首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Calcium is a crucial messenger in many growth and developmental processes in plants. The central mechanism governing how plant cells perceive and respond to environmental stimuli is calcium signal transduction, a process through which cellular calcium signals are recognized, decoded, and transmitted to elicit downstream responses. In the initial decoding of calcium signals, Ca2+ sensor proteins that bind Ca2+ and activate downstream signaling components are implicated, thereby regulating specific physiological and biochemical processes. After calcineurin B-like proteins (CBLs) sense these Ca2+ signatures, these proteins interact selectively with CBL-interacting protein kinases (CIPKs), thereby forming CBL/CIPK complexes, which are involved in decoding calcium signals. Therefore, specificity, diversity, and complexity are the main characteristics of the CBL-CIPK signaling system. However, additional CBLs, CIPKs, and CBL/CIPK complexes remain to be identified in plants, and the specific functions of their abiotic and biotic stress signaling will need to be further dissected. Therefore, a much-needed synthesis of recent findings is important to further the study of CBL-CIPK signaling systems. Here, we review the structure of CBLs and CIPKs, discuss the current knowledge of CBL–CIPK pathways that decode calcium signals in Arabidopsis, and link plant responses to a variety of environmental stresses with specific CBL/CIPK complexes. This will provide a foundation for future research on genetically engineered resistant plants with enhanced tolerance to various environmental stresses.  相似文献   

3.
Intracellular release of calcium ions belongs to the earliest events in cellular stress perception. The molecular mechanisms integrating signals from different environmental cues and translating them into an optimized response are largely unknown. We report here the functional characterization of CIPK1, a protein kinase interacting strongly with the calcium sensors CBL1 and CBL9. Comparison of the expression patterns indicates that the three proteins execute their functions in the same tissues. Physical interaction of CIPK1 with CBL1 and CBL9 targets the kinase to the plasma membrane. We show that, similarly to loss of CBL9 function, mutation of either CBL1 or CIPK1 renders plants hypersensitive to osmotic stress. Remarkably, in contrast to the cbl1 mutant and similarly to the cbl9 mutant, loss of CIPK1 function impairs abscisic acid (ABA) responsiveness. We therefore suggest that, by alternative complex formation with either CBL1 or CBL9, the kinase CIPK1 represents a convergence point for ABA-dependent and ABA-independent stress responses. Based on our genetic, physiological and protein-protein interaction data, we propose a general model for information processing in calcium-regulated signalling networks.  相似文献   

4.
5.
Calcium signals mediate a multitude of plant responses to external stimuli. Calcineurin B-like (CBL) proteins and their target kinases, CBL-interacting protein kinases (CIPKs), represent important relays in plant calcium signaling. CBL interacts with CIPK through a conserved motif (NAF/FISL motif) within the C-terminal regulatory domain. To better understand the functional role of the CBL-CIPK system, we determined the crystal structure of AtCBL2 in complex with the regulatory domain of AtCIPK14 at 1.2 Å resolution. The NAF/FISL motif is inserted into a hydrophobic crevice within AtCBL2, accompanied by a large displacement of the helices and loop on the opposite side of the NAF/FISL motif from the C-terminal region, which shields the hydrophobic crevice in free form. Ca2+ are coordinated within four EF hands in AtCBL2 in bound form. This calcium coordination pattern differs from that in the structure of the SOS3-SOS2 complex previously reported. Structural comparison of the two structures shows that the recognition of CBL by CIPK is performed in a similar manner, but inherent interactions confer binding affinity and specificity.  相似文献   

6.
大豆类钙调磷酸酶B亚基GmCBL1互作候选蛋白的筛选   总被引:2,自引:0,他引:2  
Ca2+是非生物胁迫信号转导途径中的重要信号分子,植物类钙调磷酸酶B亚基蛋白(CBL,calcineurin B-like proteins)是一类重要的钙信号受体蛋白,主要通过与其他蛋白的特异结合传递信号,使植物形成对非生物胁迫的响应。本实验室已经获得大豆Gm CBL1基因,功能鉴定显示Gm CBL1增强了转基因拟南芥对非生物胁迫的耐性。为了进一步研究Gm CBL1的作用机理,本研究构建诱饵载体p GBKT7::Gm CBL1,利用酵母双杂交技术筛选大豆Gm CBL1的互作蛋白。通过对筛选获得的106个蛋白基因测序和Blast比对分析,并根据其可能的生理功能对这些候选蛋白归类,整理得到4类蛋白:能量代谢相关蛋白、修饰蛋白、防御蛋白、钙信号转导相关蛋白。筛选得到候选蛋白的功能预测初步表明,大豆Gm CBL1参与多条信号途径,为进一步研究探索大豆CBL介导的抗逆信号转导途径奠定了基础。  相似文献   

7.
8.
Arabidopsis thaliana calcineurin B-like proteins (CBLs) interact specifically with a group of CBL-interacting protein kinases (CIPKs). CBL/CIPK complexes phosphorylate target proteins at the plasma membrane. Here, we report that dual lipid modification is required for CBL1 function and for localization of this calcium sensor at the plasma membrane. First, myristoylation targets CBL1 to the endoplasmic reticulum. Second, S-acylation is crucial for endoplasmic reticulum-to-plasma membrane trafficking via a novel cellular targeting pathway that is insensitive to brefeldin A. We found that a 12-amino acid peptide of CBL1 is sufficient to mediate dual lipid modification and to confer plasma membrane targeting. Moreover, the lipid modification status of the calcium sensor moiety determines the cellular localization of preassembled CBL/CIPK complexes. