首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil communities are intricately linked to ecosystem functioning, and a predictive understanding of how communities assemble in response to environmental change is of great ecological importance. Little is known about the assembly processes governing abundant and rare fungal communities across agro‐ecosystems, particularly with regard to their environmental adaptation. By considering abundant and rare taxa, we tested the environmental thresholds and phylogenetic signals for ecological preferences of fungal communities across complex environmental gradients to reflect their environmental adaptation, and explored the factors influencing their assembly based on the large‐scale soil survey in agricultural fields across eastern China. We found that the abundant taxa exhibited remarkably broader response thresholds and stronger phylogenetic signals for the ecological preferences across environmental gradients compared to the rare taxa. Neutral processes played a key role in shaping the abundant subcommunity compared to the rare subcommunity. Null model analysis revealed that the abundant subcommunity was less clustered phylogenetically and governed primarily by dispersal limitation, while homogeneous selection was the major assembly process in the rare subcommunity. Soil available sulfur was the major factor mediating the balance between stochastic and deterministic processes of both the abundant and rare subcommunities, as indicated by an increase in stochasticity with higher available sulfur concentration. Based on macroecological spatial scale datasets, our study revealed the potential broader environmental adaptation of abundant fungal taxa compared to rare fungal taxa, and identified the factors mediating their distinct community assembly processes in agricultural fields. These results contribute to our understanding of the mechanisms underlying the generation and maintenance of fungal diversity in response to global environmental change.  相似文献   

2.
Soil bacterial communities play fundamental roles in ecosystem functioning and often display a skewed distribution of abundant and rare taxa. So far, relatively little is known about the biogeographical patterns and mechanisms structuring the assembly of abundant and rare biospheres of soil bacterial communities. Here, we studied the geographical distribution of different bacterial sub-communities by examining the relative influence of environmental selection and dispersal limitation on taxa distributions in paddy soils across East Asia. Our results indicated that the geographical patterns of four different bacterial sub-communities consistently displayed significant distance–decay relationships (DDRs). In addition, we found niche breadth and dispersal rates to significantly explain differences in community assembly of abundant and rare taxa, directly affecting the strength of DDRs. While conditionally rare and abundant taxa displayed the strongest DDR due to higher environmental filtering and dispersal limitation, moderate taxa sub-communities had the weakest DDR due to greater environmental tolerance and dispersal rate. Random forest models indicated that soil pH (9.13%–49.78%) and average annual air temperature (16.59%–46.49%) were the most important predictors of the variation in the bacterial community. This study advances our understanding of the intrinsic links between fundamental ecological processes and microbial biogeographical patterns in paddy soils.  相似文献   

3.
Despite the important roles of soil microbes, especially the most diverse rare taxa in maintaining community diversity and multifunctionality, how different climate regimes alter the stability and functions of the rare microbial biosphere remains unknown. We reciprocally transplanted field soils across a latitudinal gradient to simulate climate change and sampled the soils annually after harvesting the maize over the following 6 years (from 2005 to 2011). By sequencing microbial 16S ribosomal RNA gene amplicons, we found that changing climate regimes significantly altered the composition and dynamics of soil microbial communities. A continuous succession of the rare and abundant communities was observed. Rare microbial communities were more stable under changing climatic regimes, with lower variations in temporal dynamics, and higher stability and constancy of diversity. More nitrogen cycling genes were detected in the rare members than in the abundant members, including amoA, napA, nifH, nirK, nirS, norB and nrfA. Random forest analysis and receiver operating characteristics analysis showed that rare taxa may act as potential contributors to maize yield under changing climatics. The study indicates that the taxonomically and functionally diverse rare biosphere has the potential to increase functional redundancy and enhance the ability of soil communities to counteract environmental disturbances. With ongoing global climate change, exploring the succession process and functional changes of rare taxa may be important in elucidating the ecosystem stability and multifunctionality that are mediated by microbial communities.  相似文献   

