首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 816 毫秒
1.
Several drugs of aziridinylbenzoquinone analogs have undergone clinical trials as potential antitumor drugs. These bioreductive compounds are designed to kill tumor cells preferentially within the hypoxic microenvironment. From our previous reported data, it was found that the synthesized 2-aziridin-1-yl-3-[(2-[2-[(3-aziridin-1-yl-1,4-dioxo-1,4-dihydronaphthalen-2-yl)thio]ethoxy]ethyl)thio]naphthoquinone (AZ-1) is a bioreductive compound with potent lethal effect on oral cancer cell, OEC-M1. It was found in this study that the lethal effect of the oral cancer cell lines OEC-M1 induced by AZ-1 was mediated through the cell cycle arrest and apoptosis pathway. The LC50 values of OEC-M1 and KB cells induced by AZ-1 compound were 0.72 and 1.02 microM, respectively, which were much lower than that of normal fibroblast cells (SF with LC50 = 5.6 microM) with more than 90% of normal fibroblasts surviving as compared to control at a concentration of AZ-1 as high as 2 microM. It was interesting to note that the LC50 of monotype diaziridinylbenzoquinone compound, diaziquone (AZQ), was 50 microM on OEC-M1 cells. Comparing the cytotoxicity of AZ-1 and AZQ on OEC-M1 cells, AZ-1 is approximately 70 times more potent than AZQ. By using Western blot, both G2/M phase cell cycle arresting protein, cyclin B, and anti-apoptotic protein, bcl-2, were expressed in OEC-M1 cell when the concentrations of AZ-1 were increased from 0.125 to 0.5 microM and then decreased from 1 to 2 microM of AZ-1 treatment as compared with control for 24 h. Both proteins were expressed most abundantly at 0.5 microM AZ-1. However, the expression of bcl-2 protein in OEC-M1 was significantly decreasing in a dose-dependent manner and was only about 50% protein level at 2 microM AZ-1 for 48h as compared with control. The cell survival check protein p53 increased from 1.72- to 2.8-fold and 1.36- to 2.16-fold at concentrations of AZ-1 from 0.125 to 2.0 microM in a dose-dependently increasing manner on OEC-M1 as compared with control for 24 and48 h treatments, respectively. The apoptotic-related phenomena were observed, which included apoptotic body formation and the enzyme activity change of caspase-3. The apoptotic bodies and caspase-3 activity of OEC-M1 were induced only at 2 microM AZ-1 for a 24h treatment, yet apoptotic body formation was observed at as low as 0.5 microM AZ-1 and in a dose-dependently increasing manner for a 48 h treatment. The caspase-3 activity was increased 20.6%, 26.8%, and 84.2%, respectively, at 0.5, 1, and 2muM concentrations of AZ-1 for a 48 h treatment as compared with control. These results indicate that AZ-1 induced the cell death of OEC-M1 through the G2/M phase arrest of cell cycle and anti-apoptosis first and then apoptosis following a 48 h treatment. All of the pathway might be associated with bcl-2 and p53 protein expression. We propose that the AZ-1 could be used as anti-oral cancer drug for future studies with animal models.  相似文献   

