首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We have investigated whether enkephalin-containing peptides and catecholamines are increased in fetal plasma during periods of reduced uterine blood flow which produce moderate fetal asphyxia (i.e. hypoxemia, hypercapnia and acidemia). Experiments (n = 16) were performed in 11 ewes between 121-139 days gestation. In 8 experiments a clamp placed around the common iliac artery of the ewe was adjusted to produce a 50% reduction in the partial pressure of arterial oxygen (PO2) in fetal plasma for 30 min between 121-125 days gestation (n = 4) and between 131-139 days gestation (n = 4). Control (n = 8) experiments were performed when the arterial clamp was not adjusted. There was no significant effect of asphyxia on fetal plasma noradrenaline concentrations before 126 days gestation. After 130 days gestation during asphyxia, fetal plasma noradrenaline concentrations increased significantly from 2.20 +/- 0.72 pmol/ml (-15 min) to 14.06 +/- 0.75 pmol/ml (+5 min). The fetal adrenaline response to asphyxia did not change with increasing gestational age and after 130 days gestation fetal plasma adrenaline increased significantly from 1.48 +/- 0.46 pmol/ml (-15 min) to 4.05 +/- 1.22 pmol/ml (+10 min). Met-enkephalin-arg6-phe7 immunoreactivity was measurable (25-117 pg/ml) in all pre-experimental fetal sheep plasma samples collected between 121-139 days gestation. There was no specific effect of asphyxia on fetal plasma [Met]-enkephalin-arg6-phe7-IR before 130 days gestation. However after 130 days gestation, there was a significant increase in fetal plasma (Met-enkephalin Arg-6-phe7-IR above baseline values, when compared to control experiments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The aim of the present study was to determine the extent to which plasma catecholamines are conjugated in different animals compared to man and how widespread is the presence of dihydroxyphenylalanine (DOPA) and 3-methoxy-4-hydroxyphenylalanine (3-OMD) in plasma among the different animal species. Free and conjugated norepinephrine, epinephrine, and dopamine were measured in plasma in humans and in several animal species (dog, rat, Gunn rat, cat, rabbit, guinea pig, African green monkey, young pig, calf, and one American black bear) using HPLC with electrochemical detection. The same technique was used to measure free and conjugated DOPA and 3-OMD in plasma of man, dog, rat, Gunn rat, calf, and American black bear. Human plasma contains the highest concentration of total (free and conjugated) catecholamines (46.1 pmole/ml), while low concentrations (below 15 pmole/ml) were observed in unstressed rats, calves, cats, and young pigs. In man, 95.3% of total plasma catecholamines were conjugated. The extent to which plasma catecholamines were conjugated varied greatly between animal species. The conjugated fraction expressed as percentages of the total catecholamines is lowest in the young pig (4.7%) and highest in the bear (100%). Conjugated dopamine was present in the plasma of all species, varying between 3% of the total catecholamine pool in young pig to 90% in dog. Conjugated norepinephrine was also present in plasma of all species except in unstressed rats with access to food. Conjugated epinephrine was detected only in cat and rat. Free DOPA and 3-OMD were present in plasma of all tested species with especially high levels of 3-OMD being present in dog. Conjugated DOPA and 3-OMD were not consistently found in any species. Our results indicate that man, dog, bear, and African green monkey are particularly good catecholamine conjugators and that young pig, guinea pig, rabbit, and calf are poor conjugators.  相似文献   