4.
Termites are ubiquitous insects in tropical and subtropical habitats, and some of them construct massive nests (‘mounds’), which substantially promote substrate heterogeneity by altering soil properties. Yet, the role of termite nesting process in regulating the distribution and diversity of soil microbial communities remains poorly understood, which introduces uncertainty in predictions of ecosystem functions of termite mounds in a changing environment. Here, by using amplicon sequencing, we conducted a survey of 134 termite mounds across >1500 km in northern Australia and found that termite mounds significantly differed from bulk soils in the microbial diversity and community compositions. Compared with bulk soils, termite nesting process decreased the microbial diversity and the relative abundance of rare taxa. Rare taxa had a narrower habitat niche breadth than dominant taxa and might be easier to be filtered by the potential intensive microbial competition during the nesting processes. We further demonstrated that the shift in pH induced by termite nesting process was a major driver shaping the microbial community profiles in termite mounds. Together, our work provides novel evidence that termite nesting is an important process in regulating soil microbial diversity, which advances our understanding of the functioning of termite mounds.  相似文献   

5.
Diatom blooms can significantly influence the dynamics of microbial communities, yet little is known about the interaction and assembly mechanisms of abundant and rare taxa during bloom process. Here, using 16S rRNA gene amplicon sequencing, we investigated the co-occurrence patterns and assembly processes of abundant and rare microbial communities during an early spring diatom bloom in Xiangshan bay. Our results showed that α-diversity indices in the rare subcommunity (RS) were significantly higher than those in the abundant and common subcommunities. β-Diversity of the RS was the highest among three subcommunities, and the variation of β-diversity in the three subcommunities was mainly induced by species turnover, which was also the highest in the RS. The assembly of microbial communities was mainly driven by the neutral processes, but the roles of neutral processes might differ in each subcommunity. Co-occurrence network analysis revealed that abundant and common operational taxonomic units were more often located in central positions within the network. Most of the modules in the network were specific to a particular bloom stage, owing to the succession of Skeletonema costatum. Overall, these findings expand current understanding of the microbial interaction and assembly mechanisms in marine environment suffering harmful algal bloom disturbance.  相似文献   

6.
Mangrove soils are anaerobic environments rich in sulphate and organic matter. Although the sulphur cycle is one of the major actors in this ecosystem, little is known regarding the sulphur bacteria communities in mangrove soils. We investigated the abundance, composition and diversity of sulphur‐oxidizing (SOB) and sulphate‐reducing (SRB) bacteria in sediments from three Brazilian mangrove communities: two contaminated, one with oil (OilMgv) and one with urban waste and sludge (AntMgv), and one pristine (PrsMgv). The community structures were assessed using quantitative real‐time polymerase chain reaction (qPCR), polymerase chain reaction‐denaturing gradient gel electrophoresis (PCR‐DGGE) and clone libraries, using genes for the enzymes adenosine‐5′‐phosphosulphate reductase (aprA) and sulphite reductase (Dsr) (dsrB). The abundance for qPCR showed the ratio dsrB/aprA to be variable among mangroves and higher according to the gradient observed for oil contamination in the OilMgv. The PCR‐DGGE patterns analysed by Nonmetric Multidimensional Scaling revealed differences among the structures of the three mangrove communities. The clone libraries showed that Betaproteobacteria, Gammaproteobacteria and Deltaproteobacteria were the most abundant groups associated with sulphur cycling in mangrove sediments. We conclude that the microbial SOB and SRB communities in mangrove soils are different in each mangrove forest and that such microbial communities could possibly be used as a proxy for contamination in mangrove forests.  相似文献   

7.
Ecotones between distinct ecosystems have been the focus of many studies as they offer valuable insights into key drivers of community structure and ecological processes that underpin function. While previous studies have examined a wide range of above‐ground parameters in ecotones, soil microbial communities have received little attention. Here we investigated spatial patterns, composition, and co‐occurrences of archaea, bacteria, and fungi, and their relationships with soil ecological processes across a woodland‐grassland ecotone. Geostatistical kriging and network analysis revealed that the community structure and spatial patterns of soil microbiota varied considerably between three habitat components across the ecotone. Woodland samples had significantly higher diversity of archaea while the grassland samples had significantly higher diversity of bacteria. Microbial co‐occurrences reflected differences in soil properties and ecological processes. While microbial networks were dominated by bacterial nodes, different ecological processes were linked to specific microbial guilds. For example, soil phosphorus and phosphatase activity formed the largest clusters in their respective networks, and two lignolytic enzymes formed joined clusters. Bacterial ammonia oxidizers were dominant over archaeal oxidizers and showed a significant association (p < 0.001) with potential nitrification (PNR), with the PNR subnetwork being dominated by Betaproteobacteria. The top ten keystone taxa comprised six bacterial and four fungal OTUs, with Random Forest Analysis revealing soil carbon and nitrogen as the determinants of the abundance of keystone taxa. Our results highlight the importance of assessing interkingdom associations in soil microbial networks. Overall, this study shows how ecotones can be used as a model to delineate microbial structural patterns and ecological processes across adjoining land‐uses within a landscape.  相似文献   