2.
Chen J  Chen Y  Zhu W  Han Y  Han B  Xu R  Deng L  Cai Y  Cong X  Yang Y  Hu S  Chen X 《Journal of cellular biochemistry》2008,103(6):1718-1731
Lysophosphatidic acid (LPA) is a bioactive phospholipid with diverse functions mediated via G-protein-coupled receptors (GPCRs). In view of the elevated levels of LPA in acute myocardial infarction (MI) patients we have conducted studies aimed at identifying specific LPA receptor subtypes and signaling events that may mediate its actions in hypertrophic remodeling. Experiments were carried out in cultured neonatal rat cardiomyocytes (NRCMs) exposed to LPA and in a rat MI model. In NRCMs, LPA-induced hypertrophic growth was completely abrogated by DGPP, an LPA1/LPA3 antagonist. The LPA3 agonist OMPT, but not the LPA2 agonist dodecylphosphate, promoted hypertrophy as examined by 3[H]-Leucine incorporation, ANF-luciferase expression and cell area. In in vivo experiments, LPA1, LPA2 and LPA3 mRNA levels as well as LPA1 and LPA3 protein levels increased together with left ventricular remodeling (LVRM) after MI. In addition, LPA stimulated the phosphorylation of Akt and p65 protein and activated NF-kappaB-luciferase expression. Inhibitors of PI3K (wortmannin), mTOR (rapamycin), and NF-kappaB (PDTC or SN50) effectively prevented LPA-induced 3[H]-Leucine incorporation and ANF-luciferase expression. Furthermore, ERK inhibitors (U0126 and PD98059) suppressed LPA-stimulated activation of NF-kappaB and p65 phosphorylation whereas wortmannin showed no effect on NF-kappaB activation. Our findings indicate that LPA3 and/or LPA1 mediate LPA-induced hypertrophy of NRCMs and that LPA1 and LPA3 may be involved in LVRM of MI rats. Moreover, Akt and NF-kappaB signaling pathways independently implicate in LPA-stimulated myocardial hypertrophic growth.  相似文献   

3.
Oxidant stress plays a significant role in hypoxic-ischemic injury to the susceptible microvascular endothelial cells. During oxidant stress, lysophosphatidic acid (LPA) concentrations increase. We explored whether LPA caused cytotoxicity to neuromicrovascular cells and the potential mechanisms thereof. LPA caused a dose-dependent death of porcine cerebral microvascular as well as human umbilical vein endothelial cells; cell death appeared oncotic rather than apoptotic. LPA-induced cell death was mediated via LPA(1) receptor, because the specific LPA(1) receptor antagonist THG1603 fully abrogated LPA's effects. LPA decreased intracellular GSH levels and induced a p38 MAPK/JNK-dependent inducible nitric oxide synthase (NOS) expression. Pretreatment with the antioxidant GSH precursor N-acetyl-cysteine (NAC), as well as with inhibitors of NOS [N(omega)-nitro-l-arginine (l-NNA); 1400W], significantly prevented LPA-induced endothelial cell death (in vitro) to comparable extents; as expected, p38 MAPK (SB203580) and JNK (SP-600125) inhibitors also diminished cell death. LPA did not increase indexes of oxidation (isoprostanes, hydroperoxides, and protein nitration) but did augment protein nitrosylation. Endothelial cytotoxicity by LPA in vitro was reproduced ex vivo in brain and in vivo in retina; THG1603, NAC, l-NNA, and combined SB-203580 and SP600125 prevented the microvascular rarefaction. Data implicate novel properties for LPA as a modulator of the cell redox environment, which partakes in endothelial cell death and ensued neuromicrovascular rarefaction.  相似文献   

4.
Poor viability of transplanted mesenchymal stem cells (MSCs) in the infracted heart has limited their therapeutic efficacy in cardiac repair after myocardial infarction. We previously demonstrated that hypoxia and serum deprivation (hypoxia/SD) induced mitochondria‐dependent apoptosis in MSCs, while lysophosphatidic acid (LPA) could almost completely block this apoptotic process. However, the role of endoplasmic reticulum (ER) stress and its upstream signaling events in hypoxia/SD‐induced MSC apoptosis remain largely unknown. Here we found that hypoxia/SD‐induced MSC apoptosis was associated with ER stress, as shown by the induction of CHOP expression and procaspase‐12 cleavage, while the effects were abrogated by LPA treatment, suggesting ER stress is also a target of LPA. Furthermore, hypoxia/SD induced p38 activation, inhibition of which resulted in decreases of apoptotic cells, procaspase‐12 cleavage and mitochondrial cytochrome c release that function in parallel in MSC apoptosis. Unexpectedly, p38 inhibition enhanced hypoxia/SD‐induced CHOP expression. Interestingly, p38 activation, a common process mediating various biological effects of LPA, was inhibited by LPA in this study, and the regulation of p38 pathway by LPA was dependent on LPA1/3/Gi/ERK1/2 pathway‐mediated MKP‐1 induction but independent of PI3K/Akt pathway. Collectively, our findings indicate that ER stress is a target of LPA to antagonize hypoxia/SD‐induced MSC apoptosis, and the modulation of mitochondrial and ER stress‐associated apoptotic pathways by LPA is at least partly dependent on LPA1/3/Gi/ERK/MKP‐1 pathway‐mediated p38 inhibition. This study may provide new anti‐apoptotic targets for elevating the viability of MSCs for therapeutic potential of cardiac repair. J. Cell. Biochem. 111: 811–820, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
Two steroidal saponins, tigogenin hexasaccharide-1 (TGHS-1, (25R)-5alpha-spirostan-3beta-yl 4-O-[2-0-[3-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl]-3-0-[4-0- (alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl]-beta-D-glucopyranosyl]-3-D- galactopyranoside) and tigogenin hexasaccharide-2 (TGHS-2, (25R)-5alpha-spirostan-3beta-yl 4-O-[2-0-[3-0-(beta-D-glucopyranosyl)-beta-D-glucopyranosyl]-3-0-[4-0- (alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl]-beta-D-glucopyranosyl]beta-D-galactopyranoside), were isolated from the fresh bulbs of Camassia cusickii. In murine leukemic L1210 cells, both compounds showed cytotoxicity with an EC50 value of 0.06 microM. The morphological observation revealed that TGHS-1 and TGHS-2 induced shrinkage in cell soma and chromatin condensation, suggesting apoptotic cell death. The cell death was confirmed to be apoptosis by Annexin V binding to phosphatidylserine in the cell membrane and excluding propidium iodide. A typical apoptotic DNA ladder and the cleavage of caspase-3 were observed after treatment with TGHS-1 and TGHS-2. In the presence of both the compounds, cells with sub-G1 DNA content were detected by flow cytometric analysis, indicating that TGHS-1 and TGHS-2 (each EC50 value of 0.1 microM) are the most powerful apoptotic saponins known. These results suggest that TGHS-1 and TGHS-2 induce apoptotic cell death through caspase-3 activation.  相似文献   

6.
LPA (lysophosphatidic acid) is a bioactive phospholipid having diverse effects on various types of tissues. When NMuMG (normal murine mammary gland) cells were cultured in the presence of 0-10 μM LPA, cell numbers were increased by dose dependency for the 6-day culture periods (P<0.05). In DNA synthesis assay, 10 μM LPA induced 4.5-fold more DNA synthesis compared with control (P<0.05). In addition, the cultured cell density in the given area was increased by LPA treatment. MMP (matrix metalloproteinase) inhibitor GM6001 and EGFR [EGF (epidermal growth factor) receptor] tyrosine kinase inhibitor AG1478 [tyrphostin AG1478, 4-(3-chloroanilino)-6,7-dimethoxyquinazoline] significantly decreased LPA-induced DNA synthesis and cell growth without cell death (P<0.05). To test the hypothesis that LPA-induced cell growth is mediated through LPA subtype receptors, LPA subtype receptor gene expressions were amplified by PCR. NMuMG cells expressed LPA1 and LPA2 receptor genes in the presence of 10% FBS (fetal bovine serum). LPA treatments increased ERK1/2 (extracellular-signal-regulated kinase) phosphorylation at 30 min and then dephosphorylated at 2 h after treatment. LPA treatment phosphorylated at tyrosine residues on a variety of Gi and PI3-dependent signal transducers in NMuMG cells. These results suggest that LPA subtype receptors play a role as the active transactivator of EGFR-associated kinases as well as direct growth regulator in mammary tissues.  相似文献   

