首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stomata help plants regulate CO2 absorption and water vapor release in response to various environmental changes, and plants decrease their stomatal apertures and enhance their water status under elevated CO2. Although the bottom‐up effect of elevated CO2 on insect performance has been extensively studied, few reports have considered how insect fitness is altered by elevated CO2‐induced changes in host plant water status. We tested the hypothesis that aphids induce stomatal closure and increase host water potential, which facilitates their passive feeding, and that this induction can be enhanced by elevated CO2. Our results showed that aphid infestation triggered the abscisic acid (ABA) signaling pathway to decrease the stomatal apertures of Medicago truncatula, which consequently decreased leaf transpiration and helped maintain leaf water potential. These effects increased xylem‐feeding time and decreased hemolymph osmolarity, which thereby enhanced phloem‐feeding time and increased aphid abundance. Furthermore, elevated CO2 up‐regulated an ABA‐independent enzyme, carbonic anhydrase, which led to further decrease in stomatal aperture for aphid‐infested plants. Thus, the effects of elevated CO2 and aphid infestation on stomatal closure synergistically improved the water status of the host plant. The results indicate that aphid infestation enhances aphid feeding under ambient CO2 and that this enhancement is increased under elevated CO2.  相似文献   

2.
Rising atmospheric CO2 levels can dilute the nitrogen (N) resource in plant tissue, which is disadvantageous to many herbivorous insects. Aphids appear to be an exception that warrants further study. The effects of elevated CO2 (750 ppm vs. 390 ppm) were evaluated on N assimilation and transamination by two Medicago truncatula genotypes, a N‐fixing‐deficient mutant (dnf1) and its wild‐type control (Jemalong), with and without pea aphid (Acyrthosiphon pisum) infestation. Elevated CO2 increased population abundance and feeding efficiency of aphids fed on Jemalong, but reduced those on dnf1. Without aphid infestation, elevated CO2 increased photosynthetic rate, chlorophyll content, nodule number, biomass, and pod number for Jemalong, but only increased pod number and chlorophyll content for dnf1. Furthermore, aphid infested Jemalong plants had enhanced activities of N assimilation‐related enzymes (glutamine synthetase, Glutamate synthase) and transamination‐related enzymes (glutamate oxalate transaminase, glutamine phenylpyruvate transaminase), which presumably increased amino acid concentration in leaves and phloem sap under elevated CO2. In contrast, aphid infested dnf1 plants had decreased activities of N assimilation‐related enzymes and transmination‐related enzymes and amino acid concentrations under elevated CO2. Furthermore, elevated CO2 up‐regulated expression of genes relevant to amino acid metabolism in bacteriocytes of aphids associated with Jemalong, but down‐regulated those associated with dnf1. Our results suggest that pea aphids actively elicit host responses that promote amino acid metabolism in both the host plant and in its bacteriocytes to favor the population growth of the aphid under elevated CO2.  相似文献   

3.
Pathogens may alter their hosts, which consequently increases transmission efficiency by vectors. We examined the effects of Raspberry leaf mottle virus [RLMV; Closterovirus (Closteroviridae)] and Raspberry latent virus [RpLV; Reovirus (Reoviridae)], alone and in a co‐infection in raspberry, Rubus idaeus L. (Rosaceae) cv. Meeker, on the behavior and performance of its vector, Amphorophora agathonica Hottes (Hemiptera: Aphididae). Longevity was increased in aphids feeding on all infected‐plant treatments compared with healthy plants, but aphid fecundity only increased in the co‐infection treatment. In a two‐way choice study between infected and healthy plants, aphids showed no difference in preference between plants after 30 min of exposure. After 24 h, aphids significantly preferred to settle on plants infected with RLMV over healthy, but healthy plants over plants infected with RpLV. There were no differences in settling preferences between healthy and co‐infected plants. An electrical penetration graph study showed no differences in aphid feeding behavior on plants infected with RLMV and RLMV+RpLV when compared with healthy controls. Our results are consistent with past findings that infected plant's impact vector performance and behavior, but also highlight the need to further investigate greater virus diversity and effects of mixed infections.  相似文献   

