首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
SEC63 encodes a protein required for secretory protein translocation into the endoplasmic reticulum (ER) of Saccharomyces cerevisiae (J. A. Rothblatt, R. J. Deshaies, S. L. Sanders, G. Daum, and R. Schekman, J. Cell Biol. 109:2641-2652, 1989). Antibody directed against a recombinant form of the protein detects a 73-kDa polypeptide which, by immunofluorescence microscopy, is localized to the nuclear envelope-ER network. Cell fractionation and protease protection experiments confirm the prediction that Sec63p is an integral membrane protein. A series of SEC63-SUC2 fusion genes was created to assess the topology of Sec63p within the ER membrane. The largest hybrid proteins are unglycosylated, suggesting that the carboxyl terminus of Sec63p faces the cytosol. Invertase fusion to a loop in Sec63p that is flanked by two putative transmembrane domains produces an extensively glycosylated hybrid protein. This loop, which is homologous to the amino terminus of the Escherichia coli heat shock protein, DnaJ, is likely to face the ER lumen. By analogy to the interaction of the DnaJ and Hsp70-like DnaK proteins in E. coli, the DnaJ loop of Sec63p may recruit luminal Hsp70 (BiP/GRP78/Kar2p) to the translocation apparatus. Mutations in two highly conserved positions of the DnaJ loop and short deletions of the carboxyl terminus inactivate Sec63p activity. Sec63p associates with several other proteins, including Sec61p, a 31.5-kDa glycoprotein, and a 23-kDa protein, and together with these proteins may constitute part of the polypeptide translocation apparatus. A nonfunctional DnaJ domain mutant allele does not interfere with the formation of the Sec63p/Sec61p/gp31.5/p23 complex.  相似文献   

2.
The translocation of secretory polypeptides into the endoplasmic reticulum (ER) occurs at the translocon, a pore-forming structure that orchestrates the transport and maturation of polypeptides at the ER membrane. In yeast, targeting of secretory precursors to the translocon can occur by two distinct pathways that are distinguished by their dependence upon the signal recognition particle (SRP). The SRP-dependent pathway requires SRP and its membrane-bound receptor, whereas the SRP-independent pathway requires a separate receptor complex consisting of Sec62p, Sec63p, Sec71p, Sec72p plus lumenal Kar2p/BiP. Here we demonstrate that Sec63p and Kar2p are also required for the SRP-dependent targeting pathway in vivo. Furthermore, we demonstrate multiple roles for Sec63p, at least one of which is exclusive to the SRP-independent pathway.  相似文献   

3.
We have addressed the mechanism by which proteins are posttranslationally transported across the membrane of the yeast endoplasmic reticulum (ER). We demonstrate that BiP (Kar2p), a member of the Hsp70 family resident in the ER lumen, acts as a molecular ratchet during translocation of the secretory protein prepro-alpha factor through the channel formed by the Sec complex. Multiple BiP molecules associate with each translocation substrate following interaction with the J domain of the Sec63p component of the Sec complex. Bound BiP minimizes passive backward movements of the substrate through the channel, and BiP's subsequent dissociation results in a free polypeptide in the ER lumen. Antibodies against the substrate can replace BiP, indicating that a Brownian ratchet is sufficient to achieve translocation.  相似文献   

4.
The translocation of secretory polypeptides into and across the membrane of the endoplasmic reticulum (ER) occurs at the translocon, a pore-forming structure that orchestrates the transport and maturation of polypeptides at the ER membrane. Recent data also suggest that misfolded or unassembled polypeptides exit the ER via the translocon for degradation by the cytosolic ubiquitin/proteasome pathway. Sec61p is a highly conserved multispanning membrane protein that constitutes a core component of the translocon. We have found that the essential function of the Saccharomyces cerevisiae Sec61p is retained upon deletion of either of two internal regions that include transmembrane domains 2 and 3, respectively. However, a deletion mutation encompassing both of these domains was found to be nonfunctional. Characterization of yeast mutants expressing the viable deletion alleles of Sec61p has revealed defects in post-translational translocation. In addition, the transmembrane domain 3 deletion mutant is induced for the unfolded protein response and is defective in the dislocation of a misfolded ER protein. These data demonstrate that the various activities of Sec61p can be functionally dissected. In particular, the transmembrane domain 2 region plays a role in post-translational translocation that is required neither for cotranslational translocation nor for protein dislocation.  相似文献   