7.
The effect of N-methyl-D-aspartate (NMDA) receptor antagonists on cell viability was studied in rat primary cortical cells. NMDA antagonists [MK-801 and 2-amino-5-phosphonovalerate (APV)] induced cell shrinkage, nuclear condensation or fragmentation, and internucleosomal DNA fragmentation. Treatment of cells with MK-801 (an NMDA antagonist) for 1-2 days induced apoptotic cell death in a dose-dependent manner (1 nM to 10 microM). NMDA (25 microM), however, inhibited the MK-801 (0.1 microM)-induced apoptotic cell death. MK-801 and APV decreased the concentration of intracellular calcium ion. Activation of caspase-3 was accompanied by MK-801-induced cell death in a dose-dependent manner, and an inhibitor of caspase-3 reduced the cell death. Further, cycloheximide (0.2 microg/ml) completely protected the cells from MK-801-induced apoptotic cell death and caspase-3 activation. Insulin-like growth factor I completely attenuated MK-801-induced apoptotic cell death and caspase-3 activation. These results demonstrated that the moderate NMDA receptor activation is probably involved in the survival signal of the neuron.  相似文献   

8.
Excessive oxidative radical production has been implicated in a variety of neurodegerative processes including NMDA (N-methyl-D-aspartate) mediated excitotoxicity. To determine the relationship of oxidation to NMDA-receptor mediated neuronal death, we exposed rat primary cortical neuronal cultures to ferrous sulfate and the fluorescent dyes dichlorofluorescin diacetate (H(2)DCF) and propidium iodide (PI) to monitor reactive oxygen species (ROS) and cell death, respectively in the same cultures. Ferrous sulfate (FeSO(4)) caused a dose-dependent increase in cellular oxidation with an ED(50) of approximately 136 microM. Levels of oxidation increased over time reaching maximum levels between 15 and 25 min. Ferrous sulfate (ED(50) approximately 241 microM) treatment for 25 min caused a delayed and progressive neuronal death that was comparable to NMDA (100 microM, 25 min) delayed neuronal death. NMDA (100 microM, 25 min) alone did not result in measurable increases of DCF fluorescence. However, when combined with 40 microM FeSO(4), NMDA dose-dependently increased H(2)DCF fluorescence. Despite the increase in DCF oxidation, combinations of FeSO(4) with NMDA did not synergize or accelerate NMDA-receptor mediated or glutamate-mediated excitotoxicity. Although excessive amounts FeSO(4) induced oxidation can cause delayed neuronal death, these findings suggest that oxidative stress is not the key factor in triggering the NMDA mediated excitotoxic cascade.  相似文献   

9.
Zheng ZQ  Fang XJ  Qiao JT 《生理学报》2004,56(2):163-171
应用DNA电泳分析、HO33342和TUNEL染色法、以及部分地使用透射电镜技术,检测了不同浓度的溶血磷脂酸(1ysophosphatidic acid,LPA)对离体培养的小鼠大脑皮层神经元存活情况的影响.结果显示,低浓度的LPA(0.1~30μmol/L)对去血清培养所致的皮层神经元凋亡有浓度依赖性的保护作用,而较高浓度的LPA(>50 μmol/L)不仅不表现这种保护作用,而且可引致培养在含血清的完全培养基中的皮层神经元出现凋亡.以上结果表明,适当浓度的LPA对凋亡的皮层神经元起着保护因子或抗凋亡因子的作用,而较高浓度的LPA则起着促凋亡因子的作用.  相似文献   