8.
Bacteria play key roles in the ecology of both aquatic and terrestrial ecosystems; however, little is known about their diversity and biogeography, especially in the rare microbial biosphere of inland freshwater ecosystems. Here we investigated aspects of the community ecology and geographical distribution of abundant and rare bacterioplankton using high-throughput sequencing and examined the relative influence of local environmental variables and regional (spatial) factors on their geographical distribution patterns in 42 lakes and reservoirs across China. Our results showed that the geographical patterns of abundant and rare bacterial subcommunities were generally similar, and both of them showed a significant distance–decay relationship. This suggests that the rare bacterial biosphere is not a random assembly, as some authors have assumed, and that its distribution is most likely subject to the same ecological processes that control abundant taxa. However, we identified some differences between the abundant and rare groups as both groups of bacteria showed a significant positive relationship between sites occupancy and abundance, but the abundant bacteria exhibited a weaker distance–decay relationship than the rare bacteria. Our results implied that rare subcommunities were mostly governed by local environmental variables, whereas the abundant subcommunities were mainly affected by regional factors. In addition, both local and regional variables that were significantly related to the spatial variation of abundant bacterial community composition were different to those of rare ones, suggesting that abundant and rare bacteria may have discrepant ecological niches and may play different roles in natural ecosystems.  相似文献   

9.
A central aim of this microbial ecology research was to investigate the mechanisms shaping the assembly of soil microbial communities. Despite the importance of bacterial and fungal mediation of carbon cycling in forest ecosystems, knowledge concerning their distribution patterns and underlying mechanisms remains insufficient. Here, soils were sampled from six bamboo forests across the main planting area of Moso bamboo in southern China. The bacterial and fungal diversities were assessed by sequencing 16S rRNA and ITS gene amplicons, respectively, with an Illumina MiSeq. Based on structural equation modelling, dispersal limitation had strongest impact on bacterial beta diversity, while the mean annual precipitation had a smaller impact by directly or indirectly mediating the soil organic carbon density. However, only the mean annual temperature and precipitation played direct roles in fungal beta diversity. Moreover, the co‐occurrence network analyses revealed a possibly much higher network connectivity in the fungal network than in the bacteria. With less dispersal limitation, stronger environmental selection and a potentially more connected network, the fungal community had more important roles in the soil carbon metabolisms in bamboo forests. Fungal beta diversity and the clustering coefficient explained approximately 14.4% and 6.1% of the variation in the carbon metabolic profiles among sites, respectively, but that of bacteria only explained approximately 1.7% and 1.8%, respectively. This study explored soil microbial spatial patterns along with the underlying mechanisms of dispersal limitation, selection and connectivity of ecological networks, thus providing novel insights into the study of the distinct functional traits of different microbial taxa.  相似文献   

10.
Microbial taxa range from being ubiquitous and abundant across space to extremely rare and endemic, depending on their ecophysiology and on different processes acting locally or regionally. However, little is known about how cosmopolitan or rare taxa combine to constitute communities and whether environmental variations promote changes in their relative abundances. Here we identified the Spatial Abundance Distribution (SpAD) of individual prokaryotic taxa (16S rDNA‐defined Operational Taxonomic Units, OTUs) across 108 globally‐distributed surface ocean stations. We grouped taxa based on their SpAD shape (“normal‐like”‐ abundant and ubiquitous; “logistic”‐ globally rare, present in few sites; and “bimodal”‐ abundant only in certain oceanic regions), and investigated how the abundance of these three categories relates to environmental gradients. Most surface assemblages were numerically dominated by a few cosmopolitan “normal‐like” OTUs, yet there was a gradual shift towards assemblages dominated by “logistic” taxa in specific areas with productivity and temperature differing the most from the average conditions in the sampled stations. When we performed the SpAD categorization including additional habitats (deeper layers and particles of varying sizes), the SpAD of many OTUs changed towards fewer “normal‐like” shapes, and OTUs categorized as globally rare in the surface ocean became abundant. This suggests that understanding the mechanisms behind microbial rarity and dominance requires expanding the context of study beyond local communities and single habitats. We show that marine bacterial communities comprise taxa displaying a continuum of SpADs, and that variations in their abundances can be linked to habitat transitions or barriers that delimit the distribution of community members.  相似文献   

