首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
一株产脂肽类表面活性剂的碱性Dietzia菌及特性研究   总被引:1,自引:0,他引:1  
陈露  李淑芹  薛燕芬 《微生物学通报》2012,39(11):1573-1579
【目的】筛选降解性能良好的产生物表面活性剂的菌株,对其进行分类学鉴定,确定所产表面活性剂物质并对各影响因素进行评价。【方法】利用液体石蜡为底物筛选降解性能良好的产生物表面活性剂菌株,通过形态特征观察、生理生化测定、16S rRNA基因序列分析等实验确定菌株的分类地位。通过排油圈活性、表面张力值、薄层层析等方法确定生物表面活性剂的性质,分析碳、氮源和温度、pH、盐浓度各因素对菌株产生物表面活性剂的影响。【结果】从大连新港采集的样品中分离得到一株产表面活性剂的嗜碱菌株3372,经分类鉴定表明其是Dietzia cercidiphylli的新菌株。嗜碱菌3372发酵液粗提物的排油直径为6.1 cm,表面张力可从67.62 mN/m降到32.95 mN/m,经薄层层析分析,初步鉴定为脂肽类表面活性剂。综合各因素对发酵液表面活性的影响,菌株3372在pH为9.0、适盐浓度为3%的培养基中,经30°C培养可将发酵液表面张力值降到最低。【结论】嗜碱菌3372是脂肽类生物表面活性剂产生菌的新成员,其在高盐碱条件下产生表面活性剂的特性在工业应用上有一定的潜力。  相似文献   

2.
研究黄芩黄酮总苷元提取制备新方法。以黄芩苷的酶解率为评价指标,筛选黄芩酶液制备的pH值;以黄芩苷提取率为评价指标,采用正交实验对影响黄芩提取的加水量、煎煮时间和煎煮次数进行优选;确定黄芩黄酮总苷元提取制备方法为:黄芩粗粉以pH3水搅拌提取0.5 h,过滤,得到黄芩酶液;药渣投入12倍量沸水中,调pH6煎煮两次,每次0.5 h,过滤,合并滤液,加入上述黄芩酶液,调pH6,于50℃酶解6 h,过滤,沉淀干燥,即得黄芩黄酮总苷元提取物。该方法简便可行,黄芩素提取率约为80%,提取工艺稳定,为从黄芩中提取黄芩黄酮总苷元提供参考方法。  相似文献   

3.
对尾叶悬钩子(Rubus caudifolius Wuzhi)鲜果中花色素苷的提取条件、主要化学组分及pH值、温度、没食子酸和Al^3 对其颜色及稳定性的影响进行了分析探讨。结果表明,尾叶悬钩子花色素苷的主要组分可能为矢车菊素-3-葡萄糖苷;pH值和温度影响该花色素苷的色泽及其稳定性,随着pH值和温度的增加,其分解加剧,且花色素苷的分解均遵循动力学一级反应规律;添加不同浓度的Al^3 ,色素溶液的吸光值有所升高,显示出有一定的增色效应,但Al^3 和没食子酸对贮藏期间花色素苷的稳定性及色泽均无明显效果。  相似文献   

4.
改进以往反应条件,合成了黄芩苷镧(Ⅲ)、黄芩苷钇(Ⅲ)配合物,利用IR、UV、LC-MS和金属元素含量测定对配合物进行了表征。采用MTT法分别考察了两种新化合物的抑菌活性(金黄色葡萄球菌、大肠杆菌、枯草芽孢杆菌、沙门氏菌、白色念珠菌)和抗肿瘤活性(A549、HepG2),采用灌胃法考察化合物对小鼠的急性毒性。结果表明:黄芩苷在与金属配合后,结构表征发生了一定的变化,配合物无金属离子毒性反应,并且其抑菌、抗肿瘤作用均显示出黄芩苷镧>黄芩苷钇>黄芩苷。  相似文献   