10.
11.
The peroxynitrite scavenging ability of Procyanidins from Vitis vinifera L. seeds was studied in homogeneous solution and in human umbilical endothelial cells (EA.hy926 cell line) using 3-morpholinosydnonimine (SIN-1) as peroxynitrite generator. In homogeneous phase procyanidins dose-dependently inhibited 2',7'-dichloro-dihydrofluorescein (DCFH) oxidation induced by SIN-1 with an IC50 value of 0.28 microM. When endothelial cells (EC) were exposed to 5 mM SIN-1, marked morphological alterations indicating a necrotic cell death (cell viability reduced to 16 +/- 2.5%) were observed. Cell damage was suppressed by procyanidins, with a minimal effective concentration of 1 microM (cell morphology and integrity completely recovered at 20 microM). Cellular localization of procyanidins in EC was confirmed using a new staining procedure and site-specific peroxyl radical inducers: AAPH and cumene hydroperoxide (CuOOH). Endothelial cells (EC) pre-incubated with procyanidins (20 microM) and exposed to FeCl3/K3Fe(CN)6 showed a characteristic blue staining, index of a site-specific binding of procyanidins to EC. Procyanidins dose-dependently inhibit the AAPH induced lipid oxidation and reverse the consequent loss of cell viability, but were ineffective when oxidation was driven at intracellular level (CuOOH). This demonstrates that the protective effect is due to their specific binding to the outer surface of EC thus to quench exogenous harmful radicals. Procyanidins dose-dependently relaxed human internal mammary aortic (IMA) rings (with intact endothelium) pre-contracted with norepinephrine (NE), showing a maximal vasorelaxant effect (85 +/- 9%) at 50 microM (catechin: 18 +/- 2% relaxation at 50 microM). This effect was completely abolished when IMA-rings were de-endothelized and when IMA-rings with intact endothelium were pretreated with L-NMMA or with the soluble guanylate cyclase inhibitor, ODQ. Pre-incubation with indomethacin reduces (by almost 50%) the vasodilating effect of procyanidins, indicating the involvement also of a COX-dependent mechanism. This was confirmed in another set of experiments, where procyanidins dose-dependently stimulate the prostacyclin (PGI2) release, reaching a plateau between 25 and 50 microM. Finally, pre-incubation of IMA-rings with procyanidins (from 6.25 to 25 microM) resulted in a dose-dependent prevention of the endothelin-1 (ET-1) vasoconstriction. The ability of procyanidins to prevent peroxynitrite attack to vascular cells, by layering on the surface of coronary EC, and to enhance endothelial NO-synthase-mediated relaxation in IMA rings provide further insight into the molecular mechanisms through which they exert cardioprotective activity in ischemia/reperfusion injury in vivo.  相似文献   

12.
Differentiation-inducing factor-1 (DIF-1) is a chlorinated alkylphenone (small lipophilic hormone) that induces stalk cell formation in the cellular slime mold Dictyostelium discoideum. Recent studies have revealed that DIF-1 inhibits growth and induces the differentiation of mammalian tumor cells. The present study examines the effects of DIF-1 on rat cortical neurons in primary culture. We found that DIF-1 induced rapid neuronal cell death. The release of lactate dehydrogenase (LDH), as an indicator of cell death, increased dose-dependently with DIF-1. The release of LDH was inhibited by the N-methyl-D-aspartate (NMDA) receptor antagonists MK801 and AP5, suggesting that the NMDA receptor is involved in the induction of cell death by DIF-1. However, glutamate cytotoxicity could not explain the entire action of DIF-1 on neurons because the estimated concentration of glutamate around DIF-1-treated neurons was below 50 microM and DIF-1 caused more severe cell death than 500 microM glutamate. We discovered that another portion of DIF-1 cytotoxicity is independent of the NMDA receptor; that is, coaddition of DIF-1 and MK801 induced dendritic beading and increased expression of the immediate early genes c-fos and zif/268. These results indicate that DIF-1 induces rapid cell death via both NMDA receptor-dependent and -independent pathways in rat cortical neurons.  相似文献   