3.
We designed the present study to see whether, during acute moderate isocapnic hypoxemia, changes in cerebral vascular resistance (CVR) and brain extracellular fluid (ECF) [H+] can or cannot be dissociated from each other. In seven anesthetized and paralyzed dogs we measured brain ECF pH with surface electrodes (n = 4) or double-barreled microelectrodes (n = 3) with tip diameters of less than 30 micron inserted 5 mm below the surface. Cerebral blood flow (CBF) was measured by radioactive microspheres during normoxemia and moderate hypoxemia, whereas brain ECF pH was measured continuously. In six of the seven dogs brain pH did not change during moderate hypoxemia of 4-20 min duration. In these six animals the mean arterial O2 partial pressure decreased from 84.8 +/- 12.9 (SD) to 46.7 +/- 10.2 Torr during hypoxic gas breathing, resulting in a significant drop in CVR from 3.88 +/- 1.88 to 3.27 +/- 1.97 Torr X ml-1 X min X 100 g and a rise in CBF from 31.7 +/- 12.7 to 47.8 +/- 31.5 ml X min-1 X 100 g-1. The mean brain ECF [H+] was 57.4 +/- 8.2 nmol/l (pH = 7.24) during normoxemia and did not change significantly during hypoxic gas breathing [56.6 +/- 7.7 nmol/l (pH = 7.25)]. Furthermore, arterial and sagittal venous blood and cisternal cerebrospinal fluid (CSF) pH did not change significantly during hypoxic gas breathing. We conclude that during acute moderate hypoxemia reduction in CVR can occur independently from increases in brain ECF, cisternal CSF, and arterial and sagittal venous blood [H+] and PCO2.  相似文献   

4.
To improve detection of fetal distress, we examined whether increased fetal sympathetic activity during repeated episodes of asphyxia decreases skin blood flow, which can be monitored by recording transcutaneous PO2. Sympathetic activity was assessed by relating catecholamine concentrations in the fetal plasma to blood gas, acid-base, and heart rate variables which are commonly used to determine fetal distress. Fifteen experiments were conducted on 8 anaesthetised fetal sheep in utero between 125 and 145 days of gestation (term is at 147 days). They were subjected to 11 consecutive episodes of asphyxia of 30 (n = 3), 60 (n = 9), or 90 (n = 3) s over 33 min, achieved by arrest of uterine blood flow. Blood samples were drawn at 0, 33, and 60 min to determine arterial blood gases, acid base-balance, and concentrations of lactate, glucose, norepinephrine, and epinephrine. Fetal transcutaneous PO2, relative local skin blood flow, heart rate, arterial blood pressure, and arterial O2 saturation were recorded continuously. Fetal plasma concentrations of norepinephrine and epinephrine increased logarithmically as the duration of repeated asphyxia, anaerobic metabolism, and glucose concentrations increased, and as the mean O2 saturation, transcutaneous PO2, and local skin blood flow decreased. We conclude that during repeated episodes of asphyxia in fetal sheep near term, a significant increase in sympathetic activity can be detected indirectly by transcutaneous PO2 monitoring, because sympathetic activation reduces skin blood flow.  相似文献   

5.
Ventral medullary extracellular fluid pH and PCO2 during hypoxemia   总被引:1,自引:0,他引:1  
We designed experiments to study changes in ventral medullary extracellular fluid (ECF) PCO2 and pH during hypoxemia. Measurements were made in chloralose-urethan-anesthetized spontaneously breathing cats (n = 12) with peripherial chemodenervation. Steady-state measurements were made during normoxemia [arterial PO2 (PaO2) = 106 Torr], hypoxemia (PaO2 = 46 Torr), and recovery (PaO2 = 105 Torr), with relatively constant arterial PCO2 (approximately 44 Torr). Mean values of ventilation were 945, 683, and 1,037 ml/min during normoxemia, hypoxemia, and recovery from hypoxemia, respectively. Ventilatory depression occurred in each cat during hypoxemia. Mean values of medullary ECF PCO2 were 57.7 +/- 7.2 (SD), 59.4 +/- 9.7, and 57.4 +/- 7.2 Torr during normoxemia, hypoxemia, and recovery to normoxemia, respectively; respective values for ECF [H+] were 60.9 +/- 8.0, 64.4 +/- 11.6, and 62.9 +/- 9.2 neq/l. Mean values of calculated ECF [HCO3-] were 22.8 +/- 3.0, 21.7 +/- 3.3, and 21.4 +/- 3.1 meq/l during normoxemia, hypoxemia, and recovery, respectively. Changes in medullary ECF PCO2 and [H+] were not statistically significant. Therefore hypoxemia caused ventilatory depression independent of changes in ECF acid-base variables. Furthermore, on return to normoxemia, ventilation rose considerably, still independent of changes in ECF PCO2, [H+], and [HCO3-].  相似文献   

6.
This study was designed to examine the relationship between uterine contractile rhythms with maternal plasma and amniotic fluid catecholamine concentrations in the pregnant rhesus macaque. Six chronically catheterized rhesus macaques were maintained in a vest and tether system and exposed to a 12L:12D cycle. Continuous uterine activity recordings demonstrated a contractile pattern with peak activity at 2200 h (p less than 0.05). Paired maternal plasma and amniotic fluid samples were collected at 3-h intervals for 24 h between Days 131 and 148 of gestation. Samples were analyzed for norepinephrine, epinephrine, and dopamine by HPLC. Maximum plasma concentrations across the 24-h periods for norepinephrine (633 +/- 230; mean pg/ml +/- SEM) and dopamine (378 +/- 110) were observed at 2100 h and epinephrine (408 +/- 95) at 1200 h, but these values were not significant. The maximum amniotic fluid values were 378 +/- 126, 267 +/- 190, and 556 +/- 87 pg/ml for norepinephrine, epinephrine and dopamine, respectively. However, concentrations across 24 h did not differ. Neither maternal plasma nor amniotic fluid catecholamine concentrations were correlated with uterine activity rhythms. Therefore, we conclude that the nocturnal uterine activity in the rhesus macaque is not related to maternal arterial or amniotic fluid catecholamine concentrations.  相似文献   

7.
In complicated pregnancy, fetal hypoxemia rarely occurs in isolation but is often accompanied by fetal acidemia. There is growing clinical concern about the combined effects of fetal hypoxemia and fetal acidemia on neonatal outcome. However, the effects on the fetal defense responses to acute hypoxemia during fetal acidemia are not well understood. This study tested the hypothesis that fetal acidemia affects the fetal defense responses to acute hypoxemia. The hypothesis was tested by investigating, in the late-gestation sheep fetus surgically prepared for long-term recording, the in vivo effects of acute fetal acidemia on 1) the fetal cardiovascular responses to acute hypoxemia and 2) the neural and endocrine mechanisms mediating these responses. Under general anesthesia, five sheep fetuses at 0.8 gestation were instrumented with catheters and Transonic flow probes around the femoral and umbilical arteries. After 5 days, animals were subjected to an acute hypoxemia protocol during intravenous infusion of saline or treatment with acidified saline. Treatment with acidified saline reduced fetal basal pH from 7.35 +/- 0.01 to 7.29 +/- 0.01 but did not alter basal cardiovascular variables, blood glucose, or plasma concentrations of catecholamines, ACTH, and cortisol. During hypoxemia, treatment with acidified saline increased the magnitude of the fetal bradycardia and femoral vasoconstriction and concomitantly increased chemoreflex function and enhanced the increments in plasma concentrations of catecholamines, ACTH, and cortisol. Acidemia also reversed the increase in umbilical vascular conductance during hypoxemia to vasoconstriction. In conclusion, the data support our hypothesis and show that acute acidemia markedly alters fetal hemodynamic, metabolic, and endocrine responses to acute hypoxemia.  相似文献   

8.
Fetal circulatory responses to oxygen lack.   总被引:4,自引:0,他引:4  
The knowledge on fetal and neonatal circulatory physiology accumulated by basic scientists and clinicians over the years has contributed considerably to the recent decline of perinatal morbidity and mortality. This review will summarize the peculiarities of the fetal circulation, the distribution of organ blood flow during normoxemia, and that during oxygen lack caused by various experimental perturbations. Furthermore, the relation between oxygen delivery and tissue metabolism during oxygen lack as well as evidence to support a new concept will be presented along with the principal cardiovascular mechanisms involved. Finally, blood flow and oxygen delivery to the principal fetal organs will be examined and discussed in relation to organ function. The fetal circulatory response to hypoxemia and asphyxia is a centralization of blood flow in favour of the brain, heart, and adrenals and at the expense of almost all peripheral organs, particularly of the lungs, carcass, skin and scalp. This response is qualitatively similar but quantitatively different under various experimental conditions. However, at the nadir of severe acute asphyxia the circulatory centralization cannot be maintained. Then there is circulatory decentralization, and the fetus will experience severe brain damage if not expire unless immediate resuscitation occurs. Future work in this field will have to concentrate on the important questions, what factors determine this collapse of circulatory compensating mechanisms in the fetus, how does it relate to neuronal damage, and how can the fetal brain be pharmacologically protected against the adverse effects of asphyxia.  相似文献   

