programs.  相似文献   

12.
Species delimitation is difficult for taxa in which the morphological characters are poorly known because of the rarity of adult morphs or sexes, and in cryptic species. In primitively segmented spiders, family Liphistiidae, males are often unknown, and female genital morphology – usually species‐specific in spiders – exhibits considerable intraspecific variation. Here, we report on an integrative taxonomic study of the liphistiid genus Ganthela Xu & Kuntner, 2015, endemic to south‐east China, where males are only available for two of the seven morphological species (two known and five undescribed). We obtained DNA barcodes (cytochrome c oxidase subunit I gene, COI) for 51 newly collected specimens of six morphological species and analysed them using five species‐delimitation methods: DNA barcoding gap, species delimitation plugin [P ID(Liberal)], automatic barcode gap discovery (ABGD), generalized mixed Yule‐coalescent model (GMYC), and statistical parsimony (SP). Whereas the first three agreed with the morphology, GMYC and SP indicate several additional species. We used the consensus results to delimit and diagnose six Ganthela species, which in addition to the type species Ganthela yundingensis Xu, 2015, completes the revision of the genus. Although multi‐locus phylogenetic approaches may be needed for complex taxonomic delimitations, our results indicate that even single‐locus analyses based on the COI barcodes, if integrated with morphological and geographical data, may provide sufficiently reliable species delimitation. © 2015 The Linnean Society of London  相似文献   

13.
14.
Species identification of earthworms is usually achieved by careful observation of morphological features, often sexual characters only present in adult specimens. Consequently, juveniles or cocoons are often impossible to identify, creating a possible bias in studies that aim to document species richness and abundance. DNA barcoding, the use of a short standardized DNA fragment for species identification, is a promising approach for species discrimination. When a reference library is available, DNA-based identification is possible for all life stages. In this study, we show that DNA barcoding is an unrivaled tool for high volume identification of juvenile earthworms. To illustrate this advance, we generated DNA barcodes for specimens of Lumbricus collected from three temperate grasslands in western France. The analysis of genetic distances between individuals shows that juvenile sequences unequivocally match DNA barcode clusters of previously identified adult specimens, demonstrating the potential of DNA barcoding to provide exhaustive specimen identification for soil ecological research.  相似文献   

15.
Abstract The genus Eois comprises an important part of megadiverse assemblages of geometrid moths in mountain rainforests of southern Ecuador. In this study we report: (i) on the construction of a DNA barcode library of Eois for identification purposes; and (ii) the exploration of species diversity through species delimitation by pair‐wise distance thresholds. COI barcode sequences were generated from 408 individuals (at least 105 species) collected on a narrow geographic scale (~40 km2) in the Reserva Biológica San Francisco. Analyses of barcode sequence divergence showed that species delimitations based solely on external morphology result in broad overlap of intra‐ and interspecific distances. Species delimitation at a 2% pair‐wise distance threshold reveals a clear barcoding gap. Fifty‐two previously unrecognized species were identified, 31 of which could only be distinguished by an integrative taxonomy approach. Twelve additional putative species could only be recognized by threshold‐based delimitation. Most splits resulted in two or three newly perceived cryptic taxa. The present study increased the number of Eois species recorded from that small area of Andean mountain forest from 102 to 154 (morphology‐ plus integrative taxonomy‐based) or even 166 (sequence‐based), leaving the species accumulation curve still far from reaching an asymptote. Notably, in no case did two or more previously distinguished morphospecies have to be lumped. This barcode inventory can be used to match larvae to known adult samples without rearing, and will therefore be of vital help to extend the currently limited knowledge about food plant relationships and host specialization.  相似文献   

16.
DNA barcoding aims to develop an efficient tool for species identification based on short and standardized DNA sequences. In this study, the DNA barcode paradigm was tested among the genera of the tribe Sisyrinchieae (Iridoideae). Sisyrinchium, with more than 77% of the species richness in the tribe, is a taxonomically complex genus. A total of 185 samples belonging to 98 species of Sisyrinchium, Olsynium, Orthrosanthus and Solenomelus were tested using matK, trnHpsbA and internal transcribed spacer (ITS). Candidate DNA barcodes were analysed either as single markers or in combination. Detection of a barcoding gap, similarity‐based methods and tree‐based analyses were used to assess the discrimination efficiency of DNA barcodes. The levels of species identification obtained from plastid barcodes were low and ranged from 17.35% to 20.41% for matK and 5.11% to 7.14% for trnH‐psbA. The ITS provided better results with 30.61–38.78% of species identified. The analyses of the combined data sets did not result in a significant improvement in the discrimination rate. Among the tree‐based methods, the best taxonomic resolution was obtained with Bayesian inference, particularly when the three data sets were combined. The study illustrates the difficulties for DNA barcoding to identify species in evolutionary complex lineages. Plastid markers are not recommended for barcoding Sisyrinchium due to the low discrimination power observed. ITS gave better results and may be used as a starting point for species identification.  相似文献   

