首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Our previous results showed that sulfated tyrosines of thyroglobulin (Tg), the molecular support of thyroid hormonosynthesis, are involved in the hormonogenic process. Moreover, the consensus sequence required for tyrosine sulfation is present in most of the hormonogenic sites. These observations suggest that tyrosine sulfation might play a critical role in the hormonogenic process. In this paper we studied the putative sulfation of tyrosine 5 contained in the preferential hormonogenic site. Porcine thyrocytes were cultured with thyrotropin but without iodide to preserve the sulfation state of tyrosine 5 and then incubated or not with [35S]sulfate. Secreted Tg was purified and submitted to peptide sequence analysis which confirmed the known peptide sequence of the NH(2) extremity of Tg:NIFEYQV. The treatment of [35S]sulfate-labeled Tg by leucine aminopeptidase, which sequentially digested its amino-terminal extremity, released the same amino acids and further analysis by thin layer chromatography showed that the tyrosine was sulfated. We concluded that tyrosine 5 is sulfated but the role of sulfate group in the hormonogenic process remains to be elucidated.  相似文献   

2.
Post-translational processing of the precursor for rat gastrin yields products that include peptides phosphorylated at Ser96, amidated at Phe92, and sulfated at Tyr87 or Tyr103. The phosphorylation site is immediately adjacent to the processing point that gives rise to the biologically active amidated gastrins. We have examined changes in post-translational processing which occur in gastrin cells from rats that are physiologically stimulated (by feeding) or unstimulated (by fasting). Peptides were identified using site-directed radioimmunoassays and chromatographic systems that resolve phosphorylated, amidated, and sulfated progastrin products, including intermediates generated prior to amidation (i.e. C-terminal glycine-extended variants). Assays for Phe92-amidated peptides and for the C-terminal tryptic fragment of progastrin indicated decreases in the total tissue concentrations of immunoreactive peptide with fasting; in contrast, the tissue concentrations of glycine-extended biosynthetic intermediates were similar in fasted and fed rats. Taken together the data suggest a relative failure in amidation mechanisms in unstimulated cells. The endopeptidase cleavage of progastrin was not influenced significantly by fasting. However, the phosphorylation of peptide products containing Ser96 was depressed significantly in fasted rats. The proportions of amidated peptides sulfated at Tyr87 were generally lower than their corresponding glycine-extended biosynthetic precursors, but in both cases the proportion of peptide in the sulfated form was lower than for peptides sulfated at Tyr103. Feeding did not change the sulfation of amidated heptadecapeptide gastrin or its glycine-extended variant. The results suggest that the mechanisms determining phosphorylation and amidation of progastrin-related peptides depend on the patterns of stimulation of gastrin cells. The observation that decreased phosphorylation is associated with a failure to produce active amidated products is consistent with a regulatory function for phosphorylation in gastrin production.  相似文献   

3.
Prediction of tyrosine sulfation sites in animal viruses   总被引:1,自引:0,他引:1  
Post-translational modification of proteins by tyrosine sulfation enhances the affinity of extracellular ligand-receptor interactions important in the immune response and other biological processes in animals. For example, sulfated tyrosines in polyomavirus and varicella-zoster virus may help modulate host cell recognition and facilitate viral attachment and entry. Using a Position-Specific-Scoring-Matrix with an accuracy of 96.43%, we analyzed the possibility of tyrosine sulfation in all 1517 animal viruses available in the Swiss-Prot database. From a total of 97,729 tyrosines, we predicted 5091 sulfated tyrosine sites from 1024 viruses. Our site predictions in hemagglutinin of influenza A, VP4 of rotavirus, and US28 of cytomegalovirus strongly suggest an important link between tyrosine sulfation and viral disease mechanisms. In each of these three viral proteins, we observed highly conserved amino acid sequences surrounding predicted sulfated tyrosine sites. Tyrosine sulfation appears to be much more common in animal viruses than is currently recognized.  相似文献   

