首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
In protection mutualisms, one mutualist defends its partner against a natural enemy in exchange for a reward, usually food or shelter. For both partners, the costs and benefits of these interactions often vary considerably in space because the outcome (positive, negative or neutral) depends on the local abundance of at least three species: the protector, the beneficiary of protection and the beneficiary's natural enemy. In Gossypium thurberi (wild cotton), ants benefit nutritionally from the plant's extrafloral nectaries and guard plants from herbivores. Experimentally altering the availability of both ants and extrafloral nectar in three populations demonstrated that the mutualism is facultative, depending, in part, on the abundance of ants and the level of herbivore damage. The species composition of ants and a parasitic alga that clogs extrafloral nectaries were also implicated in altering the outcome of plant-ant interactions. Furthermore, experimental treatments that excluded ants (the putative selective agents) in combination with phenotypic selection analyses revealed that selection on extrafloral nectary traits was mediated by ants and, importantly, varied across populations. This work is some of the first to manipulate interactions experimentally across multiple sites and thereby document that geographically variable selection, mediated by a mutualist, can shape the evolution of plant traits.  相似文献   

2.
Studies of ant–plant relationships elucidate how top-down effects of the third trophic level can affect the biomass, richness, and/or species composition of plants. Although widespread in the neotropics, few studies have so far examined the direct effects of ants on plant fitness. Here, through experimental manipulation (ant-exclusion) under natural conditions, we examined the effect of ant visitation to extrafloral nectaries on leaf herbivory and fruit set in Chamaecrista debilis in the Brazilian savanna. As opposed to other Chamaecrista species, our results showed that visiting ants (15 species) significantly reduce herbivory and increase fruit set by more than 50% compared to plants from which ants were excluded. This mutualistic system is facultative in nature, and corroborates the potential beneficial role of exudate-feeding ants as anti-herbivore agents of tropical plants.  相似文献   

3.
Thousands of plant species throughout tropical and temperate zones secrete extrafloral nectar to attract ants, whose presence provides an indirect defense against herbivores. Extrafloral nectaries are located close to flowers and may modify competition between ants and pollinators. Here, we used Lima bean (Phaseolus lunatus L.) to study the plants interaction between ants and flower visitors and its consequences for plant fitness. To test these objectives, we carried out two field experiments in which we manipulated the presence of ants and nectar production via induction with jasmonic acid (JA). We then measured floral and extrafloral nectar production, the number of patrolling ants and flower visitors as well as specific plant fitness traits. Lima bean plants under JA induction produced more nectar in both extrafloral nectaries and flowers, attracted more ants and produced more flowers and seeds than non‐induced plants. Despite an increase in floral nectar in JA plants, application of this hormone had no significant effects on flower visitor attraction. Finally, ant presence did not result in a decrease in the number of visits, but our results suggest that ants could negatively affect pollination efficiency. In particular, JA‐induced plants without ants produced a greater number of seeds compared with the JA‐treated plants with ants.  相似文献   

4.
Rios RS  Marquis RJ  Flunker JC 《Oecologia》2008,156(3):577-588
The benefits of ant–plant–herbivore interactions for the plant depend on the abundance of ants and herbivores and the selective pressures these arthropods exert. In plants bearing extrafloral nectaries (EFN), different mean trait values may be selected for by different populations in response to local herbivore pressure, ultimately resulting in the evolution of differences in plant traits that attract ants as defensive agents against herbivory. To determine if variation in traits that mediate ant–plant interactions reflect herbivore selective pressures, we quantified intra- and inter-population variation in plant traits for eight populations of the EFN-bearing annual Chamaecrista fasciculata (Michx.) (Fabaceae). Censuses in rural and urban areas of Missouri and Illinois (USA) showed population differences in ant attendance and herbivore pressure. Seeds were collected from each population, and plants were grown in a common greenhouse environment to measure sugar production, nectar volume and composition, EFN size and time of emergence, leaf pubescence, and leaf quality throughout plant development. Populations varied mainly in terms of nectary size, sugar production, and nectar volume, but to a lesser degree in leaf pubescence. Populations of C. fasciculata within urban areas (low in insect abundance) had small nectaries and the lowest nectar production. There was a positive correlation across populations between herbivore density and leaf damage by those herbivores on the one hand and sugar production and nectar volume on the other. These results, in conjunction with lack of evidence for maternally based environmental effects, suggest that population differences in herbivore damage have promoted differential evolution of EFN-related traits among populations. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
Cost-benefit models of the evolution of mutualism predict that the current state of mutualism results from trade-offs between fitness costs of mutualist traits and the fitness benefits of association. We test the assumptions of such models by measuring patterns of natural selection on a mutualist trait, extrafloral nectar production in Chamaecrista fasciculata. Selection was measured on plants from which ants had been excluded (removing the mutualist benefit of the trait), from which all insects had been excluded (removing costs of herbivory in addition to mutualist benefits), and unmanipulated plants (where both costs and benefits were present). Selection analysis based on half-sibling-mean regressions of fitness on the trait revealed no evidence of costs of extrafloral nectar production in the absence of all insects or in the absence of ants. However, examination of the selective surfaces for these treatments suggest that costs of nectar production may exist and are exacerbated by the presence of herbivory. In the presence of ants, natural selection favors high extrafloral nectar production, consistent with a fitness benefit to this mutualist trait in the presence of the mutualist partner. In this study, the interaction of costs and benefits did not produce an evolutionary optimum for the trait within the range of variation observed, suggesting that application of a cost-benefit framework to this trait will benefit from considering the influence of temporal and spatial variation on the quality of costs and benefits.  相似文献   