17.
By complementing two independent systematic studies published recently on the Western Australian land snail Amplirhagada, we compare levels of morphological variation in shells and genitalia with those in the mitochondrial markers cytochrome c oxidase (COI) and 16S to evaluate the utility of mtDNA markers for delimiting species. We found that penial morphology and mitochondrial divergence are generally highly consistent in delimiting species, while shells have little overall taxonomic utility in these snails. In addition to this qualitative correspondence, there is almost no overlap between intraspecific and interspecific genetic distances in COI, with the highest intraspecific and lowest interspecific distance being 6%. This value is twice the general level suggested as a DNA barcode threshold by some authors and higher than the best average found in stylommatophoran land snails. Although in Amplirhagada land snails DNA barcoding may provide meaningful information as a first‐pass approach towards species delimitation, we argue that this is due only to specific evolutionary circumstances that facilitated a long‐termed separate evolution of mitochondrial lineages along spatial patterns. However, because in general the amounts of morphological and mitochondrial differentiation of species depend on their evolutionary history and age, the mode of speciation, distributional patterns and ecological adaptations, and absence or presence of mechanisms that prevent gene flow across species limits, the applicability of DNA barcoding has to be confirmed by morphological studies for each single group anew. Based on evidence from both molecular and morphological markers, we describe six new species from the Bonaparte Archipelago and revise the taxonomy of a further two. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 165 , 337–362.  相似文献   

18.
A well‐covered reference library is crucial for successful identification of species by DNA barcoding. The biggest difficulty in building such a reference library is the lack of materials of organisms. Herbarium collections are potentially an enormous resource of materials. In this study, we demonstrate that it is likely to build such reference libraries using the reconstructed (self‐primed PCR amplified) DNA from the herbarium specimens. We used 179 rosaceous specimens to test the effects of DNA reconstruction, 420 randomly sampled specimens to estimate the usable percentage and another 223 specimens of true cherries (Cerasus, Rosaceae) to test the coverage of usable specimens to the species. The barcode rbcLb (the central four‐sevenths of rbcL gene) and matK was each amplified in two halves and sequenced on Roche GS 454 FLX+. DNA from the herbarium specimens was typically shorter than 300 bp. DNA reconstruction enabled amplification fragments of 400–500 bp without bringing or inducing any sequence errors. About one‐third of specimens in the national herbarium of China (PE) were proven usable after DNA reconstruction. The specimens in PE cover all Chinese true cherry species and 91.5% of vascular species listed in Flora of China. It is very possible to build well‐covered reference libraries for DNA barcoding of vascular species in China. As exemplified in this study, DNA reconstruction and DNA‐labelled next‐generation sequencing can accelerate the construction of local reference libraries. By putting the local reference libraries together, a global library for DNA barcoding becomes closer to reality.  相似文献   

19.
Feather mites (Astigmata: Analgoidea and Pterolichoidea) are among the most abundant and commonly occurring bird ectosymbionts. Basic questions on the ecology and evolution of feather mites remain unanswered because feather mite species identification is often only possible for adult males, and it is laborious even for specialized taxonomists, thus precluding large‐scale identifications. Here, we tested DNA barcoding as a useful molecular tool to identify feather mites from passerine birds. Three hundred and sixty‐one specimens of 72 species of feather mites from 68 species of European passerine birds from Russia and Spain were barcoded. The accuracy of barcoding and minibarcoding was tested. Moreover, threshold choice (a controversial issue in barcoding studies) was also explored in a new way, by calculating through simulations the effect of sampling effort (in species number and species composition) on threshold calculations. We found one 200‐bp minibarcode region that showed the same accuracy as the full‐length barcode (602 bp) and was surrounded by conserved regions potentially useful for group‐specific degenerate primers. Species identification accuracy was perfect (100%) but decreased when singletons or species of the Proctophyllodes pinnatus group were included. In fact, barcoding confirmed previous taxonomic issues within the P. pinnatus group. Following an integrative taxonomy approach, we compared our barcode study with previous taxonomic knowledge on feather mites, discovering three new putative cryptic species and validating three previous morphologically different (but still undescribed) new species.  相似文献   

20.
Soft‐bodied marine taxa, like ribbon worms (Nemertea), often lack clear diagnostic morphological characters impeding traditional species delimitation. Therefore, recent studies concentrated on molecular genetic methods to solve taxonomic issues. Different delimitation methods were employed to explore species boundaries and the presence of cryptic species. However, the performance of the different delimitation methods needs to be tested. A particularly promising nemertean genus in this regard is the palaeonemertean genus Cephalothrix that is commonly found in European waters. In order to gain information on the number and distribution of European cephalotrichids and to test different tree‐based and non‐tree‐based delimitation methods, we analyzed a dataset comprising the barcoding region of the mitochondrial cytochrome c oxidase subunit I (COI) of 215 European Cephalothrix specimens, of which 78 were collected for this study. Our results show the presence of 12–13 European lineages of which several can be assigned to known European species. Analyzing a second dataset comprising 74 additional sequences from the Pacific and the Atlantic Oceans helped identify some of the unassigned European specimens. One resulting clade seems to represent a non‐native introduced Cephalothrix species, while another has never been recorded from Europe before. In our analysis, especially the tree‐based methods and the phylogenetic analysis proved to be a useful tool when delimiting species. It remains unclear whether the different identified clades result from cryptic speciation or from a high genetic variability of the COI gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号