首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trade‐offs maintain diversity and structure communities along environmental gradients. Theory indicates that if covariance among functional traits sets a limit on the number of viable trait combinations in a given environment, then communities with strong multidimensional trait constraints should exhibit low species diversity. We tested this prediction in winter annual plant assemblages along an aridity gradient using multilevel structural equation modelling. Univariate and multivariate functional diversity measures were poorly explained by aridity, and were surprisingly poor predictors of community richness. By contrast, the covariance between maximum height and seed mass strengthened along the aridity gradient, and was strongly associated with richness declines. Community richness had a positive effect on local neighbourhood richness, indicating that climate effects on trait covariance indirectly influence diversity at local scales. We present clear empirical evidence that declines in species richness along gradients of environmental stress can be due to increasing constraints on multidimensional phenotypes.  相似文献   

2.
Changes in abiotic factors along altitudinal and latitudinal gradients cause powerful environmental gradients. The topography of alpine areas generates environmental gradients over short distances, and alpine areas are expected to experience greater temperature increase compared to the global average. In this study, we investigate alpha, beta, and gamma diversity, as well as community structure, of vascular plant communities along altitudinal gradients at three latitudes in the Swedish mountains. Species richness and evenness decreased with altitude, but the patterns within the altitudinal gradient varied between sites, including a sudden decrease at high altitude, a monotonic decrease, and a unimodal pattern. However, we did not observe a decline in beta diversity with altitude at all sites, and plant communities at all sites were spatially nested according to some other factors than altitude, such as the availability of water or microtopographic position. Moreover, the observed diversity patterns did not follow the latitudinal gradient. We observed a spatial modularity according to altitude, which was consistent across sites. Our results suggest strong influences of site‐specific factors on plant community composition and that such factors partly may override effects from altitudinal and latitudinal environmental variation. Spatial variation of the observed vascular plant communities appears to have been caused by a combination of processes at multiple spatial scales.  相似文献   

3.
Understanding variation in key functional traits across gradients in high diversity systems and the ecology of community changes along gradients in these systems is crucial in light of conservation and climate change. We examined inter‐ and intraspecific variation in leaf mass per area (LMA) of sun and shade leaves along a 3330‐m elevation gradient in Peru, and in sun leaves across a forest–savanna vegetation gradient in Brazil. We also compared LMA variance ratios (T‐statistics metrics) to null models to explore internal (i.e., abiotic) and environmental filtering on community structure along the gradients. Community‐weighted LMA increased with decreasing forest cover in Brazil, likely due to increased light availability and water stress, and increased with elevation in Peru, consistent with the leaf economic spectrum strategy expected in colder, less productive environments. A very high species turnover was observed along both environmental gradients, and consequently, the first source of variation in LMA was species turnover. Variation in LMA at the genus or family levels was greater in Peru than in Brazil. Using dominant trees to examine possible filters on community assembly, we found that in Brazil, internal filtering was strongest in the forest, while environmental filtering was observed in the dry savanna. In Peru, internal filtering was observed along 80% of the gradient, perhaps due to variation in taxa or interspecific competition. Environmental filtering was observed at cloud zone edges and in lowlands, possibly due to water and nutrient availability, respectively. These results related to variation in LMA indicate that biodiversity in species rich tropical assemblages may be structured by differential niche‐based processes. In the future, specific mechanisms generating these patterns of variation in leaf functional traits across tropical environmental gradients should be explored.  相似文献   

4.
Despite increasing evidence of the importance of intraspecific trait variation in plant communities, its role in community trait responses to environmental variation, particularly along broad-scale climatic gradients, is poorly understood. We analyzed functional trait variation among early-successional herbaceous plant communities (old fields) across a 1200-km latitudinal extent in eastern North America, focusing on four traits: vegetative height, leaf area, specific leaf area (SLA), and leaf dry matter content (LDMC). We determined the contributions of species turnover and intraspecific variation to between-site functional dissimilarity at multiple spatial scales and community trait responses to edaphic and climatic factors. Among-site variation in community mean trait values and community trait responses to the environment were generated by a combination of species turnover and intraspecific variation, with species turnover making a greater contribution for all traits. The relative importance of intraspecific variation decreased with increasing geographic and environmental distance between sites for SLA and leaf area. Intraspecific variation was most important for responses of vegetative height and responses to edaphic compared to climatic factors. Individual species displayed strong trait responses to environmental factors in many cases, but these responses were highly variable among species and did not usually scale up to the community level. These findings provide new insights into the role of intraspecific trait variation in plant communities and the factors controlling its relative importance. The contribution of intraspecific variation to community trait responses was greatest at fine spatial scales and along edaphic gradients, while species turnover dominated at broad spatial scales and along climatic gradients.  相似文献   

