首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of repeated asphyxia on fetal transcutaneous PO2, relative local skin perfusion, heart rate, blood gases and pH was investigated in 15 experiments on 8 acutely instrumented sheep fetuses in utero between 125 and 145 days gestation (term is 147 days). Uterine blood flow was intermittently arrested (11 times within 33 min) by intra-vascular maternal aortic occlusion, exposing the fetuses to repeated episodes of asphyxia of 30 (n = 3), 60 (n = 9) and 90 (n = 3) s duration. The fetal transcutaneous PO2 fell as the duration of asphyxia (2 alpha less than 0.01), heart rate deceleration area (2 alpha less than 0.01) and acidaemia (2 alpha less than 0.01) increased. With decreasing skin perfusion, which was dependent on the duration of asphyxia (2 alpha less than 0.001) and acidaemia (2 alpha less than 0.001), a discrepancy developed between transcutaneous and arterial PO2. The increase (delta) in transcutaneous-arterial PO2 difference was related linearly to the duration of asphyxia (2 alpha less than 0.01), the mean haemoglobin oxygen saturation (2 alpha less than 0.001), acidaemia (2 alpha less than 0.001) and relative local skin flow (2 alpha less than 0.05). It was highest after severe episodes of asphyxia (90 s), when O2 saturation, skin blood flow and arterial blood pH values were low. Fetal heart rate deceleration area was only correlated with the cutaneous-arterial PO2 difference when the mean fetal haemoglobin oxygen saturation was below 35%. Thus, a discrimination of heart rate decelerations that are significant for the fetus seems to be possible, when associated with low transcutaneous PO2 values. We conclude that in the sheep fetus transcutaneous PO2 measurements during repeated asphyxial episodes yield information on fetal oxygenation and on the skin vasomotor response.  相似文献   

2.
To improve the understanding of fetal responses to labour, we have ascertained whether reduced fetal skin blood flow after asphyxia reflects redistribution of the circulation, and if so, whether this can be detected by transcutaneous PO2 monitoring. We also studied the relation between plasma concentrations of catecholamines and organ blood flow. Eight experiments were conducted on 8 acutely-prepared fetal sheep in utero between 125 and 135 days of gestation. In each fetus 11 episodes of asphyxia were induced within 33 min by intermittent arrest of uterine blood flow for 90 s. The distribution of blood flow was measured before and after asphyxia (at 35.5 min) by the isotope-labelled microsphere method. Blood samples were drawn at 0, 33 (i.e. after 90 s recovery), and 40 min to determine blood gases, acid-base balance, and catecholamine concentrations. Fetal transcutaneous PO2, heart rate, arterial blood pressure, and arterial O2 saturation were recorded continuously. Repeated fetal asphyxia increased plasma catecholamine concentrations and caused a circulatory redistribution to the brain (181% change), adrenals (116% change), and lungs (105% change) at the expense of many peripheral organs, particularly of the skin (-61% change). The pattern of these changes was different from that observed by others in persistent hypoxia or asphyxia. The decrease in skin blood flow, which depressed transcutaneous PO2 and increased the arterial-transcutaneous PO2 difference, correlated with the decrease in blood flow to other peripheral organs and with an increase in blood flow to the brain stem. We conclude that reduced blood flow to the fetal skin after repeated episodes of asphyxia indicates circulatory redistribution, which can be detected by transcutaneous PO2 measurements. We suggest that monitoring of variables that depend on skin blood flow may improve fetal surveillance during complicated labour.  相似文献   