9.
To improve the understanding of fetal responses to labour, we have ascertained whether reduced fetal skin blood flow after asphyxia reflects redistribution of the circulation, and if so, whether this can be detected by transcutaneous PO2 monitoring. We also studied the relation between plasma concentrations of catecholamines and organ blood flow. Eight experiments were conducted on 8 acutely-prepared fetal sheep in utero between 125 and 135 days of gestation. In each fetus 11 episodes of asphyxia were induced within 33 min by intermittent arrest of uterine blood flow for 90 s. The distribution of blood flow was measured before and after asphyxia (at 35.5 min) by the isotope-labelled microsphere method. Blood samples were drawn at 0, 33 (i.e. after 90 s recovery), and 40 min to determine blood gases, acid-base balance, and catecholamine concentrations. Fetal transcutaneous PO2, heart rate, arterial blood pressure, and arterial O2 saturation were recorded continuously. Repeated fetal asphyxia increased plasma catecholamine concentrations and caused a circulatory redistribution to the brain (181% change), adrenals (116% change), and lungs (105% change) at the expense of many peripheral organs, particularly of the skin (-61% change). The pattern of these changes was different from that observed by others in persistent hypoxia or asphyxia. The decrease in skin blood flow, which depressed transcutaneous PO2 and increased the arterial-transcutaneous PO2 difference, correlated with the decrease in blood flow to other peripheral organs and with an increase in blood flow to the brain stem. We conclude that reduced blood flow to the fetal skin after repeated episodes of asphyxia indicates circulatory redistribution, which can be detected by transcutaneous PO2 measurements. We suggest that monitoring of variables that depend on skin blood flow may improve fetal surveillance during complicated labour.  相似文献   

10.
This study investigated the effects on femoral vascular resistance, blood glucose and lactate levels, and plasma catecholamine concentrations of fetal treatment with an adenosine receptor antagonist during acute hypoxemia in fetal sheep during late gestation. Under anesthesia, seven fetal sheep were instrumented between 117 and 118 days gestation (term is approximately 145 days) with vascular and amniotic catheters and an ultrasonic probe around a femoral artery. Six days after surgery, all fetuses were randomly subjected to a 3-h experiment consisting of 1 h of normoxia, 1 h of hypoxemia, and 1 h of recovery. This was done during either intravenous infusion of vehicle or the adenosine receptor antagonist [8-(p-sulfophenyl)-theophylline; 8-SPT] dissolved in vehicle. During vehicle infusion, all fetuses responded to hypoxemia with bradycardia, an increase in arterial blood pressure, and femoral vasoconstriction. Increases in blood glucose and lactate concentrations and in plasma epinephrine and norepinephrine concentrations also occurred in all fetuses during hypoxemia. Fetal treatment with 8-SPT markedly attenuated the bradycardic, hypertensive, vasoconstrictor, glycemic, and adrenergic responses to hypoxemia, but it did not affect the increase in blood lactate concentrations during hypoxemia. These data show that adenosine is involved in the mechanisms mediating fetal cardiovascular, metabolic, and adrenergic responses to hypoxemia in fetal sheep. Fetal treatment with 8-SPT mimics the effects of carotid sinus nerve section on fetal cardiovascular function during hypoxemia, suggesting a role for adenosine in mediating fetal cardiovascular chemoreflexes.  相似文献   