5.
Understanding the imprint of environmental filtering on community assembly along environmental gradients is a key objective of trait‐gradient analyses. Depending on local constraints, this filtering generally entails that species departing from an optimum trait value have lower abundances in the community. The community‐weighted mean (CWM) and variance (CWV) of trait values are then expected to depict the optimum and intensity of filtering, respectively. However, the trait distribution within the regional species pool and its limits can also affect local CWM and CWV values apart from the effect of environmental filtering. The regional trait range limits are more likely to be reached in communities at the extremes of environmental gradients. Analogous to the mid‐domain effect in biogeography, decreasing CWV values in extreme environments can then represent the influence of regional trait range limits rather than stronger filtering in the local environment. We name this effect the ‘trait‐gradient boundary effect’ (TGBE). First, we use a community assembly framework to build simulated communities along a gradient from a species pool and environmental filtering with either constant or varying intensity while accounting for immigration processes. We demonstrate the significant influence of TGBE, in parallel to environmental filtering, on CWM and CWV at the extremes of the environmental gradient. We provide a statistical tool based on Approximate Bayesian Computation to decipher the respective influence of local environmental filtering and regional trait range limits. Second, as a case study, we reanalyze the functional composition of alpine plant communities distributed along a gradient of snow cover duration. We show that leaf trait convergence found in communities at the extremes of the gradient reflect an influence of trait range limits rather than stronger environmental filtering. These findings challenge correlative trait–environment relationships and call for more explicitly identifying the mechanisms responsible of trait convergence/divergence along environmental gradients.  相似文献   

6.
The relationships between functional traits and environmental gradients are useful to identify different community assembly processes. In this work, we used an approach based on functional traits to analyse if changes in hydroperiod and tree covers of ponds are relevant for local amphibian community assembly processes. Ephemeral ponds with low vegetation cover are expected to impose constraints on different species with particular trait combinations and, therefore, to exhibit communities with lower functional diversity than more stable ponds with greater tree cover. Sampling was conducted in 39 temporary ponds located along vegetation and hydroperiod gradients in the most arid portion of the Chaco ecoregion. Seven functional traits were measured in each species present in the regional pool. Associations between these traits and environmental gradients were detected using multivariate ordination techniques and permutation test (RLQ and fourth‐corner analyses respectively). Functional diversity indices were then calculated and related to variations in the environmental gradients. The results obtained allowed us to identify different sets of traits associated with hydroperiod and tree cover, suggesting that these environmental variables are relevant for structuring amphibian communities according to interspecific variations in functional traits from both, larval and adult stages. Contrary to our expectations, communities associated with more stable ponds and with greater tree cover exhibited lower functional diversity than expected by chance (and were the ponds with highest species richness). This result indicates that the reduction in relative importance of environmental restrictions imposed by a very short hydroperiod and the lack of tree cover, favours different species of the regional pool that are similar in several functional traits. Accordingly, communities associated with stable ponds with high tree cover exhibited high functional redundancy.  相似文献   

7.
Analysing how species modify their trait expression along a diversity gradient brings insight about the role that intraspecific variability plays over species interactions, e.g. competition versus complementarity. Here, we evaluated the functional trait space of nine tree species dominant in three types of European forests (a continental‐Mediterranean, a mountainous mixed temperate and a boreal) growing in communities with different species richness in the canopy, including pure stands. We compiled whole‐plant and leaf traits in 1719 individuals, and used them to quantify species trait hypervolumes in communities with different tree species richness. We investigated changes along the species richness gradient to disentangle species responses to the neighbouring environment, in terms of hypervolume size (trait variance), shape (trait relative importance) and centroid translation (shifts of mean trait values) using null models. Our main results showed differences in trait variance and shifts of mean values along the tree diversity gradient, with shorter trees but with larger crowns in mixed stands. We found constrained functional spaces (trait convergence) in pure stands, suggesting an important intraspecific competition, and expanded functional spaces (trait divergence) in two‐species admixtures, suggesting competition release due to interspecific complementarity. Nevertheless, further responses to increasing species richness were different for each forest type, waning species complementarity in sites with limiting conditions for growth. Our results demonstrate that tree species phenotypes respond to the species richness in the canopy in European forests, boosting species complementarity at low level of canopy diversity and with a site‐specific pattern at greater level of species richness. These outcomes evidence the limitation of functional diversity measures based only on traits from pure stands or general trait database values.  相似文献   

