首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Osmotin and osmotin-like proteins are stress proteins belonging to the plant PR-5 group of proteins induced in several plant species in response to various types of biotic and abiotic stresses. We report here the overexpression of tobacco osmotin in transgenic mulberry plants under the control of a constitutive promoter (CaMV 35S) as well as a stress-inducible rd29A promoter. Southern analysis of the transgenic plants revealed the stable integration of the introduced genes in the transformants. Real-time PCR analysis provided evidence for the expression of osmotin in the transgenic plants under both the constitutive and stress-inducible promoters. Transgenic plants with the stress-inducible promoter were observed to better tolerate salt and drought stress than those with the constitutive promoter. Transgenic plants when subjected to simulated salinity and drought stress conditions showed better cellular membrane stability (CMS) and photosynthetic yield than non-transgenic plants under conditions of both salinity and drought stress. Proline levels were very high in transgenic plants with the constitutive promoter relative to those with the stress-inducible promoter. Fungal challenge undertaken with three fungal species known to cause serious losses to mulberry cultivation, namely, Fusarium pallidoroseum, Colletotrichum gloeosporioides and Colletotrichum dematium, revealed that transgenic plants with osmotin under control of the constitutive promoter had a better resistance than those with osmotin under the control of the stress-inducible promoter. Evaluation in next generation was undertaken by studying bud break in transgenic and non-transgenic plants under simulated drought (2% polyethylene glycol) and salt stress (200 mM NaCl) conditions. The axillary buds of the selected transgenic lines had a better bud break percentage under stressed conditions than buds from non-transgenic mulberry lines. A biotic assay with Bombyx mori indicated that osmotin protein had no undesirable effect on silkworm rearing and feeding. We therefore conclude that 35S transgenic plants are better suited for both abiotic stress also biotic challenges (fungal), while the rd29A transgenic plants are more responsive to drought.  相似文献   

2.
DNA cassette containing an AtDREB1A cDNA and a nos terminator, driven by a cauliflower mosaic 35S promoter, or a stress-inducible rd29A promoter, was transformed into the ground cover chrysanthemum (Dendranthema grandiflorum) ‘Fall Color’ genome. Compared with wild type plants, severe growth retardation was observed in 35S:DREB1A plants, but not in rd29A:DREB1A plants. RT-PCR analysis revealed that, under stress conditions, the DREB1A gene was over-expressed constitutively in 35S:DREB1A plants, but was over-expressed inductively in rd29A:DREB1A plants. The transgenic plants exhibited tolerance to drought and salt stress, and the tolerance was significantly stronger in rd29A:DREB1A plants than in 35S:DREB1A plants. Proline content and SOD activity were increased inductively in rd29A:DREB1A plants than in 35S:DREB1A plants under stress conditions. These results indicate that heterologous AtDREB1A can confer drought and salt tolerance in transgenic chrysanthemum, and improvement of the stress tolerance may be related to enhancement of proline content and SOD activity.  相似文献   

3.
DNA cassette containing an AtDREB1A cDNA and a nos terminator, driven by a cauliflower mosaic 35S promoter, or a stress-inducible rd29A promoter, was transformed into the ground cover chrysanthemum (Dendranthema grandiflorum) ‘Fall Color’ genome. Compared with wild type plants, severe growth retardation was observed in 35S:DREB1A plants, but not in rd29A:DREB1A plants. RT-PCR analysis revealed that, under stress conditions, the DREB1A gene was over-expressed constitutively in 35S:DREB1A plants, but was over-expressed inductively in rd29A:DREB1A plants. The transgenic plants exhibited tolerance to drought and salt stress, and the tolerance was significantly stronger in rd29A:DREB1A plants than in 35S:DREB1A plants. Proline content and SOD activity were increased inductively in rd29A:DREB1A plants than in 35S:DREB1A plants under stress conditions. These results indicate that heterologous AtDREB1A can confer drought and salt tolerance in transgenic chrysanthemum, and improvement of the stress tolerance may be related to enhancement of proline content and SOD activity.  相似文献   