5.
In yeast, efficient protein transport across the endoplasmic reticulum (ER) membrane may occur co-translationally or post-translationally. The latter process is mediated by a membrane protein complex that consists of the Sec61p complex and the Sec62p-Sec63p subcomplex. In contrast, in mammalian cells protein translocation is almost exclusively co-translational. This transport depends on the Sec61 complex, which is homologous to the yeast Sec61p complex and has been identified in mammals as a ribosome-bound pore-forming membrane protein complex. We report here the existence of ribosome-free mammalian Sec61 complexes that associate with two ubiquitous proteins of the ER membrane. According to primary sequence analysis both proteins display homology to the yeast proteins Sec62p and Sec63p and are therefore named Sec62 and Sec63, respectively. The probable function of the mammalian Sec61-Sec62-Sec63 complex is discussed with respect to its abundance in ER membranes, which, in contrast to yeast ER membranes, apparently lack efficient post-translational translocation activity.  相似文献   

6.
The signal recognition particle (SRP) is required for co-translational targeting of polypeptides to the endoplasmic reticulum (ER). Once at the membrane, the precursor interacts with a complex proteinaceous machinery that mediates its translocation across the bilayer. Genetic studies in yeast have identified a number of genes whose products are involved in this complex process. These mutants offer a potentially valuable resource with which to analyze the biochemical role played by each component in the pathway. However, such analyses have been hampered by the failure to reconstitute an efficient in vitro assay for SRP-dependent translocation. We report the construction of two multicopy vectors that allow overexpression of all seven gene products required to make SRP in the yeast Saccharomyces cerevisiae. The overexpressed subunits assemble into intact and functional SRP particles, and we further demonstrate that in vitro reconstitution of co-translational translocation is greatly enhanced using cytosol from the overexpression strain. We use this assay to demonstrate that Sec63p is required for co-translational translocation in vitro and specifically identify the "J-domain" of Sec63p as crucial for this pathway.  相似文献   

7.
ER membrane protein complex required for nuclear fusion   总被引:17,自引:5,他引:12       下载免费PDF全文
Diploid cells of the yeast Saccharomyces cerevisiae form after the mating of two haploid cells of the opposite mating type. After fusion of the two plasma membranes of the mating cells, a dinucleated cell forms initially in which the two haploid nuclei then rapidly fuse to form a single diploid nucleus. This latter event, called karyogamy, can be divided into two distinct steps: the microtubule-based movement that causes the two nuclei to become closely juxtaposed and the fusion of the nuclear membranes. For the membrane fusion step, one required component, the ER luminal protein Kar2p (BiP), has been identified. For topological reasons, however, it has been unclear how Kar2p could function in this role. Kar2p is localized to the luminal (i.e., noncytoplasmic) face of the ER membrane, yet nuclear fusion must initiate from the cytosolic side of the outer nuclear membrane or the ER membrane with which it is contiguous. There is both genetic and biochemical evidence that Kar2p interacts with Sec63p, an ER membrane protein containing both luminal and cytosolic domains that is involved in protein translocation across the membrane. We have isolated novel sec63 mutant alleles that display severe karyogamy defects. Disruption of the genes encoding other Sec63p-associated proteins (Sec71p and Sec72p) also results in karyogamy defects. A suppressor mutant (sos1-1) partially corrects the translocation defect but does not alleviate the karyogamy defect. sec61 and sec62 mutant alleles that cause similar or more severe protein translocation defects show no karyogamy defects. Taken together, these results suggest a direct role for Sec63p, Sec71p, and Sec72p in nuclear membrane fusion and argue against the alternative interpretation that the karyogamy defects result as an indirect consequence of the impaired membrane translocation of another component(s) required for the process. We propose that an ER/nuclear membrane protein complex composed of Sec63p, Sec71p, and Sec72p plays a central role in mediating nuclear membrane fusion and requires ER luminally associated Kar2p for its function.  相似文献   

