首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
Genomic imprinting is a mammalian developmental process that uses epigenetic mechanisms to induce monoallelic and parental-specific expression of particular autosomal genes. A crucial epigenetic event consists of DNA methylation of CpG-islands, which become differentially methylated regions (DMRs) on the maternal and paternal alleles during oogenesis or spermatogenesis (germline DMRs). By contrast, somatic DMRs are acquired after fertilization. While there are several studies referring to methylation acquisition within germline DMRs in the mouse and human, a comparable methylation analysis of orthologous sequences is still lacking in sheep. To identify germline DMRs, this study analysed the methylation status of the available CpG-islands of five ovine imprinted genes ( H19, IGF2R, DLK1, DIO3 and BEGAIN ) in mature spermatozoa and in female gametes at different stages of their follicle growth, including in vitro matured oocytes. The 5'-end CpG-island of H19 showed a full methylation in spermatozoa and an absent methylation in growing and fully grown oocytes. The intron 2 CpG-island of IGF2R was unmethylated in male gametes, while it showed a high level of methylation in early stages of oogenesis. The promoter CpG-islands of DLK1 and DIO3 were found to be unmethylated both in spermatozoa and oocytes. Finally, the exon 9 CpG-island of BEGAIN was hypermethylated in mature male gametes, while it showed an almost complete methylation only in late stages of oocyte development. Our findings suggest that DNA methylation establishment during early stages of sheep oogenesis and subsequent in vitro maturation is gene-specific and that, of the five genes investigated, only the CpG-islands of H19 and IGF2R might represent ovine germline DMRs.  相似文献   

5.
Epigenetic Resetting of a Gene Imprinted in Plant Embryos   总被引:1,自引:0,他引:1  
Genomic imprinting resulting in the differential expression of maternal and paternal alleles in the fertilization products has evolved independently in placental mammals and flowering plants. In most cases, silenced alleles carry DNA methylation [1]. Whereas these methylation marks of imprinted genes are generally erased and reestablished in each generation in mammals [2], imprinting marks persist in endosperms [3], the sole tissue of reported imprinted gene expression in plants. Here we show that the maternally expressed in embryo 1 (mee1) gene of maize is imprinted in both the embryo and endosperm and that parent-of-origin-specific expression correlates with differential allelic methylation. This epigenetic asymmetry is maintained in the endosperm, whereas the embryonic maternal allele is demethylated on fertilization and remethylated later in embryogenesis. This report of imprinting in the plant embryo confirms that, as in mammals, epigenetic mechanisms operate to regulate allelic gene expression in both embryonic and extraembryonic structures. The embryonic methylation profile demonstrates that plants evolved a mechanism for resetting parent-specific imprinting marks, a necessary prerequisite for parent-of-origin-dependent gene expression in consecutive generations. The striking difference between the regulation of imprinting in the embryo and endosperm suggests that imprinting mechanisms might have evolved independently in both fertilization products of flowering plants.  相似文献   

6.
7.
Vu TH  Li T  Nguyen D  Nguyen BT  Yao XM  Hu JF  Hoffman AR 《Genomics》2000,64(2):132-143
  相似文献   

8.
9.
Embryonic stem cells (ESCs) are a population of pluripotent cells which can differentiate into different cell types. However, there are few reports with regard to differentiate ESCs into epidermal cells in vitro. In this study, we aimed to investigate differentially methylated promoters involved in process of differentiation from ESCs into epidermal‐like cells (ELCs) induced by human amnion. We successfully induced ESCs into ELCs, which expressed the surface markers of CK19, CK15 and β1‐integrin. With MeDIP‐chip arrays, we identified 3435 gene promoters to be differentially methylated, involving 894 HCP (high CpG‐containing promoter), 974 ICP (intermediate CpG‐containing promoter) and 1567 LCP (low CpG‐containing promoter) among all the 17 500 DNA methylation regions of gene promoters in both ESCs and ELCs. Gene oncology and pathway analysis demonstrated that these genes were involved in all the three categories of GO enrichment analysis, including biological process, molecular function and cellular component. All these data suggested that embryonic stem cells can differentiate into epidermal‐like cells and promoter methylation is of great importance in this process. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
11.
Differential epigenetic modification by methylation of CpG dinucleotides is a candidate mechanism that may identify the alleles of imprinted genes and result in monoallelic expression of either the maternal or the paternal allele. Determination of the allelic methylation status of imprinted genes in the gametes and during early development is constrained by the limiting quantities of genomic DNA available from these early developmental stages. To circumvent this problem we have used bisulfite genomic sequencing to determine the allelic methylation status of the minimal promoter and a 1-kb region within theXistgene during preimplantation development. We find that the parentalXistalleles are not differentially methylated in these regions. Our findings are discussed in the context of previous conflicting data obtained using methylation-sensitive restriction enzyme digestion followed by PCR amplification to assay for methylation.  相似文献   

12.
The mouse H19 gene is expressed exclusively from the maternal allele. The imprinted expression of the endogenous gene can be recapitulated in mice by using a 14-kb transgene encompassing 4 kb of 5'-flanking sequence, 8 kb of 3'-flanking sequence, which includes the two endoderm-specific enhancers, and an internally deleted structural gene. We have generated multiple transgenic lines with this 14-kb transgene and found that high-copy-number transgenes most closely follow the imprinted expression of the endogenous gene. To determine which sequences are important for imprinted expression, deletions were introduced into the transgene. Deletion of the 5' region, where a differentially methylated sequence proposed to be important in determining parental-specific expression is located, resulted in transgenes that were expressed and hypomethylated, regardless of parental origin. A 6-kb transgene, which contains most of the differentially methylated sequence but lacks the 8-kb 3' region, was not expressed and also not methylated. These results indicate that expression of either the H19 transgene or a 3' DNA sequence is key to establishing the differential methylation pattern observed at the endogenous locus. Finally, methylation analysis of transgenic sperm DNA from the lines that are not imprinted reveals that the transgenes are not capable of establishing and maintaining the paternal methylation pattern observed for imprinted transgenes and the endogenous paternal allele. Thus, the imprinting of the H19 gene requires a complex set of elements including the region of differential methylation and the 3'-flanking sequence.  相似文献   

13.
5-methyl-C (5mC) and 5-hydroxymethyl-C (5hmC) are epigenetic marks with well-known and putative roles in gene regulation, respectively. These two DNA covalent modifications cannot be distinguished by bisulfite sequencing or restriction digestion, the standard methods of 5mC detection. The methylated CpG island recovery assay (MIRA), however, specifically detects 5mC but not 5hmC. We further developed MIRA for the analysis of allele-specific CpG methylation at differentially methylated regions (DMRs) of imprinted genes. MIRA specifically distinguished between the parental alleles by capturing the paternally methylated H19/Igf2 DMR and maternally methylated KvDMR1 in mouse embryo fibroblasts (MEFs) carrying paternal and maternal duplication of mouse distal Chr7, respectively. MIRA in combination with multiplex single nucleotide primer extension (SNuPE) assays specifically captured the methylated parental allele from normal cells at a set of maternally and paternally methylated DMRs. The assay correctly recognized aberrant biallelic methylation in a case of loss of imprinting. The MIRA-SNuPE assays revealed that placenta exhibited less DNA methylation bias at DMRs compared to yolk sac, amnion, brain, heart, kidney, liver and muscle. This method should be useful for the analysis of allele-specific methylation events related to genomic imprinting, X chromosome inactivation and for verifying and screening haplotype-associated methylation differences in the human population.Key words: epigenetics, imprinting, DMR, MIRA, MBD, DNA methylation, SNuPE  相似文献   

14.
Mammalian imprinted genes are associated with differentially methylated regions (DMRs) that are CpG methylated on one of the two parental chromosomes. In mice, at least 21 DMRs acquire differential methylation in the germline and many of them act as imprint centres. We previously reported the physical extents of differential methylation at 15 DMRs in mouse embryos at 12.5 days postcoitum. To reveal the ontogeny of differential methylation, we determined and compared methylation patterns of the corresponding regions in sperm and oocytes. We found that the extent of the gametic DMRs differs significantly from that of the embryonic DMRs, especially in the case of paternal gametic DMRs. These results suggest that the gametic DMR sequences should be used to extract the features specifying methylation imprint establishment in the germline: from this analysis, we noted that the maternal gametic DMRs appear as unmethylated islands in male germ cells, which suggests a novel component in the mechanism of gamete-specific marking. Analysis of selected DMRs in blastocysts revealed dynamic changes in allelic methylation in early development, indicating that DMRs are not fully protected from the major epigenetic reprogramming events occurring during preimplantation development. Furthermore, we observed non-CpG methylation in oocytes, but not in sperm, which disappeared by the blastocyst stage. Non-CpG methylation was frequently found at maternally methylated DMRs as well as non-DMR regions, suggesting its prevalence in the oocyte genome. These results provide evidence for a unique methylation profile in oocytes and reveal the surprisingly dynamic nature of DMRs in the early embryo.  相似文献   

15.
16.
In somatic tissues, the CpG island of the imprinted Peg1/Mest gene is methylated on the maternal allele. We have examined the methylation of CpG and non-CpG sites of this differentially methylated CpG island in freshly ovulated oocytes, in vitro aged oocytes, and preimplantation embryos. The CpG methylation pattern was heterogeneous in freshly ovulated oocytes, despite the fact that they all were arrested in metaphase II. After short in vitro culture, Peg1/Mest became hypermethylated, whereas prolonged in vitro culture resulted in demethylation in a fraction of oocytes. Non-CpG methylation also occurred in a stage-specific manner. On alleles that were fully methylated at CpG sites, this modification was found, and it became reduced in two-cell stage embryos and blastocysts. These observations suggest that the process of establishment of the methylation imprint at this locus is more dynamic than previously thought.  相似文献   

17.
Methylation of promoter CpG islands has been associated with gene silencing and demonstrated to lead to chromosomal instability. Therefore, some postulate that aberrantly methylated CpG regions may be important biomarkers indicative of cancer development. In this study we used the Illumina GoldenGate Methylation BeadArray Cancer Panel I for simultaneously profiling methylation of 1,505 CpG sites in order to identify methylation differences in 76 liver tissues ranging from normal to pre-neoplastic and neoplastic states. CpG sites for ESR1, GSTM2, and MME were significantly differentially methylated when comparing the pre-neoplastic tissues from patients with concomitant hepatocellular carcinoma (HCC) to the pre-neoplastic tissues from patients without HCC. When comparing paired HCC tissues to their corresponding pre-neoplastic non-tumorous tissues, eight CpG sites, including one CpG site that was hypermethylated (APC) and seven (NOTCH4, EMR3, HDAC9, DCL1, HLA-DOA, HLA-DPA1, and ERN1) that were hypomethylated in HCC, were identified. Our study demonstrates that high-throughput methylation technologies may be used to identify differentially methylated CpG sites that may prove to be important molecular events involved in carcinogenesis.  相似文献   

18.
Imprinted maternal-allele-specific expression of the mouse insulin-like growth-factor type 2 receptor (Igf2r) gene depends on a 3.7-kb element named region 2, located in the second intron of the gene. Region 2 carries a maternal-allele-specific methylation imprint and contains an imprinted CpG island promoter (Air) that expresses a noncoding antisense RNA from the paternal inherited allele only. Here, we use transgenes to test the minimal requirements for imprinting of Air and to test if the action of region 2 is restricted to Igf2r. Transgenes up to 9 kb with Air as a single promoter are expressed but not imprinted. When coupled to the Igf2r CpG island promoter on a 44-kb transgene, Air was imprinted in one of three lines. However, Air on a 4.6-kb fragment is also imprinted in 2 of 14 lines when inserted in an intron of an adenine phosphoribosyltransferase (Aprt) transgene, and in one line, the imprinted methylation and expression of Air have been transferred onto the Aprt CpG island promoter. These data suggest that a dual CpG island promoter setting may facilitate Air imprinting as a short transgene and also show that Air can transfer imprinting onto other genes. However, for reliable Air imprinting, elements are necessary that are located outside a 44-kb region spanning the Air-Igf2r promoters.  相似文献   

19.
The relationship between DNA methylation and histone acetylation at the imprinted mouse genes U2af1-rs1 and Snrpn is explored by chromatin immunoprecipitation (ChIP) and resolution of parental alleles using single-strand conformational polymorphisms. The U2af1-rs1 gene lies within a differentially methylated region (DMR), while Snrpn has a 5' DMR (DMR1) with sequences homologous to the imprinting control center of the Prader-Willi/Angelman region. For both DMR1 of Snrpn and the 5' untranslated region (5'-UTR) and 3'-UTR of U2af1-rs1, the methylated and nonexpressed maternal allele was underacetylated, relative to the paternal allele, at all H3 lysines tested (K14, K9, and K18). For H4, underacetylation of the maternal allele was exclusively (U2af1-rs1) or predominantly (Snrpn) at lysine 5. Essentially the same patterns of differential acetylation were found in embryonic stem (ES) cells, embryo fibroblasts, and adult liver from F1 mice and in ES cells from mice that were dipaternal or dimaternal for U2af1-rs1. In contrast, in a region within Snrpn that has biallelic methylation in the cells and tissues analyzed, the paternal (expressed) allele showed relatively increased acetylation of H4 but not of H3. The methyl-CpG-binding-domain (MBD) protein MeCP2 was found, by ChIP, to be associated exclusively with the maternal U2af1-rs1 allele. To ask whether DNA methylation is associated with histone deacetylation, we produced mice with transgene-induced methylation at the paternal allele of U2af1-rs1. In these mice, H3 was underacetylated across both the parental U2af1-rs1 alleles whereas H4 acetylation was unaltered. Collectively, these data are consistent with the hypothesis that CpG methylation leads to deacetylation of histone H3, but not H4, through a process that involves selective binding of MBD proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号