13.
Altered 1-oleoyl-lysophosphatidic acid (LPA, 100 microM)-stimulated calcium responses occur in B-lymphoblast cell lines from bipolar disorder patients, but the mechanism(s) involved is uncertain. Lysophosphatidic acid shares a structurally similar fatty acid side chain with the diacylglycerol analogue, 1-oleoyl-2-acetyl-sn-glycerol (OAG), a known activator of subtypes 3, 6 and 7 of the canonical transient receptor potential (TRPC) cation channel subfamily. Accordingly, the objective of this study was to determine whether the LPA-stimulated calcium response in B-lymphoblasts is mediated, in part, through this TRPC channel subfamily. Divalent cation selectivity in response to thapsigargin, LPA and OAG were used to distinguish TRPC-like character of the responses to these agents in BLCLs. The sensitivity to gadolinium, an inhibitor of capacitative calcium channels, was used to determine the store-operated nature of the responses. The TRPC isoforms that are present in BLCLs as identified by immunoblotting and/or PCR include TRPC1, 3 and 5. Minimal barium influx in calcium-free buffer was observed following thapsigargin stimulation. However, LPA stimulated barium influx of a magnitude similar to that induced by OAG. Thapsigargin-provoked calcium influx was completely inhibited by gadolinium (10 microM), whereas LPA and OAG-stimulated responses were partially inhibited and potentiated, respectively. The results suggest that 100 microM LPA stimulates calcium entry through channels with characteristics similar to TRPC3, as TRPC6 and 7 are absent in B-lymphoblasts.  相似文献   

14.
Riluzole is neuroprotective in patients with amyotrophic lateral sclerosis and may also protect dopamine (DA) neurons in Parkinson's disease. We examined the neuroprotective potential of riluzole on DA neurons using primary rat mesencephalic cultures and human dopaminergic neuroblastoma SH-SY5Y cells. Riluzole (up to 10 microM:) alone affected neither the survival of DA neurons in primary cultures nor the growth of SH-SY5Y cells after up to 72 h. Riluzole (1-10 microM:) dose-dependently reduced DA cell loss caused by exposure to MPP(+) in both types of cultures. These protective effects were accompanied by a dose-dependent decrease of intracellular ATP depletion caused by MPP(+) (30-300 microM:) in SH-SY5Y cells without affecting intracellular net NADH content, suggesting a reduction of cellular ATP consumption rather than normalization of mitochondrial ATP production. Riluzole (1-10 microM:) also attenuated oxidative injury in both cell types induced by exposure to L-DOPA and 6-hydroxydopamine, respectively. Consistent with its antioxidative effects, riluzole reduced lipid peroxidation induced by Fe(3+) and L-DOPA in primary mesencephalic cultures. Riluzole (10 microM) did not alter high-affinity uptake of either DA or MPP(+). However, in the same cell systems, riluzole induced neuronal and glial cell death with concentrations higher than those needed for maximal protective effects (> or =100 microM:). These data demonstrate that riluzole has protective effects on DA neurons in vitro against neuronal injuries induced by (a) impairment of cellular energy metabolism and/or (b) oxidative stress. These results provide further impetus to explore the neuroprotective potential of riluzole in Parkinson's disease.  相似文献   

15.
The synthesis and biological activity of a series of hybrids 1-5 prepared combining a benzo[4,5]imidazo[1,2-d][1,2,4]thiadiazole and different benzoheterocyclic alpha-bromoacryloyl amides have been described and their structure-activity relationships discussed. All these hetero-bifunctional compounds were highly cytotoxic against the human myeloid leukaemia cell lines HL-60 and U937 (IC(50) 0.24-1.72microM), significantly superior to that of both alkylating units alone. In human myeloid leukaemia HL-60 cells we observed that these compounds suppress survival and proliferation by triggering morphological changes and internucleosomal DNA fragmentation characteristic of apoptotic cell death. The apoptosis induced by these compounds is mediated by caspase-3 activation and is also associated to an early release of cytochrome c from the mitochondria.  相似文献   