11.
克拉玛依石油污染土壤微生物群落结构及其代谢特征   总被引:1,自引:0,他引:1  
为了分析克拉玛依油区内土壤中正构烷烃含量间的差异,微生物群落生理多样性、微生物代谢活性在不同石油污染梯度土壤中的变化规律。本研究采用GC、平板稀释法、Biolog微平板技术探讨了土壤微生物群落特征在3种不同污染程度下的变化情况。研究表明,石油污染土壤烷烃含量与微生物代谢活性呈显著负相关(r=-0.783, p<0.05)。随着石油污染程度增加微生物数量呈下降趋势,不同石油污染土壤中细菌数量占决定优势,细菌>真菌>放线菌。不同石油污染土壤微生物群落对6大碳源的利用体现出差异。主成分分析(PCA)表明,清洁土壤与石油污染土壤对底物利用有明显差异。石油污染严重土样碳源利用率为"酯类>酸类>胺类>氨基酸类>单糖/糖苷/聚合糖类>醇类"。本研究成果为后期修复污染土壤时调整投入的碳源底物等提供科学帮助。  相似文献   

12.
Most ecological research on hypoliths, significant primary producers in hyperarid deserts, has focused on the diversity of individual groups of microbes (i.e. bacteria). However, microbial communities are inherently complex, and the interactions between cyanobacteria, heterotrophic bacteria, protista and metazoa are likely to be very important for ecosystem functioning. Cyanobacterial and heterotrophic bacterial communities were analysed by pyrosequencing, while metazoan and protistan communities were assessed by T‐RFLP analysis. Microbial functionality was estimated using carbon substrate utilization. Cyanobacterial community composition was significant in shaping community structure and function in hypoliths. Ecological network analysis showed that most significant co‐occurrences were positive, representing potential synergistic interactions. There were several highly interconnected associations (modules), and specific cyanobacteria were important in driving the modular structure of hypolithic networks. Together, our results suggest that hypolithic cyanobacteria have strong effects on higher trophic levels and ecosystem functioning.  相似文献   

13.
Rare biosphere represents the majority of Earth's biodiversity and performs vital ecological functions, yet little is known about its biogeographical patterns and community assembly processes in terrestrial ecosystems. Herein, we investigated the community composition and phylogeny of rare (relative abundance <0.1%) and abundant (>1%) bacteria in dryland grassland soils on the Tibetan Plateau. Results revealed similar biogeographical patterns of rare and abundant bacteria at both compositional and phylogenetic levels, but rare subcommunity was more heavily influenced by stochasticity (72%) than the abundant (57%). The compositional variation of rare bacteria was less explained by environmental factors (41%) than that of the abundant (80%), while the phylogeny of rare bacteria (36%) was more explained than that of the abundant (29%). The phylogeny of rare bacteria was equally explained by local factors (soil and vegetation) and geospatial distance (11.5% and 11.9% respectively), while that of the abundant was more explained by geospatial distance (22.1%) than local factors (11.3%). Furthermore, a substantially tighter connection between the community phylogeny and composition was observed in rare (R2 = 0.65) than in abundant bacteria (R2 = 0.08). Our study provides novel insights into the assembly processes and biographical patterns of rare and abundant bacteria in dryland soils.  相似文献   

14.
气候及食物是驱动植食性小哺乳动物肠道菌群产生季节性变化的重要因素。然而,此类研究很少涉及肠道丰富及稀有微生物类群。本文以高原鼠兔(Ochotona curzoniae)为对象,通过16S rRNA基因测序和分析,探讨丰富及稀有肠道微生物类群的结构组成、多样性指数及功能在春、夏、秋、冬四季的变化特征。结果显示,丰富类群对菌群主要门和功能的季节性变异贡献大于稀有类群,稀有类群对菌群OTU和alpha多样性的变异贡献大于丰富类群。丰富类群和稀有类群的香农指数均在冬季显著高于其他季节;丰富类群的ACE指数在秋季显著低于其他季节,而稀有类群的ACE指数则在冬季显著高于春季和夏季。丰富类群中拟杆菌门(Bacteroidetes)的相对丰度在冬季和秋季显著高于春季和夏季,但在稀有类群中,夏季和秋季的相对丰度显著高于冬季和春季。丰富类群中氨基酸代谢通路的相对丰度在冬季显著高于春季和夏季,而在稀有类群中,其相对丰度在春季显著高于夏季和秋季。气温、降水量和植被中的营养物质与肠道菌群中丰富类群和稀有类群的变化均显著相关,环境变量对丰富类群和稀有类群变化的总解释率分别为18%(气温:3%;降水:4%;植被营养成分:10%;联合:1%)和9%(气温:1%;降水:2%;植被营养成分:5%;联合:1%)。以上结果表明肠道微生物中的丰富和稀有类群具有不同的分布模式和季节性特征,二者对整体菌群变异的贡献存在差异,环境因素更多地影响丰富类群,反映了肠道微生物不同类群对季节变化响应的非一致性。本研究增进了我们对哺乳动物肠道菌群季节性变化过程及环境适应性的认识。  相似文献   