4.
Aphids are dependent on the phloem sap of plants as their only source of nutrients. Host‐plant resistance in lettuce, Lactuca sativa L. (Asteraceae), mediated by the Nr gene is used to control the lettuce aphid Nasonovia ribisnigri (Mosely) (Hemiptera: Aphididae). The resistance is located in the phloem; however, the exact mechanism of resistance is unknown. In this study, we investigated whether the resistance factor (or factors) is synthesized in the root or in the shoot. The feeding behavior and performance of avirulent N. ribisnigri were studied on grafts of resistant and susceptible lettuce. In addition, the persistence of resistance in excised lettuce tissue was measured, by studying the feeding behavior and performance of N. ribisnigri on detached leaves and leaf disks of resistant lettuce. It appears that the resistance factor encoded by the Nr gene is produced in the shoots: aphid feeding was reduced on resistant shoots grafted on susceptible roots, whereas aphids were able to feed on grafts of susceptible shoots on resistant roots. Partial loss of resistance was observed after detachment of leaves and excision of leaf disks from resistant plants. Aphids fed longer on excised resistant plant tissue compared with intact resistant plants; however, compared with excised plant tissue of the susceptible cultivar, the time spent on feeding was shorter, indicating resistance was not completely lost. Our findings caution against the use of excised leaf material for aphid resistance bioassays.  相似文献   

5.
In plant–ant–hemipteran interactions, ants visit plants to consume the honeydew produced by phloem‐feeding hemipterans. If genetically based differences in plant phloem chemistry change the chemical composition of hemipteran honeydew, then the plant's genetic constitution could have indirect effects on ants via the hemipterans. If such effects change ant behavior, they could feed back to affect the plant itself. We compared the chemical composition of honeydews produced by Aphis nerii aphid clones on two milkweed congeners, Asclepias curassavica and Asclepias incarnata, and we measured the responses of experimental Linepithema humile ant colonies to these honeydews. The compositions of secondary metabolites, sugars, and amino acids differed significantly in the honeydews from the two plant species. Ant colonies feeding on honeydew derived from A. incarnata recruited in higher numbers to artificial diet, maintained higher queen and worker dry weight, and sustained marginally more workers than ants feeding on honeydew derived from A. curassavica. Ants feeding on honeydew from A. incarnata were also more exploratory in behavioral assays than ants feeding from A. curassavica. Despite performing better when feeding on the A. incarnata honeydew, ant workers marginally preferred honeydew from A. curassavica to honeydew from A. incarnata when given a choice. Our results demonstrate that plant congeners can exert strong indirect effects on ant colonies by means of plant‐species‐specific differences in aphid honeydew chemistry. Moreover, these effects changed ant behavior and thus could feed back to affect plant performance in the field.  相似文献   

6.
Elevated atmospheric CO2 is known to affect plant–insect herbivore interactions. Elevated CO2 causes leaf nitrogen to decrease, the ostensible cause of herbivore compensatory feeding. CO2 may also affect herbivore consumption by altering chemical defenses via changes in plant hormones. We considered the effects of elevated CO2, in conjunction with soil fertility and damage (simulated herbivory), on glucosinolate concentrations of mustard (Brassica nigra) and collard (B. oleracea var. acephala) and the effects of leaf nitrogen and glucosinolate groups on specialist Pieris rapae consumption. Elevated CO2 affected B. oleracea but not B. nigra glucosinolates; responses to soil fertility and damage were also species‐specific. Soil fertility and damage also affected B. oleracea glucosinolates differently under elevated CO2. Glucosinolates did not affect P. rapae consumption at either CO2 concentration in B. nigra, but had CO2‐specific effects on consumption in B. oleracea. At ambient CO2, leaf nitrogen had strong effects on glucosinolate concentrations and P. rapae consumption but only gluconasturtiin was a feeding stimulant. At elevated CO2, direct effects of leaf nitrogen were weaker, but glucosinolates had stronger effects on consumption. Gluconasturtiin and aliphatic glucosinolates were feeding stimulants and indole glucosinolates were feeding deterrents. These results do not support the compensatory feeding hypothesis as the sole driver of changes in P. rapae consumption under elevated CO2. Support for hormone‐mediated CO2 response (HMCR) was mixed; it explained few treatment effects on constitutive or induced glucosinolates, but did explain patterns in SEMs. Further, the novel feeding deterrent effect of indole glucosinolates under elevated CO2 in B. oleracae underscores the importance of defensive chemistry in CO2 response. We speculate that P. rapae indole glucosinolate detoxification mechanisms may have been overwhelmed under elevated CO2 forcing slowed consumption. Specialists may have to contend with hosts with poorer nutritional quality and more effective chemical defenses under elevated CO2.  相似文献   

7.
We compared the settling preferences and reproductive potential of an oligophagous herbivore, the pea aphid, Acyrthosiphon pisum Harris (Hemiptera: Aphididae), in response to pea plants, Pisum sativum L. cv. ‘Aragorn’ (Fabaceae), infected with two persistently transmitted viruses, Pea enation mosaic virus (PEMV) and Bean leaf roll virus (BLRV), that differ in their distribution within an infected plant. Aphids preferentially oriented toward and settled on plants infected with PEMV or BLRV in comparison with sham‐inoculated plants (plants exposed to herbivory by uninfected aphids), but aphids did not discriminate between plants infected with the two viruses. Analysis of plant volatiles indicated that plants inoculated with either virus had significantly higher green leaf volatile‐to‐monoterpene ratios. Time until reproductive maturity was marginally influenced by plant infection status, with a trend toward earlier nymph production on infected plants. There were consistent age‐specific effects of plant infection status on aphid fecundity: reproduction was significantly enhanced for aphids on BLRV‐infected plants across most time intervals, though mean aphid fecundity did not differ between sham and PEMV‐infected plants. There was no clear pattern of age‐specific survivorship; however, mean aphid lifespan was reduced on plants infected with PEMV. Our results are consistent with predictions of the host manipulation hypothesis, extended to include plant viruses: non‐viruliferous A. pisum preferentially orient to virus‐infected host plants, potentially facilitating pathogen transmission. These studies extend the scope of the host manipulation hypothesis by demonstrating that divergent fitness effects on vectors arise relative to the mode of virus transmission.  相似文献   

8.
Visual cues leading to host selection and landing are of major importance for aphids and evidence suggests that flight activity is very dependent on ultraviolet (UV)‐A radiation in the environment. At the same time research on insect plant hosts suggest that the UV‐B component can deter some pests via changes in secondary metabolite chemistry. Here, we examine the potential of UV (UV‐A/UV‐B) radiation to control insect pests in the glasshouse environment. We first examined artificial exposure to UV‐B and the potential to trigger morphological and biochemical modifications in pepper (Capsicum annuum L., Solanaceae) with implications for the fitness of green peach aphid, Myzus persicae Sulzer (Hemiptera: Aphididae). UV‐B caused accumulation of leaf secondary metabolites and soluble carbohydrates, and stimulated photosynthetic pigments. However, UV‐B did not impact on foliar protein content and aphid performance was unaffected. Next, we studied how altering the UV‐A/UV‐B ratio environment affected aphid orientation and spatial distribution over time, either directly or by exposing plants to supplemental UV before insect introduction. Aphids directly settled and dispersed on their host pepper plants more readily in the presence of supplemental UV‐A and UV‐B. In the control treatment with ambient glasshouse UV‐A and UV‐B, insects remained more aggregated. Furthermore, insects were less attracted to peppers pre‐exposed to supplemental UV‐A and UV‐B radiation. Our results suggest that suppression of UV‐A and UV‐B inside the protected environment reduces aphid colonization and dispersal. Furthermore, application of moderate exposure of young pepper plants to supplemental UV‐B radiation could aid in protection from the colonization by phytophagous insects.  相似文献   