8.
SEC72 encodes the 23-kD subunit of the Sec63p complex, an integral ER membrane protein complex that is required for translocation of presecretory proteins into the ER of Saccharomyces cerevisiae. DNA sequence analysis of SEC72 predicts a 21.6-kD protein with neither a signal peptide nor any transmembrane domains. Antibodies directed against a carboxyl-terminal peptide of Sec72p were used to confirm the membrane location of the protein. SEC72 is not essential for yeast cell growth, although an sec72 null mutant accumulates a subset of secretory precursors in vivo. Experiments using signal peptide chimeric proteins demonstrate that the sec72 translocation defect is associated with the signal peptide rather than with the mature region of the secretory precursor.  相似文献   

9.
The Sec61 translocon of the endoplasmic reticulum (ER) membrane forms an aqueous pore, allowing polypeptides to be transferred across or integrated into membranes. Protein translocation into the ER can occur co- and posttranslationally. In yeast, posttranslational translocation involves the heptameric translocase complex including its Sec62p and Sec63p subunits. The mammalian ER membrane contains orthologs of yeast Sec62p and Sec63p, but their function is poorly understood. Here, we analyzed the effects of excess and deficit Sec63 on various ER cargoes using human cell culture systems. The overexpression of Sec63 reduces the steady-state levels of viral and cellular multi-spanning membrane proteins in a cotranslational mode, while soluble and single-spanning ER reporters are not affected. Consistent with this, the knock-down of Sec63 increases the steady-state pools of polytopic ER proteins, suggesting a substrate-specific and regulatory function of Sec63 in ER import. Overexpressed Sec63 exerts its down-regulating activity on polytopic protein levels independent of its Sec62-interacting motif, indicating that it may not act in conjunction with Sec62 in human cells. The specific action of Sec63 is further sustained by our observations that the up-regulation of either Sec62 or two other ER proteins with lumenal J domains, like ERdj1 and ERdj4, does not compromise the steady-state level of a multi-spanning membrane reporter. A J domain-specific mutation of Sec63, proposed to weaken its interaction with the ER resident BiP chaperone, reduces the down-regulating capacity of excess Sec63, suggesting an involvement of BiP in this process. Together, these results suggest that Sec63 may perform a substrate-selective quantity control function during cotranslational ER import.  相似文献   

10.
The yeast endoplasmic reticulum has three distinct protein translocation channels. The heterotrimeric Sec61 and Ssh1 complexes, which bind translating ribosomes, mediate cotranslational translocation of proteins targeted to the endoplasmic reticulum by the signal recognition particle (SRP) and SRP receptor targeting pathway, whereas the heptameric Sec complex has been proposed to mediate ribosome-independent post-translational translocation of proteins with less hydrophobic signal sequences that escape recognition by the SRP. However, multiple reports have proposed that the Sec complex may function cotranslationally and be involved in translocation or integration of SRP-dependent protein translocation substrates. To provide insight into these conflicting views, we induced expression of the tobacco etch virus protease to achieve rapid inactivation of the Sec complex by protease-mediated cleavage within the cytoplasmic domain of the Sec63 protein. Protein translocation assays conducted after tobacco etch virus protease induction revealed a complete block in translocation of two well-characterized substrates of the Sec complex, carboxypeptidase Y (CPY) and Gas1p, when the protease cleavage sites were located at structural domain boundaries in Sec63. However, integration of SRP-dependent membrane protein substrates was not detectably impacted. Moreover, redirecting CPY to the cotranslational pathway by increasing the hydrophobicity of the signal sequence rendered translocation of CPY insensitive to inactivation of the Sec complex. We conclude that the Sec complex is primarily responsible for the translocation of yeast secretome proteins with marginally hydrophobic signal sequences.  相似文献   