15.
Forest ecosystems have integral roles in climate stability, biodiversity and economic development. Soil stewardship is essential for sustainable forest management. Organic matter (OM) removal and soil compaction are key disturbances associated with forest harvesting, but their impacts on forest ecosystems are not well understood. Because microbiological processes regulate soil ecology and biogeochemistry, microbial community structure might serve as indicator of forest ecosystem status, revealing changes in nutrient and energy flow patterns before they have irreversible effects on long-term soil productivity. We applied massively parallel pyrosequencing of over 4.6 million ribosomal marker sequences to assess the impact of OM removal and soil compaction on bacterial and fungal communities in a field experiment replicated at six forest sites in British Columbia, Canada. More than a decade after harvesting, diversity and structure of soil bacterial and fungal communities remained significantly altered by harvesting disturbances, with individual taxonomic groups responding differentially to varied levels of the disturbances. Plant symbionts, like ectomycorrhizal fungi, and saprobic taxa, such as ascomycetes and actinomycetes, were among the most sensitive to harvesting disturbances. Given their significant ecological roles in forest development, the fate of these taxa might be critical for sustainability of forest ecosystems. Although abundant bacterial populations were ubiquitous, abundant fungal populations often revealed a patchy distribution, consistent with their higher sensitivity to the examined soil disturbances. These results establish a comprehensive inventory of bacterial and fungal community composition in northern coniferous forests and demonstrate the long-term response of their structure to key disturbances associated with forest harvesting.  相似文献   

16.
Soil microbial communities are the key drivers of many terrestrial biogeochemical processes. However, we currently lack a generalizable understanding of how these soil communities will change in response to predicted increases in global temperatures and which microbial lineages will be most impacted. Here, using high‐throughput marker gene sequencing of soils collected from 18 sites throughout North America included in a 100‐day laboratory incubation experiment, we identified a core group of abundant and nearly ubiquitous soil microbes that shift in relative abundance with elevated soil temperatures. We then validated and narrowed our list of temperature‐sensitive microbes by comparing the results from this laboratory experiment with data compiled from 210 soils representing multiple, independent global field studies sampled across spatial gradients with a wide range in mean annual temperatures. Our results reveal predictable and consistent responses to temperature for a core group of 189 ubiquitous soil bacterial and archaeal taxa, with these taxa exhibiting similar temperature responses across a broad range of soil types. These microbial ‘bioindicators’ are useful for understanding how soil microbial communities respond to warming and to discriminate between the direct and indirect effects of soil warming on microbial communities. Those taxa that were found to be sensitive to temperature represented a wide range of lineages and the direction of the temperature responses were not predictable from phylogeny alone, indicating that temperature responses are difficult to predict from simply describing soil microbial communities at broad taxonomic or phylogenetic levels of resolution. Together, these results lay the foundation for a more predictive understanding of how soil microbial communities respond to soil warming and how warming may ultimately lead to changes in soil biogeochemical processes.  相似文献   