4.
5.
The constitutive and drought-induced activities of the Arabidopsis thaliana RD29A and RD29B promoters were monitored in soybean (Glycine max (L.) Merr.] via fusions with the visual marker gene β-glucuronidase (GUS). Physiological responses of soybean plants were monitored over 9 days of water deprivation under greenhouse conditions. Data were used to select appropriate time points to monitor the activities of the respective promoter elements. Qualitative and quantitative assays for GUS expression were conducted in root and leaf tissues, from plants under well-watered and dry-down conditions. Both RD29A and RD29B promoters were significantly activated in soybean plants subjected to dry-down conditions. However, a low level of constitutive promoter activity was also observed in both root and leaves of plants under well-watered conditions. GUS expression was notably higher in roots than in leaves. These observations suggest that the respective drought-responsive regulatory elements present in the RD29X promoters may be useful in controlling targeted transgenes to mitigate abiotic stress in soybean, provided the transgene under control of these promoters does not invoke agronomic penalties with leaky expression when no abiotic stress is imposed.  相似文献   

6.
Soil salinity is a serious worldwide problem. To improve the salt tolerance of plants, an increasing number of genes related to abiotic stress have been recently expressed by genetic engineers. In the present study, the successful introduction into tobacco of isopentenyl transferase (IPT) from Agrobacterium tumefaciens via Agrobacterium-mediated transformation is reported. A stress-inducible genetic construct was cloned using IPT under the control of the stress-inducible promoter rd29A from Arabidopsis thaliana. A total of 40 putative transgenic plant lines were obtained from independent Kan-resistant shoots. IPT integration into the tobacco genome was confirmed by polymerase chain reaction (PCR) and Southern blot analyses. Four positive transgenic lines each with a single T-DNA insertion were obtained. Real-time PCR confirmed a marked increase in IPT expression in young tobacco plants harboring rd29A-IPT after short-term exposure to salt. Ectopic IPT overexpression IPT under the control of the stress-inducible rd29A promoter resulted in significantly enhanced tolerance to salt stress. No obvious adverse effect on growth and development was observed in transgenic plants. Two IPT transgenic lines, T10 and T25, were chosen for further physiological analyses. The leaves of transgenic tobacco plants showed significantly prolonged chlorophyll retention times under a 2-week salt-stress treatment (150?mmol?L?1). In contrast, the leaves of the non-transformed plants (wild type) gradually senesced under the same condition. After re-watering for 2?weeks, chlorophyll in transgenic plants increased to a level comparable with that in the unstressed plants. On the other hand, the level in the non-transgenic control still remained low. Malondialdehyde (MDA) levels increased in both transgenic plants and the control after salt stress. However, the MDA levels only mildly increased in transgenic plants, and dramatically increased in the control. After re-watering for 7?days, MDA in transgenic plants returned to normal, whereas the level in the control remained high. Superoxide dismutase activity also similarly increased in transgenic plants during salt stress, and returned to normal after re-watering. These results indicate that enhanced reactive oxygen species scavenging capability may play a significant role in acquiring tolerance to abiotic stress.  相似文献   

7.
Salt stress has been frequently studied in its first osmotic phase. Very often, data regarding the second ionic phase is missing. It has also been suggested that Putrescine or/and Spermine could be responsible for salt resistance. In order to test this hypothesis under long-term salt stress, we obtained Arabidopsis thaliana transgenic plants harboring pRD29A::oatADC or pRD29A::GUS construction. Although Putrescine was the only polyamine significantly increased after salt acclimation in pRD29A::oatADC transgenic lines, this rendered in no advantage to this kind of stress. The higher Spermine levels found in WT and transgenic lines when compared to control conditions along with no increment on Putrescine levels in WT plants under salt acclimation, leads us to analyze Spermine effect on pADC1 and pADC2 expression. Increasing levels of this polyamine inhibits these promoters expression while enhances pRD29A expression, making Spermine the polyamine responsible for salt acclimation, and the transgenic lines developed in this work suitable for studying Putrescine roles in conditions where its biosynthesis would be inhibited in the WT genotype.Key words: arginine decarboxilase, salt acclimation, polyamines, putrescine, spermine, salt overlay sensitive mutants  相似文献   