3.
Effect of reduced uterine blood flow on fetal and maternal cortisol   总被引:9,自引:0,他引:9  
We have measured the changes in fetal and maternal plasma concentrations of cortisol in relation to blood gases and percent oxygen saturation during 2- and 4-h episodes of reversibly reduced uterine blood flow in sheep between 120 days gestation and term. During that period of reduced uterine blood flow there was a significant decrease in fetal arterial percent oxygen saturation (SaO2), PO2 and pH. Fetal SaO2 decreased from 59.5 +/- 3.2% to 31.8% +/- 2.8% by 15 min, 32.9 +/- 2.9% by 60 min, and 33.5 +/- 2.9% by 120 min. Fetal PO2 decreased from 3.2 +/- 0.1 KPa to 2.0 +/- 0.2 KPa by 15 min, 2.2 +/- 0.2 KPa by 60 min and 2.3 +/- 0.1 KPa by 120 min. Fetal pH decreased from 7.36 +/- 0.01 to 7.30 +/- 0.03 by 15 min, 7.27 +/- 0.02 by 60 min and 7.25 +/- 0.03 by 120 min. During the period of reduced uterine blood flow, fetal plasma concentrations of cortisol increased from 37.1 +/- 10.8 nmol/l to 53.3 +/- 9.2 nmol/l by 15 min, 49.2 +/- 11.4 nmol/l by 60 min and 43.3 +/- 9.0 nmol/l by 120 min. The greatest percentage increase in fetal plasma concentrations of cortisol occurred in fetuses of 126-139 days gestation. There was no significant change in maternal blood gases, SaO2 or plasma concentrations of cortisol. These experiments demonstrate that there is a significant increase in fetal plasma concentrations of cortisol in response to reductions in uterine blood flow from as early as 120 days gestation.  相似文献   

4.
To assess the response of the sympathoadrenal system of the primate fetus to oxygen deprivation, we measured plasma catecholamines in 8 chronically catheterized fetal rhesus monkeys. A range of fetal hypoxaemia was produced by having the mother inspire 15, 10, or 9% oxygen mixtures while tranquilized with ketamine. Catecholamines from fetal carotid and maternal femoral arteries were measured by radioenzymatic assay. Fetal plasma norepinephrine and epinephrine concentrations increased significantly at all levels of hypoxaemia, but dopamine increased only at very low fetal oxygen tensions. Norepinephrine levels exceeded those of epinephrine and dopamine under all conditions. Relatively more severe hypoxaemia was necessary to elevate concentrations of epinephrine above baseline as compared with norepinephrine. A negative exponential correlation (P less than 0.001) was found between both fetal arterial PO2 and oxygen content and plasma norepinephrine and epinephrine, which was qualitatively similar to that observed previously in the sheep fetus. Maternal catecholamines were found to increase during hypoxaemia as well, but to a lesser degree than in the fetus.  相似文献   

5.
To examine the responses of the sympatho-adrenal system to reduced oxygen supply we studied plasma and tissue concentrations of catecholamines during normoxemia, hypoxemia, and asphyxia in 22 fetal guinea pigs near term. Fetal blood was obtained by cardiopuncture in utero under ketamine/xylazine-anesthesia. Catecholamines were determined in plasma and tissue of 15 organs and 14 brain parts by HPLC-ECD. During normoxemia (SO2 54 +/- 4 (SE) %, pH 7.36 +/- 0.02, n = 5) plasma catecholamine levels were low (norepinephrine 447 +/- 53, epinephrine 42 +/- 12, dopamine 44 +/- 6 pg/ml). During hypoxemia (SO2 27 +/- 3%, pH 7.32 +/- 0.01, n = 6) and asphyxia (SO2 24 +/- 2%, pH 7.23 +/- 0.02, n = 11) tissue catecholamine concentrations changed with changing blood gases and with increasing plasma catecholamines. Norepinephrine concentrations increased in both skin and lung and decreased in liver, pancreas, and scalp; those of epinephrine increased in the heart, lung liver, and scalp and decreased in the adrenal. There were only minor changes in brain catecholamine concentrations except for a 50% reduction in dopamine in the caudate nucleus. Concentrations of dopamine catabolite 3,4-dihydroxyphenylacetic acid decreased in many brain parts, suggesting that cerebral catecholamine metabolism was affected by hypoxemia and asphyxia. We conclude that the sympatho-adrenal system of fetal guinea pigs near term is mature and that its stimulation by reduced fetal oxygen supply leads to changes in both plasma and tissue catecholamine concentrations.  相似文献   