5.
低能离子诱变烃降解菌所产表面活性剂的研究   总被引:1,自引:0,他引:1  
菌株产表面活性剂的能力直接影响其对石油烃的降解和利用,大量的研究表明,生物表面活性剂可以通过胶束来渗透、润湿、乳化、增溶、发泡、消泡等作用促进石油的利用,有效提高石油烃的降解,加快油污土壤的生物修复过程。对菌株23产表面活性剂和菌株生长的关系,发酵液中表面活性剂的提取鉴定,以及生物表面活性剂的临界胶束浓度,对温度、pH、盐度的稳定性,对石蜡的乳化活性等理化性质进行了初步分析研究,为该菌株进一步的研究以及今后实际应用提供较多的资料和信息,为其应用领域提供理论依据,以便更好的发挥其在实际生产中的功能。  相似文献   

6.
比较了鱼类养殖前后 ,地下水中正磷酸盐 (o P)浓度、碱性磷酸酶活性 (APA)在不同大小颗粒之间的分布、溶解态APA对pH、温度、CuSO4、ZnSO4、EDTA 2Na与表面活性剂 (CTAB与TritonX 10 0 )的应答方式及其动力学特征。养鱼之后 ,玻璃缸水中碱性磷酸酶表现出明显较高的活性 ,且以溶解态为主要存在形式 ,这种效应与鱼类的品种有关 ,溶解态APA的最大反应速度 (Vmax)与米氏常数 (Km)均明显提高 ,最适温度与pH值以及对于Zn2 的应答方式亦发生明显改变 ,颗粒结合态APA甚微或不可监测 ,藻类极少 ,故非溶解态APA的主要贡献者。因此 ,鱼类饲养与溶解态APA之间具有密切联系。养鱼缸底颗粒的蒸馏水提取液与同缸水中的溶解态APA对pH值的应答方式十分接近 ,这一结果暗示养殖产生的固体废物是溶解态APA的来源之一。  相似文献   

7.
生物表面活性剂产生菌的筛选及表面活性剂稳定性研究   总被引:22,自引:0,他引:22  
大庆油田油泥样品经富集培养,平板分离,获得52株菌。排油性实验和表面张力测定表明,菌株B22、B24、B2s产生的表面活性剂表面活性稳定,表面张力较低。温度、pH和NaCl浓度实验证实,细菌B22,产生的生物表面活性剂可耐受120℃高温,另2种生物表面活性剂可耐受80℃;3种细菌生物表面活性剂对pH有广泛适应性,1322pH适应范围为4.0~13.0,B24、B25的pH适应范围为2.0~13.0;NaCl浓度对表面活性剂的生物活性影响不大。将3株菌的生物表面活性剂用于室内油泥处理实验,72h石油去除率达70%以上。  相似文献   

8.
本研究利用体外培养人体肠道菌转化黄芩苷,探索转化方法及模型;用醇沉法提取了黄芩苷转化酶,即β-D-葡萄糖醛酸苷酶,并探讨了酶促影响因素;通过高效液相色谱检测产物黄芩素。经实验确定,黄芩苷转化培养液经超声波处理后,在转化液中有黄芩素检出。实验得知,转化酶为胞内酶,该酶的最适反应温度为55℃,最适pH为6.0,Ca2+、Mg2+和Cu2+对酶促反应具有促进作用,而Fe2+则具有抑制作用,Zn2+浓度在l mmol/L时起促进作用,在5 mmol/L时起抑制作用。  相似文献   

9.
研究了耐高温生物表面活性剂产生菌ZY-3的生理生化特性,并通过测定发酵液的菌体密度、表面张力和乳化活性等指标,研究不同碳源和初始pH对菌株ZY-3生长和产生物表面活性剂的影响,同时对其所产生物表面活性剂进行了初步分离和性质分析。菌株ZY-3被初步鉴定为芽胞杆菌属(Bacillus),具有产酸、不产H_2S、还原硝酸盐等特性。在以淀粉为碳源、初始pH 6.0的培养基中发酵,产生物表面活性剂多且稳定;在种子培养基和发酵培养基中都有淀粉的条件下,菌体生长较多,降低表面张力和乳化的作用均较强,所产生物表面活性剂可以使发酵液的表面张力从72.1 mN/m降到53.1 mN/m,乳化活性从0升高到24%。初步判断产物为糖脂类阴离子表面活性剂。  相似文献   