4.
Zhao L  Ye H  Li D  Lao X  Li J  Wang Z  Xiao L  Wu Z  Huang J 《Regulatory peptides》2012,173(1-3):1-5
Tyrosyl O-sulfation is a common posttranslational derivatization of proteins that may also modify regulatory peptides. Among these are members of the cholecystokinin (CCK)/gastrin family. While sulfation of gastrin peptides is without effect on the bioactivity, O-sulfation is crucial for the cholecystokinetic activity (i.e. gallbladder emptying) of CCK peptides. Accordingly, the purification of CCK as a sulfated peptide was originally monitored by its gallbladder emptying effect. Since then, the dogma has prevailed that CCK peptides are always sulfated. The dogma is correct in a semantic context since the gallbladder expresses only the CCK-A receptor that requires sulfation of the ligand. CCK peptides, however, are also ligands for the CCK-B receptors that do not require ligand sulfation. Consequently, unsulfated CCK peptides may act via CCK-B receptors. Since in vivo occurrence of unsulfated products of proCCK with an intact α-amidated C-terminal tetrapeptide sequence (-Trp-Met-Asp-PheNH(2)) has been reported, it is likely that unsulfated CCK peptides constitute a separate hormone system that acts via CCK-B receptors. This review discusses the occurrence, molecular forms, and possible physiological as well as pathophysiological significance of unsulfated CCK peptides.  相似文献   

5.
Human S-protein (vitronectin) and hemopexin, two structurally related plasma proteins of similar molecular mass and abundance, were analyzed for tyrosine sulfation. Both proteins were synthesized and secreted by the human hepatoma-derived cell line Hep G2, as shown by immunoprecipitation from the culture medium of [35S]methionine-labelled cells. When Hep G2 cells were labelled with [35S]sulfate, S-protein, but not hemopexin, was found to be sulfated. Half of the [35S]sulfate incorporated into S-protein was recovered as tyrosine sulfate. The stoichiometry of tyrosine sulfation was approximately two mol tyrosine sulfate/mol S-protein. Examination of the S-protein sequence for the presence of the known consensus features for tyrosine sulfation revealed three potential sulfation sites at positions 56, 59 and 401. Tyrosine 56 is the most probable site for stoichiometric sulfation, followed by tyrosine 59 which appears more likely to become sulfated than tyrosine 401. Tyrosines 56 and 59 are located in the anionic region of S-protein which has no homologous counterpart in hemopexin. We discuss the possibility that tyrosine sulfation of the anionic region of S-protein may stabilize the conformation of S-protein in the absence of thrombin-antithrombin III complexes and may play a role in its binding to thrombin-antithrombin III complexes during coagulation.  相似文献   

6.
Tyrosylprotein sulfotransferase (TPST) catalyzes the sulfation of proteins at tyrosine residues. We have analyzed the substrate specificity of TPST from bovine adrenal medulla with a novel assay, using synthetic peptides as substrates. The peptides were modeled after the known, or putative, tyrosine sulfation sites of the cholecystokinin precursor, chromogranin B (secretogranin I) and vitronectin, as well as the tyrosine phosphorylation sites of alpha-tubulin and pp60src. Varying the sequence of these peptides, we found that (i) the apparent Km of peptides with multiple tyrosine sulfation sites decreased exponentially with the number of sites; (ii) acidic amino acids were the major determinant for tyrosine sulfation, acidic amino acids adjacent to the tyrosine being more important than distant ones; (iii) a carboxyl terminally located tyrosine residue may be sulfated. Moreover, TPST catalyzed the sulfation of a peptide corresponding to the tyrosine autophosphorylation site of pp60v-src (Tyr-416) but not of a peptide corresponding to the non-autophosphorylation site of pp60c-src (Tyr-527). These results experimentally define structural determinants for the substrate specificity of TPST and show that this enzyme and certain autophosphorylating tyrosine kinases have overlapping substrate specificities in vitro.  相似文献   