8.
The engineering of stomatal activity under water deficit through guard cell-specific gene regulation is an effective approach to improve drought tolerance of crops but it requires an appropriate promoter(s) inducible by water deficit in guard cells. We report that a chimeric promoter can induce guard cell-specific gene expression under water deficit. A chimeric promoter, p4xKST82-rd29B, was constructed using a tetramer of the 82 bp guard cell-specific regulatory region of potato KST1 promoter (4xKST82) and Arabidopsis dehydration-responsive rd29B promoter. Transgenic tobacco plants carrying p4xKST82-rd29B:mGFP-GUS exhibited GUS expression in response to water deficit. GUS enzyme activity of p4xKST82-rd29B:mGFP-GUS transgenic plants increased ~300 % by polyethylene glycol treatment compared to that of control plant but not by abscisic acid (ABA), indicating that the p4xKST82-rd29B chimeric promoter can be used to induce the guard cell-specific expression of genes of interest in response to water deficit in an ABA-independent manner.  相似文献   

9.
Summary We characterized the expression of genes that correspond to a cDNA clone, RD29, which is induced by desiccation, cold and high-salt conditions in Arabidopsis thaliana. Northern analysis of desiccation-induced expression revealed a two-step induction process. Early induction occurs within 20 min and secondary induction occurs 3 h after the start of desiccation. Exogenous abscisic acid (ABA) induces RD29 mRNA within 3 h. Two genes corresponding to RD29, rd29A and rd29B, are located in tandem in an 8 kb region of the Arabidopsis genome and encode hydrophilic proteins. Desiccation induces rd29A mRNA with two-step kinetics, while rd29B is induced only 3 h after the start of desiccation. The expression of both genes is stimulated about 3 h after application of ABA. It appears that rd29A has at least two cis-acting elements, one involved in the ABA-associated response to desiccation and the other induced by changes in osmotic potential. The -glucuronidase (GUS) reporter gene driven by the rd29A promoter was induced at significant levels by desiccation, cold, high-salt conditions and ABA in both transgenic Arabidopsis and tobacco. Histochemical analysis of GUS activity revealed that the rd29A promoter functions in almost all the organs and tissues of vegetative plants during water deficiency.  相似文献   

10.
11.
12.
启动子位于转录起始位点上游并能特异性地结合RNA聚合酶,其作为调控序列驱动外源基因在异源植物中表达,从而实现转基因的高效性,具有时空表达特异性的启动子对获得有效转基因植物及产物具有重要意义。为了解种皮特异启动子的表达模式,该研究基于前期报道的序列,通过同源克隆的方法分别从大麦和油菜中克隆获得Gerb和Bntt两个种皮特异性启动子,并对其进行生物信息学分析,构建了Gerb::GUS和Bntt::GUS植物表达载体并转化拟南芥,通过组织化学染色观察了GUS的表达情况。结果表明:两种启动子序列中都含有多拷贝种皮特异表达启动子元件以及多种胁迫诱导响应元件;转基因拟南芥幼苗期,大麦Gerb种皮特异启动子驱动GUS全株表达且子叶和下胚轴较真叶和根中表达量高;油菜Bntt种皮特异启动子表达较弱;成株期,Gerb在不同组织(叶片、茎、花序和角果)中均有表达,未显示组织特异性;Bntt仅在叶片及角果维管束中有微弱表达。在各种非生物胁迫下,Gerb表达模式未发生显著变化,而Bntt仅在盐胁迫下显示很强的角果和种子特异性表达,其他胁迫未见明显表达。以上结果显示,大麦种皮特异性启动子Gerb和油菜种皮特异性启动子Bntt在时间和空间表达模式上存在差异,这对今后选择种皮特异启动子具有参考作用,但其具体机制仍需进一步研究验证。  相似文献   

13.
LEA1 gene from Glycine max can be expressed in late-embryo stage of plants, and respond to salinity and dehydration stress. To elucidate the mechanism for stress tolerance and high expression in seeds, we isolated and characterized the promoter of LEA1 gene (EQ, 1997 bp) starting the 5′LEA1 coding region. A deletion mutant of EQ promoter (ED) and the full length promoter (EQ) were fused to GUS reporter gene and transformed into the tobacco leaf discs. The results indicated that expression of the reporter gene (GUS) could be regulated by EQ promoter, and was stronger than the mutant under the stress conditions. Also, the expression level of GUS gene driven by EQ promoter in transgenic tobacco seeds was significantly higher than that by the mutant promoter, which meant that it had a better tissue-specificity. Therefore, the active domain for the promoter was located between ?1997 and ?1000 bp. Additionally, the activity of EQ promoter was 2.1-, 3.3- and 0.4- times stronger than the activity of promoter CaMV35S under salt (24 h), drought (10 h) or ABA (24 h), respectively. Meanwhile, the GUS activity of EQ promoter in seeds was 1.8-fold stronger compared to the promoter CaMV35S. In summary, the new promoter (EQ) is bi-functional, stress-inducible and seed-specific. These findings provide a further understanding for the regulation of LEA1gene expression, and suggest a new way for improving seed quality under saline and alkaline land.  相似文献   