10.
壳聚糖温敏性凝胶的制备及其热敏性实验研究   总被引:10,自引:1,他引:9  
目的:用壳聚糖作为一种生物材料,和甘油磷酸盐(GPS)反应制备温敏性凝胶,使其在植入体内后发生形态上的变化。从而是达到用于组织缺损和药物释放的目的。方法:将不同浓度的壳聚糖和GPS反应生成凝胶,测定其pH值和在不同温度下的凝固时间。结果:凝胶的pH值随壳聚糖和GPS的浓度的增加而增加。同时也随溶解壳聚糖的酸浓度增加下降,其凝固时间随pH值和随温度的增加而减少。结论:壳聚糖与GPS反应,能制备出在低温下呈流体状液体,而当温度升高到体温时则成凝固的温敏性凝胶。  相似文献   

11.
This paper is focused on the local composition around a protein molecule in aqueous mixtures containing polyethylene glycol (PEG) and the solubility of proteins in water + PEG mixed solvents. Experimental data from literature regarding the preferential binding parameter were used to calculate the excesses (or deficits) of water and PEG in the vicinity of β-lactoglobulin, bovine serum albumin, lysozyme, chymotrypsinogen and ribonuclease A. It was concluded that the protein molecule is preferentially hydrated in all cases (for all proteins and PEGs investigated). The excesses of water and deficits of PEG in the vicinity of a protein molecule could be explained by a steric exclusion mechanism, i.e. the large difference in the sizes of water and PEG molecules.

The solubility of different proteins in water + PEG mixed solvent was expressed in terms of the preferential binding parameter. The slope of the logarithm of protein (lysozyme, β-lactoglobulin and bovine serum albumin) solubility versus the PEG concentration could be predicted on the basis of experimental data regarding the preferential binding parameter. For all the cases considered (various proteins, various PEGs molecular weights and various pHs), our theory predicted that PEG acts as a salting-out agent, conclusion in full agreement with experimental observations. The predicted slopes were compared with experimental values and while in some cases good agreement was found, in other cases the agreement was less satisfactory. Because the established equation is a rigorous thermodynamic one, the disagreement might occur because the experimental results used for the solubility and/or the preferential binding parameter do not correspond to thermodynamic equilibrium.  相似文献   


12.
A theory is presented on the solubility of proteins, in the hydrated as well as in the dry state, and in water as well as in organic solvents. To this effect, colloidal stability is assimilated with the solubility of the proteins, considered as hydrated entities. By means of a surface thermodynamic approach it can be shown that an increase in size of a hydrated protein must lead to insolubility, even in the absence of any change in a protein's surface properties. This can be substantiated experimentally by comparing the surface properties of immune complexes with those of their constituent immunoglobulins, as well as by comparing some of the properties of intact tobacco mosaic virus with those of its monomeric capsid subunits. Insolubilization of proteins by means of charge interactions as well as by dehydration is studied; an explanation is given of why precipitation caused by charge interactions is more likely to lead to partial irreversible denaturation than precipitation caused by protein-protein interactions brought about by partial dehydration (e.g., by “salting-out”). A link is established between the smallness (or even the negative value) of the interfacial tension between given proteins and various solvents and their solubility in these solvents. The energy of hydration of proteins can also be measured, and the differences between the free energies of interaction of dried and hydrated proteins with water point toward the additional processes underlying the solubilization, i.e., toward the conformational change of a protein in the process of becoming hydrated. The parameter of conformational change of a protein, while becoming hydrated, appears to be more closely linked to its degree of hydration than to its hydration energy.  相似文献   

13.
Nucleoside chemistry represents an important research area for drug discovery, as many nucleoside analogs are prominent drugs and have been widely applied for cancer and viral chemotherapy. However, the synthesis of modified nucleosides presents a major challenge, which is further aggravated by poor solubility of these compounds in common organic solvents. Most of the currently available methods for nucleoside modification employ toxic high boiling solvents; require long reaction time and tedious workup methods. As such, there is constant effort to develop process chemistry in alternative medium to limit the use of organic solvents that are hazardous to the environment and can be deleterious to human health. One such approach is to use ionic liquids, which are ‘designer materials’ with unique and tunable physico-chemical properties. Studies have shown that methodologies using ionic liquids are highly efficient and convenient for the synthesis of nucleoside analogs, as demonstrated by the preparation of pharmaceutically important anti-viral drugs. This article summarizes recent efforts on nucleoside modification using ionic liquids.  相似文献   