8.
Does variation in environmental harshness explain local and regional species diversity gradients? We hypothesise that for a given life form like trees, greater harshness leads to a smaller range of traits that are viable and thereby also to lower species diversity. On the basis of a strong dependence of maximum tree height on site productivity and other measures of site quality, we propose maximum tree height as an inverse measure of environmental harshness for trees. Our results show that tree species richness is strongly positively correlated with maximum tree height across multiple spatial scales in forests of both eastern and western North America. Maximum tree height co‐varied with species richness along gradients from benign to harsh environmental conditions, which supports the hypothesis that harshness may be a general mechanism limiting local diversity and explaining diversity gradients within a biogeographic region.  相似文献   

9.
Over the last two decades, although much has been learned regarding the multifaceted nature of biodiversity, relatively little is known regarding spatial variation in constituents other than species richness. This is particularly true along extensive environmental gradients such as latitude. Herein, we describe latitudinal gradients in the functional diversity of New World bat communities. Bat species from each of 32 communities were assigned to one of seven functional groups. Latitudinal gradients existed for the richness, diversity and scaled‐dominance of functional groups. No significant patterns were observed for evenness of functional groups. Measures of functional diversity were different in magnitude and increased towards the equator at a faster rate than expected given the underlying spatial variation in species richness. Thus, latitudinal gradient in species richness alone do not cause the latitudinal gradient in functional diversity. When variation in species composition of the regional fauna of each community was incorporated into analyses, many differences between observed and simulated patterns of functional diversity were not significant. This suggests that those processes that determine the composition of regional faunas strongly influence the latitudinal gradient in functional diversity at the local level. Nonetheless, functional diversity was lower than expected across observed sites. Community‐wide responses to variation in the quantity and quality of resources at the local level probably contribute to differences in functional diversity at local and regional scales and enhance beta diversity.  相似文献   

10.
陆地植物群落物种多样性的梯度变化特征   总被引:181,自引:14,他引:167  
研究陆地植物落物种多样性随环境因子及群落演替梯度的变化特征是揭示生物多样性与生态因子相互关系的重要方面,根据近期国内外的文献,综述了这方面的研究进展。随纬度的降低,通常物咱多样性随中,随不分梯度的变化,物种多样性的变化有6种趋势;随海拔高的变化,物处多样性有5种模式;随土壤养分梯度的变化,表现出不同的规律;演替过程中物种多样生的变化趋势相似。关于植物群落物种多样性梯度格局的机制有多种假说,但仍需进  相似文献   

11.
12.
One of the key hypothesized drivers of gradients in species richness is environmental filtering, where environmental stress limits which species from a larger species pool gain membership in a local community owing to their traits. Whereas most studies focus on small‐scale variation in functional traits along environmental gradient, the effect of large‐scale environmental filtering is less well understood. Furthermore, it has been rarely tested whether the factors that constrain the niche space limit the total number of coexisting species. We assessed the role of environmental filtering in shaping tree assemblages across North America north of Mexico by testing the hypothesis that colder, drier, or seasonal environments (stressful conditions for most plants) constrain tree trait diversity and thereby limit species richness. We assessed geographic patterns in trait filtering and their relationships to species richness pattern using a comprehensive set of tree range maps. We focused on four key plant functional traits reflecting major life history axes (maximum height, specific leaf area, seed mass, and wood density) and four climatic variables (annual mean and seasonality of temperature and precipitation). We tested for significant spatial shifts in trait means and variances using a null model approach. While we found significant shifts in mean species’ trait values at most grid cells, trait variances at most grid cells did not deviate from the null expectation. Measures of environmental harshness (cold, dry, seasonal climates) and lower species richness were weakly associated with a reduction in variance of seed mass and specific leaf area. The pattern in variance of height and wood density was, however, opposite. These findings do not support the hypothesis that more stressful conditions universally limit species and trait diversity in North America. Environmental filtering does, however, structure assemblage composition, by selecting for certain optimum trait values under a given set of conditions.  相似文献   