6.
Recent research has shown that many mutualistic communities display non-random structures. While our understanding of the structural properties of mutualistic communities continues to improve, we know little of the biological variables resulting in them. Mutualistic communities include those formed between ants and extrafloral (EF) nectar-bearing plants. In this study, we examined the contributions of plant and ant abundance, plant and ant size, and plant EF nectar resources to the network structures of nestedness and interaction frequency of ant–plant networks across five sites within one geographic locality in the Sonoran Desert. Interactions between ant and plant species were largely symmetric. That is, ant and plant species exerted nearly equivalent quantitative interaction effects on one another, as measured by their frequency of interaction. The mutualistic ant–plant networks also showed nested patterns of structure, in which there was a central core of generalist ant and plant species interacting with one another and few specialist–specialist interactions. Abundance and plant size and ant body size were the best predictors of symmetric interactions between plants and ants, as well as nestedness. Despite interactions in these communities being ultimately mediated by EF nectar resources, the number of EF nectaries had a relatively weak ability to explain variation in symmetric interactions and nestedness. These results suggest that different mechanisms may contribute to structure of bipartite networks. Moreover, our results for ant–plant mutualistic networks support the general importance of species abundances for the structure of species interactions within biological communities.  相似文献   

7.
F. F. Xu  J. Chen 《Insectes Sociaux》2010,57(3):343-349
In facultative ant–plant interactions, ants may compete with each other for food provided by extrafloral nectar (EFN) plants. We studied resource competition and plant defense in a guild of ants that use the same EFN resource provided by two species of Passiflora in a seasonal rain forest in tropical China. At least 22 ant species were recorded using the EFN resource, although some of those species were rare. Among these ants, Paratrechina sp.1 and Dolichoderus thoracicus were more aggressive than other species. Ant aggressiveness measured as ant behavioral dominance index (BDI) was positively correlated with ant abundance on the Passiflora species studied. Ant BDI was also positively correlated to the protection that ants provided against herbivory. In Passiflora siamica, the number of workers patrolling on the plants did negatively correlate with average leaf loss per plant. We conclude that in this facultative Passiflora–ant system, plant defense upon herbivore was indeed influenced by the total number of ants present on plant and the aggressiveness of these ants.  相似文献   

8.
Mutualists have been suggested to play an important role in the assembly of many plant and animal communities, but it is not clear how this depends on environmental factors. Do, for instance, natural disturbances increase or decrease the role of mutualism? We focused on entire guilds of mutualists, studying seed‐dispersing ants and ant‐dispersed plants along gradients of inundation disturbances. We first studied how abundance and richness of the mutualists, relative to non‐mutualists, change along 35 small‐scale gradients of inundation disturbances. We found that at disturbed sites, mutualistic plant species, those that reproduce by seeds dispersed by ants, increased in abundance and in consequences in richness, relative to other herbaceous plants. In contrast, we found that among the epigeic arthropods the abundance of mutualists declined, even more so than other arthropods. Correspondingly, distributions of plant and animal mutualists became increasingly discordant at disturbed sites: most plant mutualists were spatially separated from most animal mutualists. We finally found that high abundances of plant mutualists did not translate into a high nutrition service rendered to ants: at disturbed sites, many of the plants of ant‐dispersed species did not produce seeds, which coincided with a decline in seed dispersal by ants and a changing searching behavior of the ants. Overall, the small‐scale natural disturbances we studied were correlated to a major change in the assembly of mutualist guilds. However, the correlation was often opposite between interacting plant and animal mutualist guilds and may thus reduce the potential interaction between them.  相似文献   

9.
We reviewed the evidence on the role of ants as plant biotic defenses, by conducting meta-analyses for the effects of experimental removal of ants on plant herbivory and fitness with data pooled from 81 studies. Effects reviewed were plant herbivory, herbivore abundance, hemipteran abundance, predator abundance, plant biomass and reproduction in studies where ants were experimentally removed (n = 273 independent comparisons). Ant removal exhibited strong effects on herbivory rates, as plants without ants suffered almost twice as much damage and exhibited 50% more herbivores than plants with ants. Ants also influenced several parameters of plant fitness, as plants without ants suffered a reduction in biomass (−23.7%), leaf production (−51.8%), and reproduction (−24.3%). Effects were much stronger in tropical regions compared to temperate ones. Tropical plants suffered almost threefold higher herbivore damage than plants from temperate regions and exhibited three times more herbivores. Ant removal in tropical plants resulted in a decrease in plant fitness of about 59%, whereas in temperate plants this reduction was not statistically significant. Ant removal effects were also more important in obligate ant–plants (=myrmecophytes) compared to plants exhibiting facultative relationships with hemiptera or those plants with extrafloral nectaries and food bodies. When only tropical plants were considered and the strength of the association between ants and plants taken into account, plants with obligate association with ants exhibited almost four times higher herbivory compared to plants with facultative associations with ants, but similar reductions in plant reproduction. The removal of a single ant species increased plant herbivory by almost three times compared to the removal of several ant species. Altogether, these results suggest that ants do act as plant biotic defenses, but the effects of their presence are more pronounced in tropical systems, especially in myrmecophytic plants. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. N. P. de U. Barbosa, L. Diniz, Y. Oki and F. Pezzini contributed equally to this work and are listed in alphabetical order.  相似文献   

10.
Argentine ants displace floral arthropods in a biodiversity hotspot   总被引:2,自引:1,他引:1  
Argentine ant (Linepithema humile (Mayr)) invasions are often associated with the displacement of ground‐dwelling arthropods. Argentine ant invasions can also exert other effects on the community through interactions with plants and their associated arthropods. For example, carbohydrate resources (e.g. floral or extrafloral nectar) may influence foraging behaviour and interactions among ants and other arthropods. In South Africa's Cape Floristic Region, Argentine ants and some native ant species are attracted to the floral nectar of Leucospermum conocarpodendron Rourke (Proteaceae), a native tree that also has extrafloral nectaries (EFNs). Despite having relatively low abundance in pitfall traps, Argentine ants visited inflorescences more frequently and in higher abundance than the most frequently observed native ants, Camponotus spp., though neither native nor Argentine ant floral foraging was influenced by the EFNs. Non‐metric multidimensional scaling revealed significant dissimilarity in arthropod communities on inflorescences with Argentine ants compared to inflorescences with native or no ants, with Coleoptera, Diptera, Hymenoptera, Arachnida, Orthoptera, and Blattaria all being underrepresented in inflorescences with Argentine ants compared to ant‐excluded inflorescences. Native honeybees (Apis mellifera capensis Eschscholtz) spent 75% less time foraging on inflorescences with Argentine ants than on inflorescences without ants. Neither Argentine ant nor native ant visits to inflorescences had a detectable effect on seed set of Le. conocarpodendron. However, a pollen supplementation experiment revealed that like many other proteas, Le. conocarpodendron is not pollen‐limited. Flower predation was negatively associated with increased ant visit frequency to the inflorescences, but did not differ among inflorescences visited by native and Argentine ants. Displacement of arthropods appears to be a consistent consequence of Argentine ant invasions. The displacement of floral arthropods by Argentine ants may have far‐reaching consequences for this biodiversity hotspot and other regions that are rich in insect‐pollinated plants.  相似文献   