11.
Umbilical cord compression (UCC) sufficient to reduce umbilical blood flow by 30% for 3 days, results in increased fetal plasma cortisol and catecholamines that are likely to promote maturation of the fetal lung and brown adipose tissue (BAT). We determined the effect of UCC on the abundance of uncoupling protein (UCP)1 (BAT only) and -2, glucocorticoid receptor (GR), and 11beta-hydroxysteroid dehydrogenase (11beta-HSD)1 and -2 mRNA, and mitochondrial protein voltage-dependent anion channel (VDAC) and cytochrome c in these tissues. At 118 +/- 2 days of gestation (dGA; term approximately 145 days), 14 fetuses were chronically instrumented. Eight fetuses were then subjected to 3 days of UCC from 125 dGA, and the remaining fetuses were sham operated. All fetuses were then exposed to two 1-h episodes of hypoxemia at 130 +/- 1 and 134 +/- 1 dGA before tissue sampling at 137 +/- 2 dGA. In both tissues, UCC upregulated UCP2 and GR mRNA, plus VDAC and cytochrome c mitochondrial proteins. In lung, UCC increased 11beta-HSD1 mRNA but decreased 11beta-HSD2 mRNA abundance, a pattern reversed for BAT. UCC increased UCP1 mRNA and its translated protein in BAT. UCP2, GR, 11beta-HSD1 and -2 mRNA, plus VDAC and cytochrome c protein abundance were all significantly correlated with fetal plasma cortisol and catecholamine levels, but not thyroid hormone concentrations, in the lung and BAT of UCC fetuses. In conclusion, chronic UCC results in precocious maturation of the fetal lung and BAT mitochondria, an adaptation largely mediated by the surge in fetal plasma cortisol and catecholamines that accompanies UCC.  相似文献   

12.
Analysis of plasma catecholamines (norepinephrine, epinephrine and dopamine) by high-performance liquid chromatography using 1,2-diphenylethylenediamine as a fluorescent reagent is described. We have developed an automatic catecholamine analyser, based on pre-column fluorescence derivatization and column switching. The analysis time for one assay was 15 min. The correlation coefficients of the linear regression equations were greater than 0.9996 in the range 10–10 000 pg/ml. The detection limit, at a signal-to-noise ratio of 3, was 2 pg/ml for dopamine. A new method of sample preparation for the pre-column fluorescence derivatization of plasma catecholamines was used. In order to protect the catecholamines from decomposition, an ion-pair complex between boric acid and the diol group in the catecholamine was formed at a weakly alkaline pH. The stabilities of plasma catecholamines were evaluated at several temperatures. After complex formation, the catecholamines were very stable at 17°C for 8 h, and the coefficients of variation for norepinephrine, epinephrine and dopamine were 1.2, 4.2 and 9.3%, respectively.  相似文献   

13.
We have examined the effects of reduced uterine blood flow and prolonged fetal hypoxemia on the temporal relationship between changes in hormones associated with the activity of the pituitary-adrenal axis (corticotrophin-releasing hormone (CRH), adrenocorticotrophin (ACTH), cortisol, and prostaglandin E2 (PGE2) in the ovine fetus at 120-125 days of pregnancy, and we sought evidence for placental secretion of CRH and ACTH during prolonged hypoxemia. Uterine blood flow was reduced by placing an adjustable Teflon clamp around the maternal common internal iliac artery to decrease fetal arterial oxygen saturation from mean values of 59.1 +/- 3.3 to 25.7 +/- 4.6% (+/- SEM, n = 10). There was a transient peak in immunoreactive (IR-) CRH at 1-2 h after reducing uterine blood flow. IR-ACTH rose to peak values at +2 h, then gradually decreased to control level by +12 h. Fetal plasma cortisol and PGE2 concentrations were elevated significantly by +2 and +4 h, respectively, and at 20-24 h. The identity of IR-CRH in fetal plasma and in ovine placental extracts was confirmed by HPLC, but there was no consistent umbilical vein--femoral arterial concentration difference for either IR-CRH or IR-ACTH during normoxemia or hypoxemia. We conclude that a sequence of endocrine changes involving CRH, ACTH, PGE2, and cortisol occurs in the fetus during a prolonged reduction in uterine blood flow. However, we did not obtain evidence, for placental secretion of either CRH or ACTH in response to this manipulation.  相似文献   

14.
In newborns andadults of a number of species, exposure to acute hypoxemia produces a"regulated" decrease in core temperature, the mechanism of whichis unknown. The present experiments were carried out in chronicallyinstrumented newborn (5-10 days of age;n = 59) and older (25-30 days ofage; n = 61) guinea pigs to test thehypothesis that the endogenous opioids mediate this regulated decreasein core temperature. During an experiment, core temperature, oxygenconsumption, and selected ambient temperature were measured in athermocline (linear temperature gradient of 10-40°C) during acontrol period of normoxemia, an experimental period of normoxemia orhypoxemia (inspired oxygen fraction 0.10), and during a recovery periodof normoxemia following an intraperitoneal injection of naloxonehydrochloride (a nonspecific opioid antagonist; 1, 2, or 4 mg/kg) orvehicle. Naloxone did not significantly alter basal core temperature orthe core temperature response to acute hypoxemia in newborn or olderguinea pigs. Naloxone did, however, decrease basal oxygen consumptionin newborn and older guinea pigs and altered the thermoregulatoryeffector mechanism used to decrease core temperature during hypoxemiain the newborn guinea pigs. Our data do not support the hypothesis thatthe endogenous opioids mediate the regulated decrease in coretemperature that occurs in newborn and older guinea pigs duringexposure to acute hypoxemia.