14.
Lead (Pb) exposure is a global environmental problem that can deplete body antioxidant enzymes, causing damage to various macromolecules and ultimately cell death. Pb exposure could lead to serious renal damage. Baicalin, a traditional Chinese medicine, could protect against renal injury through inhibition of oxidative stress and apoptosis. This study was designed to investigate the protective efficacy of baicalin against Pb-induced nephrotoxicity in mice and to elucidate the potential mechanisms using animal experiment. The results revealed that baicalin decreased Pb-induced bodyweight loss, declined kidney coefficients, and ameliorated renal function and structure in a dose-dependent manner. Meanwhile, baicalin dose dependently increased Pb-induced activity of SOD and GSH-Px, while the content of MDA in the kidney was decreased. In addition, baicalin enhanced the Bcl-2/Bax ratio associated with apoptosis in the kidney. These data indicated that further investigation of the use of baicalin as a new natural chemopreventive agent against Pd poisoning is warranted.  相似文献   

15.
Baicalin is a flavonoid derived from the dried root of Scutellaria baicalensis. In this study, oxygen-induced retinopathy was used to characterize the anti-angiogenic properties of baicalin in mice. Pups were exposed to a hyperbaric oxygen environment to induce retinal angiogenesis and were subjected to intraperitoneal injection of baicalin. Avascular area, neovascular tufts, and neovascular lumens were quantified from digital images. Compared to the vehicle, baicalin clearly reduced the central avascular zone and the number of neovascular tufts and lumens. High-dose baicalin (10 mg/kg) significantly reduced the expression of matrix metalloproteinase-2 (MMP-2), MMP-9, angiotensin II, and vascular endothelial growth factor (VEGF). These results show that baicalin is a powerful antiangiogenic compound that attenuates new vessel formation in the retina after systemic administration, and is a candidate substance for therapeutic inhibition of retinal angiogenesis. [BMB Reports 2015; 48(5): 271-276]  相似文献   

16.
Molecular dynamics techniques were used to study oligomers that mimic cellulose and various derivatives in the amorphous phase, including cellulose (C), methyl cellulose (MC), hydroxypropyl cellulose (HPC), and carboxymethyl cellulose (CMC). Densities and solubility parameters were determined for a series of oligomers with increasing chain length. Both properties were found to change linearly with the degree of polymerization (from monomers to dodecamers). Extrapolated predictions of the densities (g/cm3) for long chain polymers are: C, 1.42; MC, 1.33; HPC, 1.30; and CMC, 1.42. Computed values for the solubility parameter (MPa1/2) are: C, 25.39; MC, 21.43; HPC, 21.70; and CMC, 24.35. We also evaluated the sensitivity of the solubility parameter to changes in the calculated density and found the dependence to be significant. The calculated solubility parameters were evaluated against experimental and other theoretical values as well as against selected ionic liquids comprised of cations in the imidazolium family and the chloride and trifluoroacetate anions.  相似文献   

17.
Baicalin, a flavonoid compound purified from plant Scutellaria baicalensis Georgi, has been reported to possess a wide variety of pharmacological properties including anti-oxidative, anti-apoptotic and neuroprotective properties. Oxidative stress can dramatically alter neuronal function and has been linked to status epilepticus (SE). However, the neuroprotective effect of baicalin on epilepsy is unclear. In this study we investigated whether Baicalin could exert anticonvulsant and neuroprotective effects in the pilocarpine-induced epileptic model in rats. To this end, we recorded the latency to first limbic seizure and SE and observed the incidence of SE and mortality. The changes of oxidative stress were measured 24 h after pilocarpine-induced SE. Nissl staining, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling and Fluoro-Jade B staining were performed to detect the neuronal loss, apoptosis and degeneration in hippocampus 72 h after pilocarpine-induced seizure. Pretreatment with baicalin significantly delayed the onset of the first limbic seizures and SE, reduced the mortality rate, and attenuated the changes in the levels of lipid peroxidation, nitrite content and reduced glutathione in the hippocampus of pilocarpine-treated rats. Furthermore, we also found that baicalin attenuated the neuronal cell loss, apoptosis, and degeneration caused by pilocarpine-induced seizures in rat hippocampus. Collectively, these results indicated remarkable anticonvulsant and neuroprotective effects of baicalin and should encourage further studies to investigate baicalin as an adjuvant in epilepsy both to prevent seizures and to protect against seizure induced brain injury.  相似文献   