11.
Ascertaining the costs and benefits of mutualistic interactions is important for predicting their stability and effect on community dynamics. Despite widespread designation of the interaction between ants and extrafloral nectaries (EFNs) as a mutualism and over 100 years of studies on ant benefits to plants, the benefits to ants have never been experimentally quantified. The success of invasive ants is thought to be linked to the availability of carbohydrate-rich resources, though reports of invasive ant visits to EFNs are mixed. In two laboratory experiments, we compared worker survival of one native (Iridomyrmex chasei) and two invasive ant species (Linepithema humile and Pheidole megacephala) exposed to herbivorized or non-herbivorized EFN-bearing plants (Acacia saligna) or positive and negative controls. We found that non-herbivorized plants did not produce any measurable extrafloral nectar, and ants with access to non-herbivorized plants had the same survival as ants with access to an artificial plant and water (unfed ants). Ants given herbivorized plants had 7–11 times greater worker survival relative to unfed ants, but there were no differences in survival between native and invasive ants exposed to herbivorized plants. Our results reveal that ants cannot induce A. saligna extrafloral nectar production, but workers of both native and invasive ant species can benefit from extrafloral nectar as much as they benefit from sucrose.  相似文献   

12.
《Flora》2014,209(5-6):244-249
Plants and ants have widespread relationships that are commonly mediated by the offer of extrafloral nectar (EFN) to ants that protect plants against herbivores. However, these ant–plant interactions are highly facultative and vary in time and space, mainly depending on the characteristics of the ant species, such as density and aggressiveness. In general, the outcomes of these relationships are positive, but in some cases, the presence of ants is neutral or negative to plants. Some studies suggest that aggressive attacks or merely the presence of ants might reduce the visitation rate of insect pollinators, such as bees, to flowers. We used experimental manipulation in natural conditions to test the hypothesis that ants on flowers of EFN-bearing plants might be recognized as a danger by pollinators (bees) and reduce the plant fitness (fruit-set). Our results show that the avoidance that ant bodyguard species feeding on EFNs of the Malpighiaceae Heteropterys pteropetala cause in pollinators, is not enough to decrease plant fruit-set. However, ants were indeed identified as a danger to pollinators as hypothesized and as suggested for other plant–pollinator relationships: flowers with plastic ants placed on the petals produced significantly fewer fruits than other treatments (using instead a plastic circle) or the control (natural condition). Indirect costs of facultative mutualisms are the focus of few studies and have been performed only rarely in the Neotropics; our results show that mutualism must be considered in multitrophic interactions studies for a better understanding of the functioning of the system.  相似文献   

13.
Herbivores are attracted to young shoots and leaves because of their tender tissues. However, in extrafloral nectaried plants, young leaves also attract patrolling ants, which may chase or prey on herbivores. We examined this scenario in extrafloral nectaried shrubs of Banisteriopsis malifolia resprouting after fire, which promoted both the aseasonal production of leaves and the activity of extrafloral nectaries (EFNs). Results were compared between resprouting (burned) and unburned control plants. The aggressive ant species Camponotus crassus and the herbivorous thrips Pseudophilothrips obscuricornis were respectively rapidly attracted to resprouting plants because of the active EFNs and their less sclerophyllous leaves. The abundance of these insects was almost negligible in the control (unburned) shrubs. Ants failed to protect B. malifolia, as no thrips were preyed upon or injured by ants in resprouting plants. Consequently, on average, 37 % of leaves from resprouting shrubs had necrosis marks. Upon contact with ants, thrips released small liquid droplets from their abdomen, which rapidly displaced ants from the surroundings. This study shows that P. obscuricornis disrupted the facultative mutualism between C. crassus and B. malifolia, since ants received extrafloral nectar from plants, but were unable to deter herbivore thrips.  相似文献   