9.
Since the beginning of breeding narrow‐leafed lupins [Lupinus angustifolius L. (Fabaceae)] with a low alkaloid content, susceptibility to several aphid species has increased. Therefore, the probing and feeding behavior of Aphis fabae Scopoli, Aphis craccivora Koch, Acyrthosiphon pisum (Harris), Myzus persicae (Sulzer), and the well‐adapted Macrosiphum albifrons Essig (all Hemiptera: Aphididae) was studied over 12 h on narrow‐leafed lupin genotypes containing varying amounts and compositions of alkaloids. We used the electrical penetration graph (EPG) technique to obtain information on the influence of alkaloid content and composition on the susceptibility to various aphid species. Results indicated that the total time of probing of A. fabae, A. craccivora, A. pisum, and M. persicae increased with a reduced alkaloid content, whereas the alkaloid content had no influence on M. albifrons. Almost all of the individuals (>93%) conducted sieve element phases on the highly susceptible genotype Bo083521AR (low alkaloid content). A reduced occurrence of phloem phases was observed during the 12‐h recording on the alkaloid‐rich cultivar Azuro, especially for A. pisum (37.5%) and A. fabae (55.0%). Furthermore, aphids feeding on genotypes with low alkaloid content had in most cases significantly longer sieve element phases than when feeding on resistant genotypes (Kalya: low alkaloid content, yet resistant; Azuro: high alkaloid content, resistant), whereas M. albifrons showed the longest phloem phase on the alkaloid‐rich cultivar Azuro. As most significant differences were found in phloem‐related parameters, it is likely that the most important plant factors influencing aphid probing and feeding behavior are localized in the sieve elements. The aphids’ feeding behavior on the cultivar Kalya, with a low alkaloid content but reduced susceptibility, indicates that not only the total alkaloid content influences the feeding behavior but additional plant factors have an impact.  相似文献   

10.
Evolutionary traps arise when organisms use novel, low‐quality or even lethal resources based on previously reliable cues. Persistence of such maladaptive interactions depends not only on how individuals locate important resources, such as host plants, but also the mechanisms underlying poor performance. Pieris macdunnoughii (Remington) (Lepidoptera: Pieridae) lays eggs on a non‐native mustard, Thlaspi arvense (L.) (Brassicaceae), which is lethal to the larvae. We first tested whether larval feeding behavior was affected before (pre‐) ingestion or following (post‐) ingestion of leaf material, indicating activity of feeding deterrents, toxins, or both in this evolutionary trap. Neonates were less likely to start feeding and eventually fed more slowly on T. arvense than on the native host plant Cardamine cordifolia (Gray) (Brassicaceae) in both laboratory and field. Starvation was a primary cause of mortality, indicating the role of a feeding deterrent. Feeding did not differ between larvae from invaded and uninvaded population. Second, T. arvense defensive chemistry is dominated by the glucosinolate sinigrin (allyl or 2‐propenyl glucosinolate). Adding sinigrin to the leaves of T. arvense and native hosts C. cordifolia and Descurainia incana (Bernhardi ex Fischer & Meyer) (Brassicaceae) delayed the onset of feeding, caused larvae to feed more slowly, and decreased survival on the native hosts. This evolutionary trap may not be driven by a novel deterrent, but rather by a change in the concentration of a deterrent found in native hosts. Many insects have adapted to evolutionary traps posed by invasive plants, incorporating the new plant into their diets. Thlaspi arvense remains lethal to P. macdunnoughii, and pre‐ingestive deterrents such as excess sinigrin may contribute to persistent maladaptation.  相似文献   