13.
The lack of clarity on how the intensity and importance of plant interactions change under the co‐occurrence of stress and disturbance strongly impedes assessing the relative importance of plant interactions for species diversity. We addressed this issue in subalpine grasslands of the French Pyrenees. A natural soil moisture gradient further experimentally stretched at both ends was used and a mowing disturbance treatment was applied at each position along the soil moisture gradient. Changes in intensity and importance of plant interactions were assessed by a neighbour removal experiment using four target ecotypes. A structural equation modelling approach was used to assess the relative impact of stress, disturbance, the intensity and importance of plant interactions on diversity at both the neighbourhood and community scales. Without mowing, changes in intensity and importance of plant interactions only diverged in the dry part of the soil moisture gradient. The intensity of plant interactions linearly shifted from competition to facilitation with increasing stress, while the importance followed a hump‐shaped relationship. Species diversity components were tightly related to the importance of plant interactions only, both the neighbourhood and community scales. Mowing disturbance strongly reduced the importance of facilitation along the soil moisture gradient, and suppressed the relationship between the importance of plant interactions and diversity components. Together, our results highlight that 1) the importance is the best predictor of variations in species diversity in this subalpine herbaceous system, and 2) that fine‐scale processes such as plant interactions can affect the entire plant communities. Finally, our results suggest that high level of constraints due to co‐occurring stress and disturbance can inhibit the effects of plant interactions on species diversity, highlighting their potential role in regulating diversity and the maintenance/extinction of plant communities. Synthesis How plant interactions change along environmental gradients is an unsolved debate, particularly when both stress and disturbance interact. This lack of clarity explains why the relative impact of plant interactions (intensity and importance) on species diversity has been rarely assessed. Using an experimental approach, we found that the importance of plant interactions highly contributed to variation in species diversity, confirming that neighbourhood scale processes such as plant interactions can affect the entire plant communities. The co‐occurrence of stress and disturbance inhibited the effects of plant interactions, highlighting that plant interactions may regulate drops of diversity and the maintenance/extinction of plant communities.  相似文献   

14.
《Plant Ecology & Diversity》2013,6(2-3):115-126
Background: Understanding the processes that determine community assembly and their dynamics is a central issue in ecology. The analysis of functional diversity can improve our understanding of these dynamics by identifying community assembly processes.

Aims: We studied the effect of environment–community covariations on both functional diversity and functional structure of xerophytic shrub communities for inferring the community assembly processes shaping this vegetation type.

Methods: Functional diversity was quantified using (1) community-weighted mean of the studied traits, (2) functional groups, defined using Ward’s hierarchical agglomerative clustering method and (3) Rao’s quadratic entropy. Relationships between functional diversity and environmental gradients were identified by Spearman correlations and modelled using generalised additive models.

Results: Variations in community composition and functional diversity correlated with soil nutrient availability and aridity. Increasing nutrient availability resulted in both greater average plant height and higher abundance of plants with green photosynthetic organ colour, whereas the abundance of nanophanerophytes increases with aridity.

Conclusions: The species composition and trait structure of the studied Mediterranean xerophytic shrub communities varies along nutrient and aridity gradients. This supports the importance of environmental filters for the local assembly and dynamics of these inland dune communities.  相似文献   

15.
Abstract. Plant competition in communities subjected to stress and disturbance is an important ecological issue. We review studies on plant competition in mediterranean-type plant communities in order to discuss its effect on plant- and plant community structure, to determine the type of competition that takes place and the interaction between competition and effects of fire. Competition can intermittently effect all stages of the plant life cycle. Water and light seem to be the most frequent resources for which plants compete. Competition for nutrients also occurs and seems to be more intense when nutrient availability is high. Plant interference through allelopathy is also important. Competition may also occur after fire but it is not clear if it is less intense than in mature stands. As most of the studies have been carried out in California. More field experiments that combine the effect of competition and fire along with environmental gradients differing in water and nutrient levels should be conducted in other mediterranean regions in order to draw generalizations on the mechanisms of competition in plant communities.  相似文献   

16.
Plant functional traits vary both along environmental gradients and among species occupying similar conditions, creating a challenge for the synthesis of functional and community ecology. We present a trait-based approach that provides an additive decomposition of species' trait values into alpha and beta components: beta values refer to a species' position along a gradient defined by community-level mean trait values; alpha values are the difference between a species' trait values and the mean of co-occurring taxa. In woody plant communities of coastal California, beta trait values for specific leaf area, leaf size, wood density and maximum height all covary strongly, reflecting species distributions across a gradient of soil moisture availability. Alpha values, on the other hand, are generally not significantly correlated, suggesting several independent axes of differentiation within communities. This trait-based framework provides a novel approach to integrate functional ecology and gradient analysis with community ecology and coexistence theory.  相似文献   