7.
Seibert C  Sakmar TP 《Biopolymers》2008,90(3):459-477
Tyrosine sulfation is one of the most common post-translational modifications in secreted and transmembrane proteins and a key modulator of extracellular protein-protein interactions. Several proteins known to be tyrosine sulfated play important roles in physiological processes, and in some cases a direct link between protein function and tyrosine sulfation has been established. In blood coagulation, tyrosine sulfation of factor VIII is required for efficient binding of von Willebrand factor; in leukocyte adhesion, tyrosine sulfation of the P-selectin glycoprotein ligand-1 mediates high-affinity binding to P-selectin; and in leukocyte chemotaxis, tyrosine sulfation of chemokine receptors is required for optimal interaction with chemokine ligands. Furthermore, tyrosine sulfation has been implicated in several infectious diseases. In particular, tyrosine sulfation of the HIV-1 co-receptor CCR5 is required for viral entry into host cells and tyrosine sulfation of the Duffy antigen/receptor for chemokines is crucial for erythrocyte invasion by the malaria parasite plasmodium vivax. Despite increasing interest in tyrosine sulfation in recent years, the sulfoproteome still remains largely unexplored. To date, only a relatively small number of sulfotyrosine-containing peptides and proteins have been identified, and a specific role for tyrosine sulfation has not been established for most of these. Here, we provide an overview of the biology and enzymology of tyrosine sulfation and discuss recent developments in preparative and analytical methods that are central to sulfoproteome research.  相似文献   

8.
Prohormones often undergo extensive cellular processing prior to secretion. These post-translational processing events occur in organelles of the constitutive or regulated secretory pathway. The aim of this study was to examine the relationship between post-translational modifications and the secretory pathways taken by peptides derived from progastrin, the prohormone of gastrin, which in vivo is secreted by cells of the pyloric glands and stimulates the release of gastric acid. Targeting progastrin to compartments of the early secretory pathway shows that endoproteolytic processing is initiated in a pre-trans-Golgi network compartment of endocrine but not non-endocrine cells. The resulting N-terminal fragments of progastrin are secreted via the constitutive pathway, whereas endoproteolytically processed C-terminal fragments are secreted via the regulated or constitutive-like pathways. C-terminal fragments derived from progastrin differ in characteristic manners in levels and patterns of carboxyamidation and tyrosine sulfation in accordance with the secretory pathway taken. Point mutations introduced into a sorting motif disrupt these patterns, suggesting that differences in post-translational modifications are attributable to differential intracellular sorting of precursors. The results suggest a two-step sorting mechanism for progastrin leading to differential secretion of processed fragments via different secretory pathways.  相似文献   

9.
Analysis of sequence requirements for protein tyrosine sulfation.   总被引:5,自引:0,他引:5       下载免费PDF全文
We analyzed sequences surrounding known tyrosine sulfation sites to determine the characteristics that distinguish these sites from those that do not undergo sulfation. Tests evaluated the number and position of acidic, basic, hydrophobic, and small amino acids, as well as disulfide and N-glycosylation (sugar) sites. We determined that composition-based tests that select close to 100% of known tyrosine sulfation sites reject 97% of the non-sulfated tyrosines. The acidic test, by far the most selective, eliminated 95% of the non-sulfated tyrosine residues and none of the sulfated tyrosines. Including the basic, hydrophobic, and disulfide tests increased the elimination rate to 97%. Whereas no position flanking the tyrosine residues had the same amino acid always present, imperfectly conserved amino acids found in some positions will improve the specificity of the tests.  相似文献   

10.
Thyroid hormone synthesis is under the control of thyrotropin (TSH), which also regulates the sulfation of tyrosines in thyroglobulin (Tg). We hypothesized that sulfated tyrosine (Tyr[S]) might be involved in the hormonogenic process, since the consensus sequence required for tyrosine sulfation to occur was observed at the hormonogenic sites. Porcine thyrocytes, cultured with TSH but without iodide in the presence of [(35)S]sulfate, secreted Tg which was subjected to in vitro hormonosynthesis with increasing concentrations of iodide. A 63% consumption of Tyr[S] (1 residue) was observed at 40 atoms of iodine incorporated into Tg, corresponding to a 40% hormonosynthesis efficiency. In addition, hyposulfated Tg secreted by cells incubated with sodium chlorate was subjected to in vitro hormonosynthesis. With 0.5 Tyr[S] residue (31% of the initial content), the efficiency of the hormonosynthesis was 29%. In comparison, when hormonosynthesis was performed by cells, with only 0.25 Tyr[S] residue (16% of the initial content), the hormonosynthesis efficiency fell to 18%. These results show that there exists a close correlation between the sulfated tyrosine content of Tg and the production of thyroid hormones.  相似文献   