14.
Ness JH 《Oecologia》2003,134(2):210-218
Inducible anti-herbivore defenses are found within many plant taxa, but there are fewer examples of inducible indirect defenses that incorporate the third trophic level. This study links caterpillar foraging, herbivore-induced changes in extrafloral nectar production, and the attraction of ants to vulnerable leaves and plants. Catalpa bignonioides Walter (Bignoniaceae) uses extrafloral nectar to attract ant (Forelius pruinosus(Roger)) bodyguards in response to Ceratomia catalpae (Boisduval)(Lepidoptera: Sphingidae) herbivory. Ant density per leaf increased with the sugar content of extrafloral nectar excreted by sampled leaves, suggesting that increased nectar production could attract or retain beneficial arthropods. The masses of sucrose, fructose, glucose and all three sugars combined in the extrafloral nectar increased two- to three-fold on attacked leaves within 36 h of the experimental addition of caterpillars. Production rates for neighboring non-attacked leaves and non-attacked leaves on adjacent plants did not differ over the same time period. Ant attendance at caterpillar-attacked leaves increased two- to three-fold within 24 h of herbivory, relative to attendance at neighboring, undamaged leaves. These attacked leaves attracted the fewest ants prior to the onset of herbivory, suggesting the specialist caterpillar may avoid or be excluded from leaves with more bodyguards. The removal of leaf tissue with scissors did not alter ant attendance at damaged leaves. Mean ant attendance per leaf on attacked plants increased 6- to 10-fold after caterpillar introduction, relative to adjacent unattacked plants. The plant's biotic defense thus operates at two scales; the number of bodyguards (ant workers) on the plant increases after attack, and this increased workforce is biased towards attacked leaves within plants. Fewer caterpillars remained on plants that attracted greater numbers of ants, suggesting these bodyguards benefit the plant.  相似文献   

15.
Ant‐lycaenid associations range from mutualism to parasitism and the caterpillars of some species of lycaenids are reported to enter ant nests for shelter, diapause, or pupation. The present study aimed to examine the nature of the association between Euchrysops cnejus (Fabricius) (Lepidoptera: Lycaenidae) and Camponotus compressus (Fabricius) (Hymenoptera: Formicidae) worker ants on the extrafloral nectary‐bearing cowpea plant, Vigna unguiculata (L.) Walp. (Fabaceae). The abundance patterns of the ants and the lycaenid caterpillars together with the spatial patrolling patterns of the ants on the plants revealed that ant abundance increased with the occurrence of the lycaenid caterpillars and the ants preferred the lycaenids over the extrafloral nectar. Camponotus compressus worker ants constructed a shelter at the cowpea plant base after interaction with one or more lycaenid caterpillar(s) and tended the caterpillars and pupae till the emergence of the butterfly. The ant‐constructed shelters (ACSs) inhabited by the minor caste workers (13 ± 1.3 ants per ACS), were utilized by the caterpillars to undergo pupation. The ants confined their activities predominantly to tending the pod‐feeding caterpillars and the solitary pupa within each ACS. It appears that the behavior of the tending worker ants is modulated by the lycaenid vulnerable stages.  相似文献   

16.
Current evidence suggests that ant–plant relationships may influence species composition, abundance, and interactions at the community scale. The main resource that plants offer to ants is extrafloral nectar (EFN) and the major part of published studies shown benefits from ants to plants possessing EFNs. However, the complementary question of whether and how ants benefit from EFNs is rarely addressed. Here, we present the results of a long-term study to demonstrate whether EFN has a positive effect on ant colony fitness. We quantified colony growth rate, survival and the final weight of individuals as measures of benefit derived from EFN. Our results provide clear evidence that EFN can have a significant positive impact on the survivorship, growth and reproduction of the Myrmicinae Cephalotes pusillus. In fact, a diet rich in EFN (providing at least 30 cal per day) resulted in five times more individuals per colony, greater body weights, and more eggs. These results have shed new light on the relationships between ants and EFN-bearing plants such as in tropical and temperate systems. The ant C. pusillus is the first case in which we have firm evidence that EFN improves colony growth and development, corroborating more than 100 years of experimental evidence of benefits to plants in these widespread relationships.  相似文献   