  相似文献   

15.
Effects of asphyxia at birth on postnatal glucose regulation in the rat   总被引:1,自引:0,他引:1  
We have characterized the effect of a period of asphyxia at birth, followed by recovery, upon newborn rats. Asphyxiated pups were subjected to 3 to 5% (v/v) inspired oxygen during the first 20 min of life and then maintained in room air for 6 h. Control pups were maintained in room air throughout the 6-h period. Hypoxia produced severe asphyxia as reflected by a pH of 6.76 +/- 0.05, PaCO2 of 87 +/- 3 mm Hg and PaO2 of 15.4 +/- 4 mm Hg, and by a greatly increased blood lactate/pyruvate ratio. Plasma catecholamine concentrations in asphyxiated pups were elevated (epinephrine 13,866 +/- 250 pg/ml, norepinephrine 9611 +/- 1813 pg/ml) compared to control animals (epinephrine 973 +/- 234 pg/ml, norepinephrine 774 +/- 133 pg/ml) at 20 min. Asphyxia initially increased plasma glucose concentration, and then with recovery it fell below controls. Hepatic glycogen stores did not differ between asphyxiated and control pups. Plasma insulin concentrations remained elevated during asphyxia and the usual neonatal surge of plasma glucagon was significantly delayed. Neonatal asphyxia increases catecholamines, causes lactic acidemia, and alters insulin and glucagon levels. The interactions between these variables alters the normal pattern of glucose availability during the neonatal period.  相似文献   

16.
To assess the response of the sympathoadrenal system of the primate fetus to oxygen deprivation, we measured plasma catecholamines in 8 chronically catheterized fetal rhesus monkeys. A range of fetal hypoxaemia was produced by having the mother inspire 15, 10, or 9% oxygen mixtures while tranquilized with ketamine. Catecholamines from fetal carotid and maternal femoral arteries were measured by radioenzymatic assay. Fetal plasma norepinephrine and epinephrine concentrations increased significantly at all levels of hypoxaemia, but dopamine increased only at very low fetal oxygen tensions. Norepinephrine levels exceeded those of epinephrine and dopamine under all conditions. Relatively more severe hypoxaemia was necessary to elevate concentrations of epinephrine above baseline as compared with norepinephrine. A negative exponential correlation (P less than 0.001) was found between both fetal arterial PO2 and oxygen content and plasma norepinephrine and epinephrine, which was qualitatively similar to that observed previously in the sheep fetus. Maternal catecholamines were found to increase during hypoxaemia as well, but to a lesser degree than in the fetus.  相似文献   

17.
We studied serial plasma catecholamine levels in healthy newborn sheep over the first ten days of life. The results show that plasma norepinephrine values in newborn sheep are 3-4 fold higher, and plasma epinephrine values are two-fold higher than values in term fetal sheep. These elevations are sustained over the first 10 days of life. Cardiovascular (heart rate and blood pressure) and metabolic parameters (glucose and free fatty acids) are also significantly elevated above fetal levels. We performed graded catecholamine infusions in newborn animals and adult ewes to determine the minimum plasma catecholamine concentrations necessary for discernible physiologic effects. In response to step-wise increases in epinephrine or norepinephrine infusion rates, there were immediate increases in blood pressure and other physiologic responses. This pattern was seen in both newborn and adult animals, and differed from previous observations in fetal sheep where log-linear, dose response curves characteristic of a threshold response were seen. These results suggest that during the first two weeks of life plasma catecholamine levels are elevated above the threshold value for physiologic responses. These sustained elevations in circulating catecholamines are important in the maintenance of physiologic homeostasis.  相似文献   