11.
Tyrosine O-sulfation is a posttranslational modification of secretory and membrane proteins transported through the Golgi apparatus, which is widespread among higher eukaryotes. O-Sulfated tyrosines are not immediately identified during sequencing of peptides and proteins, because the sulfate ester is acid labile and rapidly hydrolyses to tyrosine in strong acidic solutions. Little is known about the hydrolysis at mildly acidic solutions, which are used during several protein purification and analysis procedures. We have examined the stability of tyrosine sulfate using sulfated gastrin-17, caerulein, and drosulfokinin as models for tyrosine O-sulfated peptides. The peptides were incubated in acidic solutions in a pH range of 1 to 3 at different temperatures and time spans. Only marginal hydrolysis of gastrin-17 was observed in triflouroacetic acid at room temperature or below. Comparison of the acid hydrolysis of the three peptides showed that hydrolysis rate depends mainly on the primary amino acid composition of the peptide. The activation energy (E(a)) for the hydrolysis of sulfated gastrin-17 was found to be E(a)=98.7+/-5 kJ mol(-1). This study serves as a general reference for handling tyrosine sulfated peptides in aqueous acidic solutions. We conclude that tyrosine sulfate is more stable under normal protein purification conditions than previously assumed.  相似文献   

12.
The atypical chemokine receptor, ACKR2 is a pivotal regulator of chemokine-driven inflammatory responses and works by binding, internalizing, and degrading inflammatory CC-chemokines. ACKR2 displays promiscuity of ligand binding and is capable of interacting with up to 14 different inflammatory CC-chemokines. Despite its prominent biological role, little is known about the structure/function relationship within ACKR2, which regulates ligand binding. Here we demonstrate that a conserved tyrosine motif at the N terminus of ACKR2 is essential for ligand binding, internalization, and scavenging. In addition we demonstrate that sulfation of this motif contributes to ligand internalization. Furthermore, a peptide derived from this region is capable of binding inflammatory chemokines and inhibits their interaction with their cognate signaling receptors. Importantly, the peptide is only active in the sulfated form, further confirming the importance of the sulfated tyrosines for function. Finally, we demonstrate that the bacterial protease, staphopain A, can cleave the N terminus of ACKR2 and suppress its ligand internalization activity. Overall, these results shed new light on the nature of the structural motifs in ACKR2 that are responsible for ligand binding. The study also highlights ACKR2-derived N-terminal peptides as being of potential therapeutic significance.  相似文献   

13.
Vishnuvardhan D  Beinfeld MC 《Biochemistry》2000,39(45):13825-13830
Mammalian procholecystokinin (pro-CCK) is known to have three sulfated tyrosine residues, one of which is present in the CCK 8 moiety and two additional residues present in the carboxyl-terminal extension. In the present study, inhibition of tyrosine sulfation by sodium chlorate decreased the secretion of processed CCK 8 in CCK-expressing endocrine cells in culture. It was then demonstrated that when each of these tyrosines individually, as well as all three together, was mutated to phenylalanine and expressed in endocrine cells, CCK was still processed and secreted. However, the amount of CCK secreted varied with the type of mutation. Substitution of Phe to Tyr in CCK 8 reduced the quantity of secreted CCK 8 by 50%, and when all the sulfated Tyr were mutated to Phe the quantity of secreted CCK was reduced by about 70%, similar to what is observed with chlorate treatment. Changing of the putative phosphorylation site serine to alanine does not affect the processing. Serine phosphorylation at this site may play a functional role in regulatory events. Our results demonstrate that tyrosine sulfation alters the amount of secretion but is not an absolute requirement for the processing and secretion of CCK in this cell line. Tyrosine sulfation of CCK may still be important for its solubility, stabilization, and/or functional interaction.  相似文献   