17.
Marine microbial eukaryotes play critical roles in planktonic food webs and have been described as most diverse in the photic zone where productivity is high. We used high‐throughput sequencing (HTS) to analyse the spatial distribution of planktonic ciliate diversity from shallow waters (<30 m depth) to beyond the continental shelf (>800 m depth) along a 163 km transect off the coast of New England, USA. We focus on ciliates in the subclasses Oligotrichia and Choreotrichia (class Spirotrichea), as these taxa are major components of marine food webs. We did not observe the decrease of diversity below the photic zone expected based on productivity and previous analyses. Instead, we saw an increase of diversity with depth. We also observed that the ciliate communities assessed by HTS cluster by depth layer and degree of water column stratification, suggesting that community assembly is driven by environmental factors. Across our samples, abundant OTUs tend to match previously characterized morphospecies while rare OTUs are more often undescribed, consistent with the idea that species in the rare biosphere remain to be characterized by microscopy. Finally, samples taken below the photic zone also reveal the prevalence of two uncharacterized (i.e. lacking sequenced morphospecies) clades – clusters X1 and X2 – that are enriched within the nano‐sized fraction (2–10 μm) and are defined by deletions within the region of the SSU‐rDNA analysed here. Together, these data reinforce that we still have much to learn about microbial diversity in marine ecosystems, especially in deep‐waters that may be a reservoir for rare species and uncharacterized taxa.  相似文献   

18.
Species extinctions from local communities negatively affect ecosystem functioning. Ecological mechanisms underlying these impacts are well studied, but the role of evolutionary processes is rarely assessed. Using a long‐term field experiment, we tested whether natural selection in plant communities increased biodiversity effects on productivity. We re‐assembled communities with 8‐year co‐selection history adjacent to communities with identical species composition but no history of co‐selection (‘naïve communities’). Monocultures, and in particular mixtures of two to four co‐selected species, were more productive than their corresponding naïve communities over 4 years in soils with or without co‐selected microbial communities. At the highest diversity level of eight plant species, no such differences were observed. Our findings suggest that plant community evolution can lead to rapid increases in ecosystem functioning at low diversity but may take longer at high diversity. This effect was not modified by treatments simulating co‐evolutionary processes between plants and soil organisms.  相似文献   

19.
Microaerophilic, phototrophic and nitrate‐reducing Fe(II)‐oxidizers co‐exist in coastal marine and littoral freshwater sediments. However, the in situ abundance, distribution and diversity of metabolically active Fe(II)‐oxidizers remained largely unexplored. Here, we characterized the microbial community composition at the oxic‐anoxic interface of littoral freshwater (Lake Constance, Germany) and coastal marine sediments (Kalø Vig and Norsminde Fjord, Denmark) using DNA‐/RNA‐based next‐generation 16S rRNA (gene) amplicon sequencing. All three physiological groups of neutrophilic Fe(II)‐oxidizing bacteria were found to be active in marine and freshwater sediments, revealing up to 0.2% anoxygenic photoferrotrophs (e.g., Rhodopseudomonas, Rhodobacter, Chlorobium), 0.1% microaerophilic Fe(II)‐oxidizers (e.g., Mariprofundus, Hyphomonas, Gallionella) and 0.3% nitrate‐reducing Fe(II)‐oxidizers (e.g., Thiobacillus, Pseudomonas, Denitromonas, Hoeflea). Active Fe(III)‐reducing bacteria (e.g., Shewanella, Geobacter) were most abundant (up to 2.8%) in marine sediments and co‐occurred with cable bacteria (up to 4.5%). Geochemical profiles of Fe(III), Fe(II), O2, light, nitrate and total organic carbon revealed a redox stratification of the sediments and explained 75%–85% of the vertical distribution of microbial taxa, while active Fe‐cycling bacteria were found to be decoupled from geochemical gradients. We suggest that metabolic flexibility, microniches in the sediments, or interrelationships with cable bacteria might explain the distribution patterns of active Fe‐cycling bacteria.  相似文献   

20.
The generality of increasing diversity of fungi and bacteria across arctic sand dune succession was tested. Microbial communities were examined by high‐throughput sequencing of 16S rRNA genes (bacteria) and internal transcribed spacer (ITS) regions (fungi). We studied four microbial compartments (inside leaf, inside root, rhizosphere and bulk soil) and characterized microbes associated with a single plant species (Deschampsia flexuosa) across two sand dune successional stages (early and late). Bacterial richness increased across succession in bulk soil and leaf endosphere. In contrast, soil fungal richness remained constant while root endosphere fungal richness increased across succession. There was, however, no significant difference in Shannon diversity indices between early and late successional stage in any compartment. There was a significant difference in the composition of microbial communities between early and late successional stage in all compartments, although the major microbial OTUs were shared between early and late successional stage. Co‐occurrence network analysis revealed successional stage‐specific microbial groups. There were more co‐occurring modules in early successional stage than in late stage. Altogether, these results emphasize that succession strongly affects distribution of microbial species, but not microbial diversity in arctic sand dune ecosystem and that fungi and bacteria may not follow the same successional trajectories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号