17.
王庆  卢志兴  赵婧文  陈又清 《昆虫学报》2018,61(12):1430-1438
【目的】昆虫之间的互利关系和植物多样性在生态系统中具有重要的作用,本研究旨在探讨蚂蚁-紫胶虫互利关系的下行效应以及寄主植物多样性的上行效应对节肢动物群落各营养级的影响。【方法】试验样地位于云南省普洱市墨江县雅邑乡的人工紫胶林中。通过随机裂区试验方法,于2016年8月和9月分两次用手捡法、网扫法和震落法采集了蚂蚁-紫胶虫3种互利关系处理(有互利关系、无互利关系和自然对照)以及3种植物多样性处理(单一种植、2树种混植和3树种混植,分别代表植物多样性1, 2和3)下样地寄主植物上所有的节肢动物,并按照不同营养级将其分类。【结果】蚂蚁-紫胶虫互利关系会显著降低消费者多度[有互利关系(14.2±0.95)<自然对照(18.57±1.13)<无互利关系(23.27±1.38), (F=4.290, P=0.017)],植物多样性会显著提高消费者多度[植物多样性1(13.49±2.54)<植物多样性2(16.31±2.50)<植物多样性3(25.01±2.47), (F=56.03, P<0.001)];在两者的交互作用下,无论哪个植物多样性水平上,有互利关系处理的消费者多度都显著低于无互利关系处理的消费者多度 (F=6.850, P<0.001)。互利关系对捕食者多度无显著影响(F=1.277, P=0.284),植物多样性会显著增加捕食者多度[植物多样性1 (1.72±0.49) <植物多样性2 (3.42±0.54) <植物多样性3 (3.59±0.55), (F=10.976, P<0.001)],两者的交互作用对捕食者多度无显著影响(F=0.428, P=0.788)。互利关系和植物多样性会显著增加蚂蚁多度[自然对照(44.08±8.94) <有互利关系(324.82±65.35), (F=48.9, P<0.001)], [植物多样性1(86.31±12.51)<植物多样性3 (131.20±18.80) <植物多样性2(151.27±21.68), (F=137.85, P<0.001)], 两者的交互作用也会显著增加蚂蚁多度(F=80.31, P<0.001)。【结论】蚂蚁与紫胶虫的互利关系显著降低植物上的植食性害虫,对捕食者不产生显著作用,但显著提高蚂蚁多度;而植物多样性对节肢动物各营养级都有积极作用;两者会产生一定的联合作用,对各营养级产生不同的影响。  相似文献   

18.
Rudgers JA  Clay K 《Ecology letters》2008,11(8):831-840
Ecological theory holds that competition and predation are the most important biotic forces affecting the composition of communities. Here, we expand this framework by demonstrating that mutualism can fundamentally alter community and food web structure. In large, replicated field plots, we manipulated the mutualism between a dominant plant ( Lolium arundinaceum ) and symbiotic fungal endophyte ( Neotyphodium coenophialum ). The presence of the mutualism reduced arthropod abundance up to 70%, reduced arthropod diversity nearly 20%, shifted arthropod species composition relative to endophyte-free plots and suppressed the biomass and richness of other plant species in the community. Herbivorous arthropods were more strongly affected than carnivores, and for both herbivores and carnivores, effects of the mutualism appeared to propagate indirectly via organisms occurring more basally in the food web. The influence of the mutualism was as great or greater than previously documented effects of competition and predation on arthropod communities. Our work demonstrates that a keystone mutualism can significantly reduce arthropod biodiversity at a broad community scale.  相似文献   

19.
Plant‐provided foods for predatory arthropods such as extrafloral nectar and protein bodies provide indirect plant defence by attracting natural enemies of herbivores, enhancing top‐down control. Recently, ecologists have also recognised the importance of carrion as a food source for predators. Sticky plants are widespread and often entrap and kill small insects, which we hypothesised would increase predator densities and potentially affect indirect defence. We manipulated the abundance of this entrapped insect carrion on tarweed (Asteraceae: Madia elegans) plants under natural field conditions, and found that carrion augmentation increased the abundance of a suite of predators, decreased herbivory and increased plant fitness. We suggest that entrapped insect carrion may function broadly as a plant‐provided food for predators on sticky plants.  相似文献   

20.
Red imported fire ants, Solenopsis invicta, are generalist predators that can have major impacts on foliar arthropod communities in agricultural systems; however, their effects as predators at the soil surface have not been adequately characterized. We examined the contribution of fire ants to predation at the soil surface and in cotton foliage at two sites and over the course of two field seasons in Georgia, using egg masses of the beet armyworm, Spodoptera exigua. To assess interactions between fire ants and other arthropod species, we also measured the densities of edaphic predators and honeydew‐producing hemipterans at both sites. The sites occurred in different growing regions (Piedmont and Coastal Plain), and allowed us to characterize the importance of fire ants as predators under different climatic and soil conditions. Fire ant suppression decreased egg predation at both field sites, and predation by fire ants at the soil surface was equal to if not greater than that in cotton foliage. However, the impact of fire ants on predation varied between sites, likely due to differences in climate and the composition and activity of the extant arthropod communities. Our study also indicates that fire ant suppression is associated with decreases in the density of honeydew‐producing insects, and increasing abundance of whiteflies on the plants coincided with a decrease in egg predation at the soil surface. This finding suggests the mutualism between ants and whiteflies may lead to a shift in predation intensity from edaphic towards plant‐based food webs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号