18.
Paramylon is a natural hydrophilic polysaccharide produced in the pyrenoids of euglenoids, and esterification may render paramylon hydrophobic. Esterification imparts not only thermoplasticity, but also potential compatibilities with other polymer resins and fillers. However, the dependence of the compatibility on the structure of the polymer ester has not yet been systematically studied. To estimate the affinities between paramylon esters and hydrophobic organic solvents/resins, the dependences of their Hansen solubility parameters, which are association indices, on the degrees of substitution and chain lengths of the ester groups were investigated. Experimental and theoretical investigations were conducted using the dissolution and Fedors methods, respectively. Esterification decreased the solubility parameter from 49 (paramylon) to approximately 18 MPa1/2 (paramylon esters), indicating that the potential affinities of paramylon esters for hydrophobic organic solvents/polymers increased. A multiple regression analysis was also performed to investigate the effects of acyl chain length and degree of substitution with acyl groups on the solubility parameter. The solubility parameters of the paramylon derivatives were continuously variable from hydrophilic to -phobic. Hence, esterification with various acyl groups may control the hydrophobicities of paramylon esters, enhancing their miscibilities with various hydrophobic organic solvents and resins.  相似文献   

19.
A theory is presented on the solubility of proteins, in the hydrated as well as in the dry state, and in water as well as in organic solvents. To this effect, colloidal stability is assimilated with the solubility of the proteins, considered as hydrated entities. By means of a surface thermodynamic approach it can be shown that an increase in size of a hydrated protein must lead to insolubility, even in the absence of any change in a protein's surface properties. This can be substantiated experimentally by comparing the surface properties of immune complexes with those of their constituent immunoglobulins, as well as by comparing some of the properties of intact tobacco mosaic virus with those of its monomeric capsid subunits. Insolubilization of proteins by means of charge interactions as well as by dehydration is studied; an explanation is given of why precipitation caused by charge interactions is more likely to lead to partial irreversible denaturation than precipitation caused by protein-protein interactions brought about by partial dehydration (e.g., by salting-out). A link is established between the smallness (or even the negative value) of the interfacial tension between given proteins and various solvents and their solubility in these solvents. The energy of hydration of proteins can also be measured, and the differences between the free energies of interaction of dried and hydrated proteins with water point toward the additional processes underlying the solubilization, i.e., toward the conformational change of a protein in the process of becoming hydrated. The parameter of conformational change of a protein, while becoming hydrated, appears to be more closely linked to its degree of hydration than to its hydration energy.  相似文献   

20.
Poor solubility is a common challenge encountered during the development of high concentration monoclonal antibody (mAb) formulations, but there are currently no methods that can provide predictive information on high-concentration behavior of mAbs in early discovery. We explored the utility of methodologies used for determining extrapolated solubility as a way to rank-order mAbs based on their relative solubility properties. We devised two approaches to accomplish this: 1) vapor diffusion technique utilized in traditional protein crystallization practice, and 2) polyethylene glycol (PEG)-induced precipitation and quantitation by turbidity. Using a variety of in-house mAbs with known high-concentration behavior, we demonstrated that both approaches exhibited reliable predictability of the relative solubility properties of these mAbs. Optimizing the latter approach, we developed a format that is capable of screening a large panel of mAbs in multiple pH and buffer conditions. This simple, material-saving, high-throughput approach enables the selection of superior molecules and optimal formulation conditions much earlier in the antibody discovery process, prior to time-consuming and material intensive high-concentration studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号