11.
BackgroundIn eukaryotic cells, biogenesis of proteins destined to the secretory pathway begins from the cytosol. Nascent chains are either co-translationally or post-translationally targeted to the endoplasmic reticulum (ER) and translocated across the membrane through the Sec61 complex. For the post-translational translocation, the Sec62/Sec63 complex is additionally required. Sec63, however, is also shown to mediate co-translational translocation of a subset of proteins, the types and characteristics of proteins that Sec63 mediates in translocation still await to be defined.MethodsTo overview the types of proteins that require Sec63 for the ER translocation, we prepared Sec63 mutant lacking the first 39 residues (Sec63_ΔN39) in yeast and assessed initial translocation efficiencies of diverse types of precursors in the sec63_ΔN39 strain by a 5 min metabolic labeling. By employing Blue-Native gel electrophoresis (BN-PAGE), stability of the SEC complex (Sec61 plus Sec62/Sec63 complexes) isolated from cells carrying the Sec63_ΔN39 mutant was examined.ResultsAmong the various translocation precursors tested, we found that proper sorting of single- and double-pass membrane proteins was severely impaired in addition to post-translational translocation precursor in the sec63_ΔN39 mutant strain. Stability of the SEC complex was compromised upon deletion of the N-terminal 39 residues.ConclusionsThe N-terminus of Sec63 is important for stability of the SEC complex and Sec63 is required for proper sorting of membrane proteins in vivo.General significanceSec63 is essential on insertion of membrane proteins.  相似文献   

12.
Prinz A  Hartmann E  Kalies KU 《Biological chemistry》2000,381(9-10):1025-1029
A characteristic feature of the co-translational protein translocation into the endoplasmic reticulum (ER) is the tight association of the translating ribosomes with the translocation sites in the membrane. Biochemical analyses identified the Sec61 complex as the main ribosome receptor in the ER of mammalian cells. Similar experiments using purified homologues from the yeast Saccharomyces cerevisiae, the Sec61p complex and the Ssh1p complex, respectively, demonstrated that they bind ribosomes with an affinity similar to that of the mammalian Sec61 complex. However, these studies did not exclude the presence of other proteins that may form abundant ribosome binding sites in the yeast ER. We now show here that similar to the situation found in mammals in the yeast Saccharomyces cerevisiae the two Sec61-homologues Sec61p and Ssh1p are essential for the formation of high-affinity ribosome binding sites in the ER membrane. The number of binding sites formed by Ssh1p under standard growth conditions is at least 4 times less than those formed by Sec61p.  相似文献   

13.
T Biederer  C Volkwein    T Sommer 《The EMBO journal》1996,15(9):2069-2076
We have investigated the degradation of subunits of the trimeric Sec61p complex, a key component of the protein translocation apparatus of the ER membrane. A mutant form of Sec6lp and one of the two associated proteins (Sss1p) are selectively degraded, while the third constituent of the complex (Sbh1p) is stable. Our results demonstrate that the proteolysis of the multispanning membrane protein Sec61p is mediated by the ubiquitin-proteasome pathway, since it requires polyubiquitination, the presence of a membrane-bound (Ubc6) and a soluble (Ubc7) ubiquitin-conjugating enzyme and a functional proteasome. The process is proposed to be specific for unassembled Sec61p and Sss1p. Thus, our results suggest that one pathway of ER degradation of abnormal or unassembled membrane proteins is initiated at the cytoplasmic side of the ER.  相似文献   