14.
Strong constitutive promoters, such as CaMV35S, are widely used for plant transformation, but undesirable phenotypic changes have been reported when used to drive biotic stress tolerance and/or for modifying lignin content. The promoter of the eucalyptus cinnamoyl CoA reductase (CCR), a key enzyme of the lignin biosynthetic pathway, was shown to be preferentially expressed in vascular tissues both in herbaceous and woody transgenic plants but not eucalyptus. In this work, we transformed Eucalyptus globulus with the EgCCR promoter governing both β-glucuronidase (GUS) and GFP activity patterns. No statistical differences were found between the survival rate and percentage of GUS positive shoots between eucalyptus transformed with either the constitutive CaMV35S or with the EgCCR promoter. The EgCCR transformed plantlets exhibited high GUS expression levels associated with the vascular tissues opening the possibility of targeting vascular-associated traits such as lignin content or vascular pathogen resistance in adult elite plants of eucalyptus while avoiding the undesirable pleiotropic effects caused by strong constitutive promoters.  相似文献   

15.
16.
17.
18.
19.
Cotton fiber is the basic raw material used in the textile industry. The fiber yield is severely affected by a number of biotic and abiotic factors, such as insects, viruses, drought and salinity. Drought is a major factor that negatively impacts the yields and quality of cotton fiber. Promoters that respond to stress conditions and up-regulate transgenes are of great significance in crop improvement using genetic engineering approach. Although dehydration-responsive gene promoters, such as RD22 and RD29 from Arabidopsis, have been characterized, not much information is available regarding stress-responsive promoters from Gossypium hirsutum, which accounts for approximately 90 % of cultivated cotton. In this study, we isolated and characterized the promoter of a dehydration-responsive gene (GhRDL1) from G. hirsutum using Agrobacterium-mediated transformation in tobacco and cotton. Transgenic tobacco plants expressing uidA under the GhRDL1 promoter showed GUS activity in the trichomes. Also, GUS expression was observed to some extent in leaf, stem and floral tissues. Similar results were observed when GhRDL1 promoter was tested in transgenic cotton. Most importantly, our study showed that the GhRDL1 promoter is up-regulated in the presence of polyethylene glycol that creates water stress under invitro conditions. Thus, the GhRDL1 promoter may find its usefulness in the development of stress-tolerant cotton and other crop species in the near future.  相似文献   

20.
The glyoxalase system catalyzes the conversion of cytotoxic methylglyoxal to d-lactate via the intermediate S-d-lactoylglutathione. It comprises two enzymes, Glyoxalase I (Gly I) and Glyoxalase II (Gly II), and reduced glutathione which acts as a cofactor by anchoring the substrates in the active sites of the two enzymes. The overexpression of both Gly I and Gly II, either alone or in combination, has earlier been reported to confer tolerance to multiple abiotic stresses. In the present study, we sought to evaluate the consequences of constitutive and stress-induced overexpression of Gly I on the performance and productivity of plants. Towards this end, several Gly I transgenic Brassica juncea lines (designated as R and S lines) were generated in which the glyoxalase I (gly I) gene was expressed under the control of either a stress-inducible rd29A promoter or a constitutive CaMV 35S promoter. Both the R and S lines showed enhanced tolerance to salinity, heavy metal, and drought stress when compared to untransformed control plants. However, the S lines showed yield penalty under non-stress conditions while no such negative effect was observed in the R lines. Our results indicate that the overexpression of the gly I gene under the control of stress-inducible rd29A promoter is a better option for improving salt, drought and heavy metal stress tolerance in transgenic plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号