14.
Multiple and variable tyrosine sulfation in extracellular class II leucine-rich repeat proteins/proteoglycans were characterized by mass spectrometry. The sulfogroup on tyrosine is labile and is released from peptides under normal mass spectrometric conditions. Thus, special approaches must be considered in order to identify this modification. By using a combination of mass spectrometry studies operating in negative and positive ion mode, tyrosine sulfation could be identified. In positive mode, the peptides normally appeared non-sulfated, whereas in negative mode a mixture of sulfated and non-sulfated species was observed. A combination of peptides released by different proteinases was used to obtain details on the locations of sulfate groups. Multiple tyrosine sulfates were observed in the N-terminal region of fibromodulin (up to 9 sites), osteoadherin (up to 6 sites), and lumican (2 sites). Osteoadherin contains two additional sulfated tyrosine residues close to its C terminus. We also identified an error in the published sequence of bovine fibromodulin, resulting in the replacement of Thr37 by Tyr37-Gly38, thus increasing its homology with its human counterpart.  相似文献   

15.
The alpha-chain of the fourth component of complement (C4) contains tyrosine sulfate (Karp, D.R. (1983) J. Biol. Chem. 258, 12745-12748). Here we have determined the site and stoichiometry of sulfation of C4 secreted by the human hepatoma-derived cell line Hep G2. C4 was labeled with [35S]sulfate and isolated from culture medium by immunoprecipitation. C4 digested with trypsin and chymotrypsin and analyzed by reverse-phase high-performance liquid chromatography contained a single sulfate-labeled peptide. Digestion of C4 with trypsin alone yielded two major sulfate-labeled peptides, suggesting that there may be some sequence variability in C4 near the site of sulfation. Sequential Edman degradation of tryptic peptides labeled with [3H]tyrosine and [35S]sulfate detected tyrosine residues at positions 5, 13, 16, and 18. Chymotrypsin cleaved 5 residues off the NH2-terminal end of tryptic peptides, yielding a peptide with tyrosine at positions 8, 11, and 13. Comparison of the position of tyrosine residues with the reported sequence of C4 identified the sites of sulfation as tyrosine residues at positions 738, 741, and 743 in the alpha-chain of C4. All 3 of these tyrosine residues appeared to be sulfated. When sulfation of C4 was partially inhibited by addition of catechol to culture medium, three different forms of the peptide were resolved by high-performance liquid chromatography, consistent with peptides containing 1, 2, or 3 sulfates. Comparison of the quantities of tyrosine and tyrosine sulfate in C4 which had been labeled with [3H]tyrosine and digested with Pronase also indicated that C4 contained an average of 2-3 residues of tyrosine sulfate/molecule. These results suggest that the biologically active form of the protein is sulfated.  相似文献   

16.
The antral hormone gastrin continues to be in focus, because its hormonal and growth promoting effects are essential both for the function of the normal stomach and for the pathogenesis of major dyspeptic and neoplastic diseases. Deduction of the progastrin structure has improved the insight in the cellular synthesis of gastrin, but has also revealed that the biosynthetic machinery is complex, and, accordingly, that progastrin is processed to a multitude of more or less bioactive fragments. The naming of these fragments has, however, become inconsistent and confusing. Therefore, we propose a systematic nomenclature for progastrin-derived peptides of which there are three classes: (I) The gastrins with the evolutionary preserved tetrapeptide amide (Trp-Met-Asp-PheNH2) at the C-terminus, which ensures high-affinity binding to the gastrin (CCK-B) receptor. Among the gastrins, gastrin-34 and gastrin-17 constitute the primary forms. (II) Processing intermediates, which are early products of progastrin that contain the structure of the primary gastrins within their sequence, but still cannot bind the gastrin receptor due to insufficient processing at their C-terminus. (III) Flanking fragments from the N- and C-termini of progastrin that do not contain any primary gastrin in their sequence, but nevertheless may undergo posttranslational processing. Each fragment can be specified with suffixes corresponding to the derived sequence in progastrin.  相似文献   

17.
Tyrosine sulfation of the amino terminus of CCR5 facilitates HIV-1 entry   总被引:23,自引:0,他引:23  
Chemokine receptors and related seven-transmembrane-segment (7TMS) receptors serve as coreceptors for entry of human and simian immunodeficiency viruses (HIV-1, HIV-2, and SIV) into target cells. Each of these otherwise diverse coreceptors contains an N-terminal region that is acidic and tyrosine rich. Here, we show that the chemokine receptor CCR5, a principal HIV-1 coreceptor, is posttranslationally modified by O-linked glycosylation and by sulfation of its N-terminal tyrosines. Sulfated tyrosines contribute to the binding of CCR5 to MIP-1 alpha, MIP-1 beta, and HIV-1 gp120/CD4 complexes and to the ability of HIV-1 to enter cells expressing CCR5 and CD4. CXCR4, another important HIV-1 coreceptor, is also sulfated. Tyrosine sulfation may contribute to the natural function of many 7TMS receptors and may be a modification common to primate immunodeficiency virus coreceptors.  相似文献   