18.
Our previous study has shown that the concentrations of norepinephrine, epinephrine and dopamine in the plasma of BIO 53.58 hamsters (a model of dilated cardiomyopathy: DCM) at 18 weeks of age (severe cardiomyopathic stage) were twice those of age-matched F1B control and conversely the myocardial norepinephrine level was decreased. The present study was undertaken to examine the effect of amlodipine on catecholamine concentration, myocardial receptors and histopathological changes in BIO 53.58 hamsters. Oral administration of amlodipine (10 mg/kg/day) for 7 weeks in 11 week-old-BIO 53.58 hamsters brought about marked decreases in the concentrations of norepinephrine, epinephrine and dopamine in the plasma, compared with those in vehicle-treated BIO 53.58 hamsters. This was accompanied by a concomitant increase in the concentration of myocardial catecholamine concentration. In other words, the concentrations of catecholamines in plasma and myocardium of amlodipine administered BIO 53.58 hamsters approximated to the control level in age-matched F1B. In addition, amlodipine administration caused a significant reduction of calcium deposition with a tendency toward a decrease in the myocardial necrosis, and it had little effect on the affinity and number of specific binding for (+)-[3H]PN 200-110, (-)-[125I]iodocyanopindolol (CYP) and [3H]prazosin in the myocardium. In conclusion, the present study shows that administration of amlodipine in BIO 53.58 hamsters may exhibit ameliorating effect on plasma and myocardial catecholamines with a significant reduction of calcium deposition. These data may offer further support for the use of amlodipine in patients with DCM.  相似文献   

19.
The rostral ventrolateral medulla (RVLM) plays an important role in the integration of cardiovascular functions. We examined the effect of asphyxia on cardiovascular responses, on sympathetic vertebral nerve activity (VNA) and nitric oxide (NO) formation in the RVLM, on hemodynamics, and on plasma concentrations of catecholamines, blood gas partial pressures and carbohydrate metabolites. Using 16 anesthetized cats we found that the systemic arterial pressure (SAP), VNA, NO formation and the release of plasma catecholamine components of norepinephrine and epinephrine were increased during asphyxia. The onset of NO production was significantly earlier than that of SAP and VNA. The venous partial pressure of O2 decreased, while the partial pressure of CO2 increased. Furthermore, metabolism of glucose and lactate increased, as did the blood concentrations of white and red blood cells, hemoglobin and platelets. Thus, asphyxia increased SAP, VNA and NO formation. It increased the plasma catecholamines, blood gases, carbohydrate metabolites and blood cells.  相似文献   

20.
This study tested the hypothesis that changes in photoperiod alter plasma catecholamine concentrations in the rhesus monkey during late gestation. Twelve chronically catheterized pregnant rhesus macaques were acclimated to a 12-h photoperiod (lights-on, 0700-1900 h). Under the control L:D cycle, blood samples were collected at 3-h intervals over 24 h for catecholamine analysis. Plasma concentrations (mean +/- SEM, pg/ml) ranged from 678 +/- 90 to 928 +/- 142 for norepinephrine; 230 +/- 22 to 631 +/- 141 for epinephrine; and 282 +/- 70 to 1090 +/- 362 for dopamine. A diurnal rhythm was observed in epinephrine with peak concentrations during lights-on (0900-1800 h; p less than 0.05, compared to lights-off). After the first sampling protocol, the animals were divided equally between two groups: phase shift, in which lights-on was shifted 11 h (2000-0800 h) and constant light, with lights on continuously. After the phase shift, a parallel shift in the plasma epinephrine rhythm was noted, with peak levels observed between 2200 and 0700 h (p less than 0.05). Constant light abolished the rhythm in epinephrine, with an overall reduction in mean basal levels of all three catecholamines. Daily melatonin infusions (0.2 micrograms/kg/h, 1900-0630 h) under constant light failed to restore the epinephrine rhythm or to return basal catecholamine concentrations to control photoperiod levels. These data suggest that photoperiod entrains the rhythm in epinephrine secretion, but the rhythm is ablated under constant conditions. Further, melatonin does not appear to play a role in the regulation of catecholamine secretion in the pregnant rhesus macaque.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号