11.
Because N is frequently the most limiting mineral macronutrient for plants in terrestrial ecosystems, modulating N input may have ecological consequences through trophic levels. Thus, in agro‐ecosystems, the success of natural enemies may depend not only from their herbivorous hosts but also from the host plant whose qualities may be modulated by N input. We manipulated foliar N concentrations by providing to Camelina sativa plants three different nitrogen rates (control, optimal, and excessive). We examined how the altered host‐plant nutritional quality influenced the performances of two aphid species, the generalist green peach aphid, Myzus persicae, and the specialist cabbage aphid, Brevicoryne brassicae, and their common parasitoid Diaeretiella rapae. Both N inputs led to increased N concentrations in the plants but induced contrasted concentrations within aphid bodies depending on the species. Compared to the control, plant biomass increased when receiving the optimal N treatment but decreased under the excessive treatment. Performances of M. persicae improved under the optimal treatment compared to the control and excessive treatments whereas B. brassicae parameters declined following the excessive N treatment. In no‐choice trials, emergence rates of D. rapae developing in M. persicae were higher on both optimum and excessive N treatments, whereas they remained stable whatever the treatment when developing in B. brassicae. Size of emerging D. rapae females was positively affected by the treatment only when it developed in M. persicae on the excessive N treatment. This work showed that contrary to an optimal N treatment, when N was delivered in excess, plant suitability was reduced and consequently affected negatively aphid parameters. Surprisingly, these negative effects resulted in no or positive consequences on parasitoid parameters, suggesting a buffered effect at the third trophic level. Host N content, host suitability, and dietary specialization appear to be major factors explaining the functioning of our studied system.  相似文献   

12.
Even for parasitoids with a wide host range, not all host species are equally suitable, and host quality often depends on the plant the host feeds on. We compared oviposition choice and offspring performance of a generalist pupal parasitoid, Pteromalus apum (Retzius) (Hymenoptera: Pteromalidae), on two congeneric hosts reared on two plant species under field and laboratory conditions. The plants contain defensive iridoid glycosides that are sequestered by the hosts. Sequestration at the pupal stage differed little between host species and, although the concentrations of iridoid glycosides in the two plant species differ, there was no effect of diet on the sequestration by host pupae. The rate of successful parasitism differed between host species, depending on the conditions they were presented in. In the field, where plant‐associated cues are present, the parasitoid used Melitaea cinxia (L.) over Melitaea athalia (Rottemburg) (Lepidoptera: Nymphalidae), whereas more M. athalia were parasitised in simplified laboratory conditions. In the field, brood size, which is partially determined by rate of superparasitism, depended on both host and plant species. There was little variation in other aspects of offspring performance related to host or plant species, indicating that the two host plants are of equal quality for the hosts, and the hosts are of equal quality for the parasitoids. Corresponding to this, we found no evidence for associative learning by the parasitoid based on their natal host, so with respect to these host species they are truly generalist in their foraging behaviour.  相似文献   

13.
Bacterial endosymbionts can drive evolutionary novelty by conferring adaptive benefits under adverse environmental conditions. Among aphid species there is growing evidence that symbionts influence tolerance to various forms of stress. However, the extent to which stress inflicted on the aphid host has cascading effects on symbiont community dynamics remains poorly understood. Here we simultaneously quantified the effect of host‐plant induced and xenobiotic stress on soybean aphid (Aphis glycines) fitness and relative abundance of its three bacterial symbionts. Exposure to soybean defensive stress (Rag1 gene) and a neurotoxic insecticide (thiamethoxam) substantially reduced aphid composite fitness (survival × reproduction) by 74 ± 10% and 92 ± 2%, respectively, which in turn induced distinctive changes in the endosymbiont microbiota. When challenged by host‐plant defenses a 1.4‐fold reduction in abundance of the obligate symbiont Buchnera was observed across four aphid clonal lines. Among facultative symbionts of Rag1‐stressed aphids, Wolbachia abundance increased twofold and Arsenophonus decreased 1.5‐fold. A similar pattern was observed under xenobiotic stress, with Buchnera and Arsenophonus titers decreasing (1.3‐fold) and Wolbachia increasing (1.5‐fold). Furthermore, variation in aphid virulence to Rag1 was positively correlated with changes in Arsenophonus titers, but not Wolbachia or Buchnera. A single Arsenophonus multi‐locus genotype was found among aphid clonal lines, indicating strain diversity is not primarily responsible for correlated host‐symbiont stress levels. Overall, our results demonstrate the nature of aphid symbioses can significantly affect the outcome of interactions under stress and suggests general changes in the microbiome can occur across multiple stress types.  相似文献   