16.
In this article, the effects of allicin, a biological active compound of garlic, on HL60 and U937 cell lines were examined. Allicin induced growth inhibition and elicited apoptotic events such as blebbing, mitochondrial membrane depolarization, cytochrome c release into the cytosol, activation of caspase 9 and caspase 3 and DNA fragmentation. Pretreatment of HL60 cells with cyclosporine A, an inhibitor of the mitochondrial permeability transition pore (mPTP), inhibited allicin-treated cell death. HL60 cell survival after 1 h pretreatment with cyclosporine A, followed by 16 h in presence of allicin (5 microM) was approximately 80% compared to allicin treatment alone (approximately 50%). Also N-acetyl cysteine, a reduced glutathione (GSH) precursor, prevented cell death. The effects of cyclosporine A and N-acetyl cysteine suggest the involvement of mPTP and intracellular GSH level in the cytotoxicity. Indeed, allicin depleted GSH in the cytosol and mitochondria, and buthionine sulfoximine, a specific inhibitor of GSH synthesis, significantly augmented allicin-induced apoptosis. In HL60 cells treated with allicin (5 microM, 30 min) the redox state for 2GSH/oxidized glutathione shifted from EGSH -240 to -170 mV. The same shift was observed in U937 cells treated with allicin at a higher concentration for a longer period of incubation (20 microM, 2 h). The apoptotic events induced by various concentrations of allicin correlate to intracellular GSH levels in the two cell types tested (HL60: 3.7 nmol/10(6) cells; U937: 7.7 nmol/10(6) cells). The emerging mechanistic basis for the antiproliferative function of allicin, therefore, involves the activation of the mitochondrial apoptotic pathway by GSH depletion and by changes in the intracellular redox status.  相似文献   

17.
Micromolar concentrations (0.5 approximately 5 microM) of all-trans geranylgeranoic acid (GGA) induced cell death in a guinea pig cell line, 104C1, whereas under the same conditions GGA was unable to kill 104C1/O4C, a clone established from 104C1 cells by transfection of them with the human phospholipid hydroperoxide glutathione peroxidase (PHGPx) gene. GGA (5 microM) induced a loss of the mitochondrial inner membrane potential (DeltaPsim) in 104C1 cells in 2 h, and their apoptotic cell death became evident in 6 h. On the other hand, 104C1/O4C cells were resistant to loss of DeltaPsim and showed intact morphology until at least 24 h after addition of 10 microM GGA. Dihydroethidine, superoxide-sensitive probe, was immediately oxidized 15 min after addition of GGA in both 104C1 and 104C1/O4C cells. The peroxide-sensitive probe 2',7'-dichlorofluorescin diacetate (H2-DCF-DA) was strongly oxidized in 104C1 cells 4 h after the addition of 2.5 microM GGA, but not in 104C1/O4C cells even in the presence of 10 microM GGA. The present results suggest that GGA induced a hyper-production of superoxide and subsequently peroxides, which in turn may have led to dissipation of the DeltaPsim and final apoptotic cell death in 104C1 cells.  相似文献   

18.
N-Tosyl-L-phenylalanyl chloromethyl ketone (TPCK), a chymotrypsin-like serine protease inhibitor, affected apoptosis in human monocytic THP.1 cells differently dependent on both the concentration used and the apoptotic stimulus. TPCK (50 - 75 microM) induced both biochemical and ultrastructural changes characteristic of apoptosis, including proteolysis of poly (ADP-ribose) polymerase (PARP) and lamins together with formation of large kilobase pair fragments of DNA, particularly of 30 - 50 and 200 - 300 kilobase pairs in length but without internucleosomal cleavage of DNA. The induction of apoptosis by TPCK also involved the processing of CPP32 and Mch 3 to their catalytically active subunits. Benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethyl ketone (Z-VAD.FMK), an ICE-like protease inhibitor, completely prevented all the biochemical and morphological changes induced by TPCK demonstrating the involvement of ICE-like proteases in the execution phase of apoptosis. Lower concentrations of TPCK (5 - 20 microM) prevented internucleosomal cleavage of DNA induced by other apoptotic stimuli. TPCK (10 microM) inhibited cell death induced by etoposide but potentiated that induced by cycloheximide demonstrating that it differentially affected apoptosis in THP.1 cells dependent on the stimulus used. These results are consistent with at least three distinct TPCK targets, one being important for cell survival, the second in facilitating internucleosomal cleavage of DNA and the third in the modulation of apoptosis induced by different apoptotic stimuli.  相似文献   