6.
This study investigated the effects on femoral vascular resistance, blood glucose and lactate levels, and plasma catecholamine concentrations of fetal treatment with an adenosine receptor antagonist during acute hypoxemia in fetal sheep during late gestation. Under anesthesia, seven fetal sheep were instrumented between 117 and 118 days gestation (term is approximately 145 days) with vascular and amniotic catheters and an ultrasonic probe around a femoral artery. Six days after surgery, all fetuses were randomly subjected to a 3-h experiment consisting of 1 h of normoxia, 1 h of hypoxemia, and 1 h of recovery. This was done during either intravenous infusion of vehicle or the adenosine receptor antagonist [8-(p-sulfophenyl)-theophylline; 8-SPT] dissolved in vehicle. During vehicle infusion, all fetuses responded to hypoxemia with bradycardia, an increase in arterial blood pressure, and femoral vasoconstriction. Increases in blood glucose and lactate concentrations and in plasma epinephrine and norepinephrine concentrations also occurred in all fetuses during hypoxemia. Fetal treatment with 8-SPT markedly attenuated the bradycardic, hypertensive, vasoconstrictor, glycemic, and adrenergic responses to hypoxemia, but it did not affect the increase in blood lactate concentrations during hypoxemia. These data show that adenosine is involved in the mechanisms mediating fetal cardiovascular, metabolic, and adrenergic responses to hypoxemia in fetal sheep. Fetal treatment with 8-SPT mimics the effects of carotid sinus nerve section on fetal cardiovascular function during hypoxemia, suggesting a role for adenosine in mediating fetal cardiovascular chemoreflexes.  相似文献   

7.
Recent experiments demonstrate that feedforward sympathetic beta-adrenoceptor coronary vasodilation occurs during exercise. The present study quantitatively examined the contributions of epinephrine and norepinephrine to exercise coronary hyperemia and tested the hypothesis that circulating epinephrine causes feedforward beta-receptor-mediated coronary dilation. Dogs (n = 10) were chronically instrumented with a circumflex coronary artery flow transducer and catheters in the aorta and coronary sinus. During strenuous treadmill exercise, myocardial oxygen consumption increased by approximately 3.9-fold, coronary blood flow increased by approximately 3.6-fold, and arterial plasma epinephrine concentration increased by approximately 2.4-fold over resting levels. At arterial concentrations matching those during strenuous exercise, epinephrine infused at rest (n = 6) produced modest increases (18%) in flow and myocardial oxygen consumption but no evidence of direct beta-adrenoceptor-mediated coronary vasodilation. Arterial norepinephrine concentration increased by approximately 5. 4-fold during exercise, and coronary venous norepinephrine was always higher than arterial, indicating norepinephrine release from cardiac sympathetic nerves. With the use of a mathematical model of cardiac capillary norepinephrine transport, these norepinephrine concentrations predict an average interstitial norepinephrine concentration of approximately 12 nM during strenuous exercise. Published dose-response data indicate that this norepinephrine concentration increases isolated coronary arteriolar conductance by approximately 67%, which can account for approximately 25% of the increase in flow observed during exercise. It is concluded that a significant portion of coronary exercise hyperemia ( approximately 25%) can be accounted for by direct feedforward beta-adrenoceptor coronary vascular effects of norepinephrine, with little effect from circulating epinephrine.  相似文献   

8.
Birth is characterized by a surge in sympathetic outflow, heart rate (HR), mean arterial blood pressure (MABP) and circulating catecholamines. The paraventricular nucleus (PVN) of the hypothalamus is an important central regulatory site of sympathetic activity, but its role in the regulation of sympathoexcitation at birth is unknown. To test the hypothesis that the PVN regulates sympathetic activity at birth, experiments were performed in chronically instrumented near-term (137- to 142-day gestation, term 145 days) sheep before and after delivery by cesarean section. Stereotaxic guided electrolytic lesioning of the PVN (n = 6) or sham lesioning (n = 6) was performed 48 h before study. At 30 min after birth, renal sympathetic nerve activity (RSNA) increased 128 +/- 26% above fetal values in the sham-lesioned animals (P < 0.05). In contrast, at a similar time point, RSNA decreased to 52 +/- 12% of the fetal value in the PVN-lesioned animals. Lesioning of the PVN did not affect the usual postnatal increases in MABP and epinephrine levels although HR failed to rise above fetal values. ANG II but not arginine vasopressin or norepinephrine levels increased in PVN-lesioned animals after birth, whereas all three hormones increased (P < 0.05) in sham-lesioned animals. Fetal and newborn HR baroreflex responses were similar in both groups. However, the usual postnatal attenuation of baroreflex-mediated inhibition of RSNA was blunted in the PVN-lesioned group. The results of this study demonstrate that ablation of the PVN abolishes sympathoexcitation with birth at near-term gestation. The PVN may play a critical role in physiological adaptation at birth.  相似文献   