17.
Characterizing trait variation across different ecological scales in plant communities has been viewed as a way to gain insights into the mechanisms driving species coexistence. However, little is known about how changes in intraspecific and interspecific traits across sites influence species richness and community assembly, especially in understory herbaceous communities. Here we partitioned the variance of four functional traits (maximum height, leaf thickness, leaf area and specific leaf area) across four nested biological scales: individual, species, plot, and elevation to quantify the scale-dependent distributions of understory herbaceous trait variance. We also integrated the comparison of the trait variance ratios to null models to investigate the effects of different ecological processes on community assembly and functional diversity along a 1200-m elevational gradient in Yulong Mountain. We found interspecific trait variation was the main trait variation component for leaf traits, although intraspecific trait variation ranged from 10% to 28% of total variation. In particular, maximum height exhibited high plasticity, and intraspecific variation accounted for 44% of the total variation. Despite the fact that species composition varied across elevation and species richness decreased dramatically along the elevational gradient, there was little variance at our largest (elevation) scale in leaf traits and functional diversity remained constant along the elevational gradient, indicating that traits responded to smaller scale influences. External filtering was only observed at high elevations. However, strong internal filtering was detected along the entire elevational gradient in understory herbaceous communities, possibly due to competition. Our results provide evidence that species coexistence in understory herbaceous communities might be structured by differential niche-assembled processes. This approach--integrating different biological scales of trait variation--may provide a better understanding of the mechanisms involved in the structure of communities.  相似文献   

18.
Complex processes related to biotic and abiotic forces can impose limitations to assembly and composition of plant communities. Quantifying the effects of these constraints on plant functional traits across environmental gradients, and among communities, remains challenging. We define ecological constraint (Ci) as the combined, limiting effect of biotic interactions and environmental filtering on trait expression (i.e., the mean value and range of functional traits). Here, we propose a set of novel parameters to quantify this constraint by extending the trait‐gradient analysis (TGA) methodology. The key parameter is ecological constraint, which is dimensionless and can be measured at various scales, for example, on population and community levels. It facilitates comparing the effects of ecological constraints on trait expressions across environmental gradients, as well as within and among communities. We illustrate the implementation of the proposed parameters using the bark thickness of 14 woody species along an aridity gradient on granite outcrops in southwestern Australia. We found a positive correlation between increasing environmental stress and strength of ecological constraint on bark thickness expression. Also, plants from more stressful habitats (shrublands on shallow soils and in sun‐exposed locations) displayed higher ecological constraint for bark thickness than plants in more benign habitats (woodlands on deep soils and in sheltered locations). The relative ease of calculation and dimensionless nature of Ci allow it to be readily implemented at various scales and make it widely applicable. It therefore has the potential to advance the mechanistic understanding of the ecological processes shaping trait expression. Some future applications of the new parameters could be investigating the patterns of ecological constraints (1) among communities from different regions, (2) on different traits across similar environmental gradients, and (3) for the same trait across different gradient types.  相似文献   

19.
Abstract We propose a rapid sampling method to assess the functional composition of herbaceous plant communities without prior knowledge of the floristic composition. To determine the community‐level value of traits (‘aggregated trait values’) for a plant community, a standardized population‐centred method exists, but requires substantial manpower and reliable botanical knowledge. We tested an alternative method, the trait transect, using four subalpine pastures in the Beaufortain region (Northern French Alps) selected along a fertility gradient. We applied both methods to measure five commonly used ‘soft traits’ known to be responsive to soil nutrient availability: plant vegetative and reproductive height, specific leaf area, leaf dry matter and nitrogen contents. We tested whether the variation of these traits along the gradient detected with the population‐centred method was also detected with the trait transect. Both methods detected expected trends in the traits in response to the fertility gradient. The trait transect method was as efficient as the population‐centred method and is recommended as an appropriate tool for monitoring ecosystem changes in response to environmental conditions and management, especially in species‐rich communities.  相似文献   

20.
The present study examined how competitive interactions and environmental conditions generate species boundaries and determine species distributions. A spatially explicit, quantitative genetic, two-species competition model was used to manipulate the strengths of competition, gene flow and local adaptation along environmental gradients. This allowed us to assess the long-term persistence of each species and whether the ranges they inhabited had boundaries in space or were unlimited. We found that a species boundary arises along less steep environmental gradients when the strength of stabilizing selection and diversifying selection are similar. We also found that a species boundary may arise along shallow environmental gradients if interspecific competition is more intense than intraspecific, which relaxes previous requirements for steep gradients for generating range limits. We determined an analytical form for the critical environmental gradient as a function of ecological and genetic parameters at which a species boundary is expected to arise by competition. Results suggest an alternative to resource competition as an explanation for phenotypic divergence between sympatric competitors. Competitors sharing a trait that is under stabilizing selection along an environmental gradient may segregate spatially and evolve in different regions, with phenotypic sympatric divergence reflecting the resulting clines. Along various types of environmental gradients, variation in stabilizing selection intensities could lead to contrasting patterns in the distribution of species. For stabilizing selection strengths in accord with field data estimates, this study predicts that the level of sympatric character divergence would be limited along environmental gradients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号