19.
Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator and an analog of the growth factor-like phospholipid lysophosphatidic acid (LPA). cPA has a unique cyclic phosphate ring at the sn-2 and sn-3 positions of its glycerol backbone. We showed before that a metabolically stabilized cPA derivative, 2-carba-cPA, relieved osteoarthritis pathogenesis in vivo and induced hyaluronic acid synthesis in human osteoarthritis synoviocytes in vitro. This study focused on hyaluronic acid synthesis in human fibroblasts, which retain moisture and maintain health in the dermis. We investigated the effects of cPA and LPA on hyaluronic acid synthesis in human fibroblasts (NB1RGB cells). Using particle exclusion and enzyme-linked immunosorbent assays, we found that both cPA and LPA dose-dependently induced hyaluronic acid synthesis. We revealed that the expression of hyaluronan synthase 2 messenger RNA and protein is up-regulated by cPA and LPA treatment time dependently. We then characterized the signaling pathways up-regulating hyaluronic acid synthesis mediated by cPA and LPA in NB1RGB cells. Pharmacological inhibition and reporter gene assays revealed that the activation of the LPA receptor LPAR1, Gi/o protein, phosphatidylinositol-3 kinase (PI3K), extracellular-signal-regulated kinase (ERK), and cyclic adenosine monophosphate response element-binding protein (CREB) but not nuclear factor κB induced hyaluronic acid synthesis by the treatment with cPA and LPA in NB1RGB cells. These results demonstrate for the first time that cPA and LPA induce hyaluronic acid synthesis in human skin fibroblasts mainly through the activation of LPAR1-Gi/o followed by the PI3K, ERK, and CREB signaling pathway.  相似文献   

20.
Cadmium, a well-known environmental hazard, has caused serious health problems in humans and animals. Accumulating evidence suggests the cadmium toxicity is mediated by oxidative stress-induced cell death. However, the molecular signaling underlying cadmium-induced apoptosis remains unclear. In this study, we demonstrate here that cadmium induced mixed types of cell death including primary apoptosis (early apoptosis), secondary necrosis (late apoptosis), and necrosis in normal human lung cells, MRC-5, as revealed by chromatin condensation, phosphatidylserine (PS) externalization, and hypodiploid DNA content. The total apoptotic cells reached a plateau of around 40.0% after 24 h exposure of 100 microM cadmium. Pretreatment with Z-Val-Ala-Asp-fluoromethylketone (Z-VAD-fmk), a broad spectrum of caspase inhibitor, could not rescue apoptotic cells from cadmium toxicity. Coincidently, we failed to detect the activation of pro-caspase-3 and cleavage of PARP by immunoblot, which implies the apoptogenic activity of cadmium in MRC-5 cells is caspase-independent. JC-1 staining also indicated that mitochondrial depolarization is a prelude to cadmium-induced apoptosis, which was accompanied by a translocation of caspase-independent pro-apoptotic factor apoptosis-inducing factor (AIF) into the nucleus as revealed by the immunofluorescence assay. In summary, this study demonstrated for the first time that cadmium induced a caspase-independent apoptotic pathway through mitochondria-mediated AIF translocation into the nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号