9.
The effects of moderate fetal asphyxia, induced by constriction of the maternal common internal iliac artery, on lung liquid secretion, tracheal fluid efflux and lung liquid volume have been investigated in unanaesthetized fetal sheep (111-142 days) in utero. During periods of fetal asphyxia the percent oxygen saturation, PO2, pH, and PCO2 of fetal carotid arterial blood changed from 57.2 +/- 1.3% (mean +/- SEM), 22.9 +/- 0.6 mmHg, 7.35 +/- 0.01 and 45.6 +/- 1.0 mmHg to 26.3 +/- 0.5% (P less than 0.001), 14.7 +/- 0.2 mmHg (P less than 0.001), 7.28 +/- 0.02, (P less than 0.001) and 47.8 +/- 0.4 mmHg (P less than 0.02), respectively. Fetal asphyxia, over 6 h, decreased the efflux of tracheal fluid from 7.07 +/- 0.47 ml/h to 3.97 +/- 0.36 ml/h (P less than 0.01) and, over 4 h, decreased the rate of lung liquid secretion from 9.42 +/- 1.76 ml/h to 4.91 +/- 1.54 ml/h (P less than 0.005), whereas it had no significant effect on lung liquid volume. The incidence of fetal breathing movements decreased from 52.9 +/- 2.5% to 22.6 +/- 3.5% during 6-h periods of fetal asphyxia. Thus, although fetal asphyxia decreased the net production of lung liquid, lung liquid volume was maintained probably, because the net efflux of fluid from the lungs via the trachea decreased to a similar extent.  相似文献   

10.
In an effort to examine the effects of maternal exercise on the fetus we measured maternal and fetal temperatures and blood gases and calculated uterine O2 consumption in response to three different treadmill exercise regimens in 12 chronically catheterized near-term sheep. We also measured fetal catecholamine concentrations, heart rate, blood pressure, cardiac output, blood flow distribution, blood volume, and placental diffusing capacity. Maternal and fetal temperatures increased a mean maximum of 1.5 +/- 0.5 (SE) and 1.3 +/- 0.1 degrees C, respectively. We corrected maternal and fetal blood gas values for the temperatures in vivo. Maternal arterial partial pressure of O2 (PO2), near exhaustion during prolonged (40 min) exercise at 70% maximal O2 consumption, increased 13% to a maximum of 116.7 +/- 4.0 Torr, whereas partial pressure of CO2 (PCO2) decreased by 28% to 27.6 +/- 2.2 Torr. Fetal arterial PO2 decreased 11% to a minimum of 23.2 +/- 1.6 Torr, O2 content by 26% to 4.3 +/- 0.6 ml X dl -1, PCO2 by 8% to 49.6 +/- 3.2 Torr, but pH did not change significantly. Recovery was virtually complete within 20 min. During exercise total uterine O2 consumption was maintained despite the reduction in uterine blood flow because of hemoconcentration and increased O2 extraction. The decrease of 3 Torr in fetal arterial PO2 and 1.5 ml X dl -1 in O2 content did not result in major cardiovascular changes or catecholamine release. These findings suggest that maternal exercise does not represent a major stressful or hypoxic event to the fetus.  相似文献   

11.
The rostral ventrolateral medulla (RVLM) plays an important role in the integration of cardiovascular functions. We examined the effect of asphyxia on cardiovascular responses, on sympathetic vertebral nerve activity (VNA) and nitric oxide (NO) formation in the RVLM, on hemodynamics, and on plasma concentrations of catecholamines, blood gas partial pressures and carbohydrate metabolites. Using 16 anesthetized cats we found that the systemic arterial pressure (SAP), VNA, NO formation and the release of plasma catecholamine components of norepinephrine and epinephrine were increased during asphyxia. The onset of NO production was significantly earlier than that of SAP and VNA. The venous partial pressure of O2 decreased, while the partial pressure of CO2 increased. Furthermore, metabolism of glucose and lactate increased, as did the blood concentrations of white and red blood cells, hemoglobin and platelets. Thus, asphyxia increased SAP, VNA and NO formation. It increased the plasma catecholamines, blood gases, carbohydrate metabolites and blood cells.  相似文献   

12.
The effects of acute asphyxia on both the time course of blood flow changes in central and peripheral organs, including the skin, and the time course of changes in oxygen consumption were studied in 9 unanaesthetized fetal sheep in utero at 130 +/- 2 days of gestation during 4-min arrest of uterine blood flow. Blood flow distribution and total oxygen consumption were determined at 1-min intervals during asphyxia using isotope-labelled microspheres (15 micrograms diameter) and by calculating the decline of the arterial O2 content, respectively. During asphyxia peripheral blood flow including that to the skin, scalp, and choroid plexus decreased rapidly, whereas blood flow to the heart, brain stem and (in surviving fetuses only) adrenals increased slowly. Total oxygen consumption fell exponentially with time and was closely correlated with the fall in both arterial oxygen content and peripheral blood flow; the time courses of these changes were very similar to those of the decreasing blood flows to the skin and scalp. Blood flow within the brain was redistributed at the expense of the cerebrum and the choroid plexus; the total blood flow to the brain did not change. In the 5 fetuses that died during the recovery period adrenal blood flow failed to increase and, at the nadir of asphyxia, peripheral vessels dilated and central vessels constricted. We conclude that in fetal sheep near term during acute asphyxia the time course of changes in blood flow to central and peripheral organs is different; total oxygen consumption depends on arterial O2 content and peripheral blood flow; total blood flow to the brain does not change, but is redistributed towards the brain stem at the expense of the cerebrum and choroid plexus; fetal death is preceded by a failure of adrenal blood flow to increase, by peripheral vasodilatation, and by central vasoconstriction and skin blood flow validly indicates rapid changes in the distribution of blood flow and the changes in oxygen consumption that accompany it.  相似文献   

13.
We have investigated whether enkephalin-containing peptides and catecholamines are increased in fetal plasma during periods of reduced uterine blood flow which produce moderate fetal asphyxia (i.e. hypoxemia, hypercapnia and acidemia). Experiments (n = 16) were performed in 11 ewes between 121-139 days gestation. In 8 experiments a clamp placed around the common iliac artery of the ewe was adjusted to produce a 50% reduction in the partial pressure of arterial oxygen (PO2) in fetal plasma for 30 min between 121-125 days gestation (n = 4) and between 131-139 days gestation (n = 4). Control (n = 8) experiments were performed when the arterial clamp was not adjusted. There was no significant effect of asphyxia on fetal plasma noradrenaline concentrations before 126 days gestation. After 130 days gestation during asphyxia, fetal plasma noradrenaline concentrations increased significantly from 2.20 +/- 0.72 pmol/ml (-15 min) to 14.06 +/- 0.75 pmol/ml (+5 min). The fetal adrenaline response to asphyxia did not change with increasing gestational age and after 130 days gestation fetal plasma adrenaline increased significantly from 1.48 +/- 0.46 pmol/ml (-15 min) to 4.05 +/- 1.22 pmol/ml (+10 min). Met-enkephalin-arg6-phe7 immunoreactivity was measurable (25-117 pg/ml) in all pre-experimental fetal sheep plasma samples collected between 121-139 days gestation. There was no specific effect of asphyxia on fetal plasma [Met]-enkephalin-arg6-phe7-IR before 130 days gestation. However after 130 days gestation, there was a significant increase in fetal plasma (Met-enkephalin Arg-6-phe7-IR above baseline values, when compared to control experiments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Graded anemia was produced for 2 h in 10 unanesthetized fetal sheep by infusing plasma in exchange for fetal blood. This reduced the mean fetal hematocrits during the 1st h of anemia to 19.7 +/- 0.5% [control (C) = 28.2 +/- 1.1%] for mild anemia, 17.4 +/- 0.9% (C = 30.0 +/- 1.1%) for moderate anemia, and 15.1 +/- 1.0% (C = 29.2 +/- 1.3%) for severe anemia. The respective mean arterial O2 contents (CaO2) were 4.46 +/- 0.20, 3.89 +/- 0.24, and 3.22 +/- 0.19 ml/dl. Mean arterial PO2 was reduced significantly (by 2 Torr) only during moderate anemia, and mean arterial pH was decreased only during severe anemia. No significant changes occurred in arterial PCO2. Fetal tachycardia occurred during anemia. Mean arterial pressure was reduced by 2-3 mmHg during mild anemia; however, no significant blood pressure changes were observed for moderate or severe anemia. The incidence of rapid-eye movements and breathing activity was not affected by mild anemia, but the incidence of both was reduced significantly during moderate and severe anemia. It is concluded that 1) a reduction in CaO2 of greater than 2.48 +/- 0.22 ml/dl by hemodilution inhibits rapid-eye movements and breathing activity, and 2) the PO2 signal for inhibition does not come from arterial blood but from lower PO2 in tissue.  相似文献   

15.
Acute foetal asphyxia, caused by arrest of uterine blood flow, increases both sympathetic activity and peripheral vascular resistance and decreases blood flow to peripheral organs (Jensen et al., J. Dev. Physiol., 9, 543-559). The rapidity and uniformity of this peripheral vasoconstriction suggest that the sympatho-neuronal system may reflexly cause these initial blood flow changes during acute asphyxia. To test this hypothesis, we studied 5 intact and 6 chemically sympathectomized (6-hydroxy-dopamine, 46.1 +/- 6 mg/kg foetal weight) chronically prepared normoxaemic foetal sheep in utero at 0.9 of gestation. Organ blood flows (microsphere method), plasma concentrations of catecholamines, vasopressin, and angiotensin II, acid-base balance and blood gases were measured before, during and after arrest of uterine blood flow for 2 min, i.e., at 0, 1, 2, 3, 4 & 30 min. In intact foetuses there was a progressive increase in arterial blood pressure and a rapid circulatory centralization in favour of the brain stem and heart and at the expense of most of the peripheral organs. The changes in peripheral blood flow during and after asphyxia were well reflected by those in the skin and scalp. In chemically sympathectomized foetuses, arterial blood pressure fell transiently at 1 min of asphyxia and cardiac output was redistributed towards the carcass and intestinal organs at the expense of the heart, spinal medulla, and placenta. We conclude that in foetal sheep at 0.9 of gestation, the short-term adaptation to arrest of uterine blood flow is a rapid and profound peripheral vasoconstriction to effect an increase in arterial blood pressure. This initial response during circulatory centralization, which is necessary to increase or maintain blood flow to the heart, brain stem, and placenta, is blunted by sympathectomy. Thus, the foetal sympatho-neuronal system is important for short-term adaptation to and intact survival of asphyxia.  相似文献   

16.
Cardio-respiratory responses to asphyxia produced by decreased uterine perfusion were studied in 15 sheep fetuses. In chronic (spinal-anesthetized) and acute (inhalation-anesthetized) preparations, we measured fetal PO2, PCO2, pH, heart rate, arterial and umbilical venous pressures at rest and 5 min after controlled reductions of maternal aortic blood flow. Umbilical blood flow was determined by electromagnetic flow transducer on the fetal descending aorta with the iliac arteries ligated, in conjunction with radionuclide-labelled microspheres. In contrast to previous studies in which fetal hypoxaemia was produced by decreased maternally inspired O2 concentrations, decreasing degrees of uterine perfusion were associated with increasing degrees of hypercapnea and acidemia, as well as hypoxaemia. In chronic experiments, heart rate and umbilical blood flow fell significantly in response to decreased uterine perfusion with all degrees of hypoxaemia studied. In acute experiments, during the control period, PO2 values were similar to those of chronic experiments while values for pH and umbilical blood flow were lower and those for umbilical vascular resistance were higher. In the acute experiments, hypoxic stresses identical to those in the chronic studies failed to produce significant hemodynamic changes, except for bradycardia in response to severe hypoxaemia. These differences were apparently due to the pharmacologic effects of halothane and the operative stresses.  相似文献   

17.
Pregnant sheep were chronically instrumented with fetal and maternal catheters and an inflatable occluder and electromagnetic flow transducer were placed on the uterine artery. Uterine blood flow was reduced for approximately 15 minutes to 25 percent, 50 percent, or 75 percent of control uterine blood flow. Fetal blood gases, arterial blood pressure, heart rate and regional distribution of blood flow (by radioactive microspheres) were measured. With progressive reduction of uterine blood flow there was an increasing degree of fetal asphyxia, as measured by blood gases and acid base state. At moderate degrees of asphyxia the fetus responded by redistribution of blood flow to certain organs, namely heart, brain, and adrenal gland, thus preserving oxygenation of these organs. During the most severe degree of asphyxia induced by reduction of uterine blood flow to 25 percent of control there is a reduction of fetal blood flow due to generalized vasoconstriction of essentially all organs. We hypothesize that this is due to the inability of the vasodilator mechanisms to sufficiently oppose the vasoconstrictor mechanisms. Also, because the oxygen consumption of the "vital" organs would be decreased this can be described as the stage of decompensation.  相似文献   

18.
Reduced amniotic fluid volume often results in fetal lung hypoplasia. Our aim was to examine the effects of prolonged drainage of amniotic and allantoic fluids on lung liquid volume (Vl), secretion rate (Vs), and tracheal flow rate (Vtr) in fetal sheep. In five experimental animals, amniotic and allantoic fluids were drained from 107 to 135 days of gestation. The volume of fluid drained from the experimental animals was 411.8 +/- 24.4 ml/day (n = 140). In six control animals, amniotic fluid volume was 747.7 +/- 89.7 ml (n = 15). Wet and dry lung weights were 20-25% lower in experimental fetuses than in control fetuses. Fetal hemoglobin, O2 saturation, arterial PO2, pH, and hematocrit were unchanged by drainage. During the drainage period, Vl was up to 65% lower, Vs was up to 35% lower, and Vtr was up to 40% lower in experimental fetuses than in control fetuses. We conclude that prolonged drainage of amniotic and allantoic fluids decreases Vl, Vs, and Vtr in fetal sheep. These findings indicate that fetal lung hypoplasia associated with oligohydramnios may be the result of a prolonged reduction in Vl.  相似文献   

19.
The sympathetic nervous system (SNS) is an important mediator of fetal adaptation to life-threatening in utero challenges, such as asphyxia. Although the SNS is active well before term, SNS responses mature significantly over the last third of gestation, and its functional contribution to adaptation to asphyxia over this critical period of life remains unclear. Therefore, we examined the hypotheses that increased renal sympathetic nerve activity (RSNA) is the primary mediator of decreased renal vascular conductance (RVC) during complete umbilical cord occlusion in preterm fetal sheep (101 ± 1 days; term 147 days) and that near-term fetuses (119 ± 0 days) would have a more rapid initial vasomotor response, with a greater increase in RSNA. Causality of the relationship of RSNA and RVC was investigated using surgical (preterm) and chemical (near-term) denervation. All fetal sheep showed a significant increase in RSNA with occlusion, which was more sustained but not significantly greater near-term. The initial fall in RVC was more rapid in near-term than preterm fetal sheep and preceded the large increase in RSNA. These data suggest that although RSNA can increase as early as 0.7 gestation, it is not the primary determinant of RVC. This finding was supported by denervation studies. Interestingly, chemical denervation in near-term fetal sheep was associated with an initial fall in blood pressure, suggesting that by 0.8 gestation sympathetic innervation of nonrenal vascular beds is critical to maintain arterial blood pressure during the rapid initial adaptation to asphyxia.  相似文献   

20.
Clinical research was conducted into the possible interrelationships between prostaglandin (PG) F2alpha and the human sympathetic nervous system. The study also permitted comparison of the relative sensitivity of 2 indicators of sympatho-adrenal activity: 1) the determination of circulating catecholamines, epinephrine and norepinephrine; and 2) analysis of plasma dopamine-8-hydroxylase activity. Intravenous PGF2alpha infusion was administered to college students 12-18 weeks pregnant to produce abortion; the results were compared to results from nonpregnant controls. Circulating norepinephrine but not plasma epinephrine or dopamine-8-hydroxylase levels were increased in response to the PG. There was no correlation between plasma epinephrine and plasma norepinephrine levels. Plasma dopamine-8-hydroxylase activity was found not to be significantly changed by pregnancy, administration of the analgesic and antiemetic, or the PG infusion. In fact, central venous dopamine-8-hydroxylase activity did not differ significantly from that of arterial blood. The PG did not affect cardiac output or maximal expiratory flow rate. It is suggested that the nausea and diarrhea accompanying PGF2alpha infusion may put stress on the sympathetic nervous activity causing the observed increase in plasma norepinephrine concentration. Since no changes in blood pressure, heart rate, central venous pressure, or cardiac output were observed, it is unlikely that PGF2alpha causes even slight impairment of sympathetic nervous system activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号