14.
Variation in plant communities is likely to modulate the feeding and oviposition behavior of herbivorous insects, and plant‐associated microbes are largely ignored in this context. Here, we take into account that insects feeding on grasses commonly encounter systemic and vertically transmitted (via seeds) fungal Epichloë endophytes, which are regarded as defensive grass mutualists. Defensive mutualism is primarily attributable to alkaloids of fungal origin. To study the effects of Epichloë on insect behavior and performance, we selected wild tall fescue (Festuca arundinacea) and red fescue (Festuca rubra) as grass–endophyte models. The plants used either harbored the systemic endophyte (E+) or were endophyte‐free (E?). As a model herbivore, we selected the Coenonympha hero butterfly feeding on grasses as larvae. We examined both oviposition and feeding preferences of the herbivore as well as larval performance in relation to the presence of Epichloë endophytes in the plants. Our findings did not clearly support the female's oviposition preference to reflect the performance of her offspring. First, the preference responses depended greatly on the grass–endophyte symbiotum. In F. arundinacea, C. hero females preferred E+ individuals in oviposition‐choice tests, whereas in F. rubra, the endophytes may decrease exploitation, as both C. hero adults and larvae preferred E? grasses. Second, the endophytes had no effect on larval performance. Overall, F. arundinacea was an inferior host for C. hero larvae. However, the attraction of C. hero females to E+ may not be maladaptive if these plants constitute a favorable oviposition substrate for reasons other than the plants' nutritional quality. For example, rougher surface of E+ plant may physically facilitate the attachment of eggs, or the plants offer greater protection from natural enemies. Our results highlight the importance of considering the preference of herbivorous insects in studies involving the endophyte‐symbiotic grasses as host plants.  相似文献   

15.
The selection of a host of high nutritional quality is of great importance to the development of offspring of larvipositing aphids, as is the avoidance of natural enemies. Little is known, however, about their ability to select host plants based on these factors. This article tests the preference of aphids Sitobion avenae (Fabricius) and Rhopalosiphum padi (L.) (both Hemiptera: Aphididae) for different winter wheat cultivars, Triticum aestivum (L.) (Poaceae), and their ability to detect and avoid predators in sacrifice of their most preferred host. In both species a preference was observed for nutritionally superior hosts. The preference of both species then exhibited a change towards a nutritionally inferior host after infestations of the harlequin ladybird, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), that had been consuming conspecific aphids. This investigation opens the door to the interesting prospect of the ability of aphids to make complex decisions regarding a compromise between high‐quality nutrition and avoidance of predation.  相似文献   

16.
The oxpecker–ungulate association of sub‐Saharan Africa is an example of a complicated interspecific association subject to variation in outcome. Oxpeckers (Buphagus spp.) are unusual birds because they not only glean ticks from an array of African ungulates, but they are one of the few avian species known to wound‐feed from their living hosts. The conditions under which oxpeckers wound‐feed and the mechanisms generating variation in this association are unclear. We took a unique approach to studying the relationship by conducting a series of feeding preference experiments on twelve captive red‐billed oxpeckers (B. erythrorhynchus). We assessed how oxpecker feeding behaviour is influenced by changes in tick abundance and tick type. In cafeteria‐style experiments, oxpeckers fed equally on ticks and liquid bovine blood. In experiments using donkeys as the host animal, oxpeckers spent more time wound‐feeding when a less‐preferred tick type was available and when tick abundance was low compared to when a preferred tick type was available and when tick abundance was high. However, oxpeckers still wound‐fed even when offered a large number of the ticks they prefer. Additional experiments incorporating tick species of different stages and multiple ungulate species are necessary to fully reveal the dynamics of this association.  相似文献   