18.
Sulfated tyrosines at the amino terminus of the principal HIV-1 coreceptor CCR5 play a critical role in its ability to bind the HIV-1 envelope glycoprotein gp120 and mediate HIV-1 infection. Here, we show that a number of human antibodies directed against gp120 are tyrosine sulfated at their antigen binding sites. Like that of CCR5, antibody association with gp120 is dependent on sulfate moieties, enhanced by CD4, and inhibited by sulfated CCR5-derived peptides. Most of these antibodies preferentially associate with gp120 molecules of CCR5-utilizing (R5) isolates and neutralize primary R5 isolates more efficiently than laboratory-adapted isolates. These studies identify a distinct subset of CD4-induced HIV-1 neutralizing antibodies that closely emulate CCR5 and demonstrate that tyrosine sulfation can contribute to the potency and diversity of the human humoral response.  相似文献   

19.
The rat osteosarcoma cell line (UMR 106-01) synthesizes and secretes relatively large amounts of a sulfated glycoprotein into its culture medium (approximately 240 ng/10(6) cells/day). This glycoprotein was purified, and amino-terminal sequence analysis identified it as bone sialoprotein (BSP). [35S]Sulfate, [3H]glucosamine, and [3H]tyrosine were used as metabolic precursors to label the BSP. Sulfate esters were found on N- and O-linked oligosaccharides and on tyrosine residues, with about half of the total tyrosines in the BSP being sulfated. The proportion of 35S activity in tyrosine-O-sulfate (approximately 70%) was greater than that in N-linked (approximately 20%) and O-linked (approximately 10%) oligosaccharides. From the deduced amino acid sequence for rat BSP (Oldberg, A., Franzén, A., and Heineg?rd, D. (1988) J. Biol. Chem. 263, 19430-19432), the results indicate that on average approximately 12 tyrosine residues, approximately 3 N-linked, and approximately 2 O-linked oligosaccharides are sulfated/molecule. The carboxyl-terminal quarter of the BSP probably contains most, if not all, of the sulfated tyrosine residues because this region of the polypeptide contains the necessary requirements for tyrosine sulfation. Oligosaccharide analyses indicated that for every N-linked oligosaccharide on the BSP, there are also approximately 2 hexa-, approximately 5 tetra-, and approximately 2 trisaccharides O-linked to serine and threonine residues. On average, the BSP synthesized by UMR 106-01 cells would contain a total of approximately 3 N-linked and approximately 25 of the above O-linked oligosaccharides. This large number of oligosaccharides is in agreement with the known carbohydrate content (approximately 50%) of the BSP.  相似文献   

20.
Several peptides derived from the gastrin-predicted preprohormone sequence were isolated from a human gastrinoma by gel permeation, anion exchange, and reverse phase chromatography. The peptides were identified and characterized structurally by a combination of radioimmunoassays, mass spectral analysis, and microsequence analysis. The largest peptide, progastrin-(1-35) (cryptagastrin), extends from the putative processing site for the signal peptidase to the double basic residues adjacent to the amino terminus of gastrin 34. A shorter form of this peptide, progastrin-(6-35) (cryptagastrin-(6-35), was also isolated in smaller amounts. In addition, sulfated and nonsulfated gastrin 17 amides (progastrin-(55-71)) and the glycine-extended nonsulfated gastrin 17 (progastrin-(55-72)) were identified by radioimmunoassay, and their structures were confirmed by mass spectral analysis. Isolation of cryptagastrin indicates that the signal peptide of human preprogastrin contains 21 amino acid residues, and progastrin, therefore, contains 80 amino acids. There is minimal processing of the cryptic peptide preceding the sequence of gastrin 34. An amidated gastrin form larger than gastrin 34 could contain 71 amino acids. No evidence was obtained for processing that would produce gastrins containing more than 34 but less than 71 amino acid residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号