14.
The Sec61 protein translocation complex in the endoplasmic reticulum (ER) membrane is composed of three subunits. The alpha-subunit, called Sec61p in yeast, is a multispanning membrane protein that forms the protein conducting channel. The functions of the smaller, carboxyl-terminally tail-anchored beta subunit Sbh1p, its close homologue Sbh2p, and the gamma subunit Sss1p are not well understood. Here we show that co-translational protein translocation into the ER is reduced in sbh1Delta sbh2Delta cells, whereas there is a limited reduction of post-translational translocation and no effect on export of a mutant form of alpha-factor precursor for ER-associated degradation in the cytosol. The translocation defect and the temperature-sensitive growth phenotype of sbh1Delta sbh2Delta cells were rescued by expression of the transmembrane domain of Sbh1p alone, and the Sbh1p transmembrane domain was sufficient for coimmunoprecipitation with Sec61p and Sss1p. Furthermore, we show that Sbh1p co-precipitates with the ER transmembrane protein Rtn1p. Sbh1p-Rtn1p complexes do not appear to contain Sss1p and Sec61p. Our results define the transmembrane domain as the minimal functional domain of the Sec61beta homologue Sbh1p in ER translocation, identify a novel interaction partner for Shb1p, and imply that Sbh1p has additional functions that are not directly linked to protein translocation in association with the Sec61 complex.  相似文献   

15.
Protein translocation across the endoplasmic reticulum membrane occurs via a "translocon" channel formed by the Sec61p complex. In yeast, two channels exist: the canonical Sec61p channel and a homolog called Ssh1p. Here, we used trapped translocation intermediates to demonstrate that a specific signal recognition particle-dependent substrate, Sec71p, is targeted exclusively to Ssh1p. Strikingly, we found that, in the absence of Ssh1p, precursor could be successfully redirected to canonical Sec61p, demonstrating that the normal targeting reaction must involve preferential sorting to Ssh1p. Our data therefore demonstrate that Ssh1p is the primary translocon for Sec71p and reveal a novel sorting mechanism at the level of the endoplasmic reticulum membrane enabling precursors to be directed to distinct translocons. Interestingly, the Ssh1p-dependent translocation of Sec71p was found to be dependent upon Sec63p, demonstrating a previously unappreciated functional interaction between Sec63p and the Ssh1p translocon.  相似文献   

16.
To determine whether the yeast Sec61p translocation pore is a high-affinity ribosome receptor in the endoplasmic reticulum, we isolated the Sec61p complex using an improved protocol in which contaminants found previously to be associated with the complex are absent. The purified complex, which contains Sec61p with an amino terminal hexahistidine tag, was active since it rescued a sec61–3 post-translational translocation defect in a reconstituted system. Co-reconstitution of the Sec61p and Sec63p complexes into liposomes failed to support post-translational translocation, suggesting that Sec62p is required for this process. By Scatchard analysis, the purified Sec61p complex bound to yeast ribosomes when reconstituted into liposomes with a KD of 5.6 n m , a value similar to the KD obtained when ribosome binding to total microsomal protein was measured (2.7 n m ). In addition, a mammalian protein, p180, which has been proposed to be a ribosome receptor, was expressed in yeast, and endoplasmic reticulum-derived microsomes isolated from this strain exhibited ∼2.3-fold greater binding to yeast ribosomes. Despite this increase in ribosome binding, neither co- nor post-translational translocation was compromised in vivo . In sum, our data suggest that the Sec61p complex is a ribosome receptor in the yeast endoplasmic reticulum membrane.  相似文献   

17.
《The Journal of cell biology》1993,123(6):1355-1363
Reconstituted proteoliposomes derived from solubilized yeast microsomes are able to translocate a secreted yeast mating pheromone precursor (Brodsky, J. L., S. Hamamoto, D. Feldheim, and R. Schekman. 1993. J. Cell Biol. 120:95-107). Reconstituted proteoliposomes prepared from strains with mutations in the SEC63 or KAR2 genes are defective for translocation; the kar2 defect can be overcome by the addition of purified BiP (encoded by the KAR2 gene). We now show that addition of BiP to wild-type reconstituted vesicles increases their translocation efficiency three-fold. To identify other ER components that are required for translocation, we purified a microsomal membrane protein complex that contains Sec63p. We found that the complex also includes BiP, Sec66p (gp31.5), and Sec67p (p23). The Sec63p complex restores translocation activity to reconstituted vesicles that are prepared from a sec63-1 strain, or from cells in which the SEC66 or SEC67 genes are disrupted. BiP dissociates from the complex when the purification is performed in the presence of ATP gamma S or when the starting membranes are from yeast containing the sec63-1 mutation. We conclude that the purified Sec63p complex is active and required for protein translocation, and that the association of BiP with the complex may be regulated in vivo.  相似文献   