17.
Plants can activate inducible defence mechanisms against pests, pathogens, or chemical elicitors, such as ozone, mediated by reactive oxygen species (ROS), particularly hydrogen peroxide (H2O2). An unfavourable balance between ROS production and the plant antioxidant capacity seems to be responsible for the resulting susceptibility of the plant to insect attack. Arugula plants [Eruca sativa Mill. (Brassicaceae)] and green peach aphids, Myzus persicae (Sulzer) (Hemiptera: Aphididae), were used in this study to test the hypothesis that the growth of an aphid population depends on both plant and insect stress history. We investigated the impact of density and duration of a previous aphid infestation, and the time lag before re‐infestation, on aphid population growth. In a second experiment, we assessed the effect on aphid population growth of previous ozone exposure of arugula plants in open top chambers receiving a continuous O3 fumigation of 100–120 p.p.b., 90 min per day during 3 days. A third experiment was conducted to study the effect of aphid density during a previous infestation on the population growth on an uninfested host. Both previous herbivory and ozone changed the oxidative status of plant tissues and facilitated aphid population growth, which increased with the duration and density of a previous infestation by aphids. Colonization success also depended on the aphids' own history. Aphids coming from high‐density populations and/or longer infestation periods produced larger populations on an (initially) uninfested plant. Pest outbreaks in a polluted environment might be expected to be modulated by the hosts' spatial‐temporal heterogeneity related to the ozone exposure and previous herbivory.  相似文献   

18.
19.
Aphids produce gel saliva during feeding which forms a sheath around the stylet as it penetrates through the apoplast. The sheath is required for the sustained ingestion of phloem sap from sieve elements and is thought to form when the structural sheath protein (SHP) is cross‐linked by intermolecular disulphide bridges. We investigated the possibility of controlling aphid infestation by host‐induced gene silencing (HIGS) targeting shp expression in the grain aphid Sitobion avenae. When aphids were fed on transgenic barley expressing shp double‐stranded RNA (shp‐dsRNA), they produced significantly lower levels of shp mRNA compared to aphids feeding on wild‐type plants, suggesting that the transfer of inhibitory RNA from the plant to the insect was successful. shp expression remained low when aphids were transferred from transgenic plants and fed for 1 or 2 weeks, respectively, on wild‐type plants, confirming that silencing had a prolonged impact. Reduced shp expression correlated with a decline in growth, reproduction and survival rates. Remarkably, morphological and physiological aberrations such as winged adults and delayed maturation were maintained over seven aphid generations feeding on wild‐type plants. Targeting shp expression therefore appears to cause strong transgenerational effects on feeding, development and survival in S. avenae, suggesting that the HIGS technology has a realistic potential for the control of aphid pests in agriculture.  相似文献   

20.
Many insects harbour facultative endosymbiotic bacteria, often more than one type at a time. These symbionts can have major effects on their hosts' biology, which may be modulated by the presence of other symbiont species and by the host's genetic background. We investigated these effects by transferring two sets of facultative endosymbionts (one Hamiltonella and Rickettsia, the other Hamiltonella and Spiroplasma) from naturally double‐infected pea aphid hosts into five novel host genotypes of two aphid species. The symbionts were transferred either together or separately. We then measured aphid fecundity and susceptibility to an entomopathogenic fungus. The pathogen‐protective phenotype conferred by the symbionts Rickettsia and Spiroplasma varied among host genotypes, but was not influenced by co‐infection with Hamiltonella. Fecundity varied across single and double infections and between symbiont types, aphid genotypes and species. Some host genotypes benefit from harbouring more than one symbiont type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号