18.
The metazoan Sec61 translocon transports polypeptides into and across the membrane of the endoplasmic reticulum via two major routes, a well-established co-translational pathway and a post-translational alternative. We have used two model substrates to explore the elements of a secretory protein precursor that preferentially direct it towards a co- or post-translational pathway for ER translocation. Having first determined the capacity of precursors to enter ER derived microsomes post-translationally, we then exploited semi-permeabilized mammalian cells specifically depleted of key membrane components using siRNA to address their contribution to the membrane translocation process. These studies suggest precursor chain length is a key factor in the post-translational translocation at the mammalian ER, and identify Sec62 and Sec63 as important components acting on this route. This role for Sec62 and Sec63 is independent of the signal sequence that delivers the precursor to the ER. However, the signal sequence can influence the subsequent membrane translocation process, conferring sensitivity to a small molecule inhibitor and dictating reliance on the molecular chaperone BiP. Our data support a model where secretory protein precursors that fail to engage the signal recognition particle, for example because they are short, are delivered to the ER membrane via a distinct route that is dependent upon both Sec62 and Sec63. Although this requirement for Sec62 and Sec63 is unaffected by the specific signal sequence that delivers a precursor to the ER, this region can influence subsequent events, including both Sec61 mediated transport and the importance of BiP for membrane translocation. Taken together, our data suggest that an ER signal sequence can regulate specific aspects of Sec61 mediated membrane translocation at a stage following Sec62/Sec63 dependent ER delivery.  相似文献   

19.
Sec61p and BiP directly facilitate polypeptide translocation into the ER.   总被引:78,自引:0,他引:78  
Secretory proteins are segregated from cytosolic proteins by their translocation into the endoplasmic reticulum (ER). A modified secretory protein trapped during translocation across the ER membrane can be crosslinked to two previously identified proteins, Sec61p and BiP (Kar2p). The dependence of this cross-linking upon proteins and small molecules was examined. Mutations in SEC62 and SEC63 decrease the ability of Sec61p to be cross-linked to the secretory polypeptide trapped in translocation. ATP is also required for interaction of Sec61p with the secretory protein. Three kar2 alleles display defective translocation in vitro. Two of these alleles also decrease the ability of Sec61p to be cross-linked to the secretory protein. The third allele, while exhibiting a severe translocation defect, does not affect the interaction of Sec61p with the secretory protein. These results suggest that Sec61p is directly involved in translocation and that BiP acts at two stages of the translocation cycle.  相似文献   

20.
We studied the molecular nature of the interaction between the integral membrane protein Sec63p and the lumenal Hsp70 BiP to elucidate their role in the process of precursor transit into the ER of Saccharomyces cerevisiae. A lumenal stretch of Sec63p with homology to the Escherichia coli protein DnaJ is the likely region of interface between Sec63p and BiP. This domain, purified as a fusion protein (63Jp) with glutathione S–transferase (GST), mediated a stable ATP-dependent binding interaction between 63Jp and BiP and stimulated the ATPase activity of BiP. The interaction was highly selective because only BiP was retained on immobilized 63Jp when detergent-solubilized microsomes were mixed with ATP and the fusion protein. GST alone was inactive in these assays. Additionally, a GST fusion containing a point mutation in the lumenal domain of Sec63p did not interact with BiP. Finally, we found that the soluble Sec63p lumenal domain inhibited efficient precursor import into proteoliposomes reconstituted so as to incorporate both BiP and the fusion protein. We conclude that the lumenal domain of Sec63p is sufficient to mediate enzymatic interaction with BiP and that this interaction positioned at the translocation apparatus or translocon at the lumenal face of the ER is vital for protein translocation into the ER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号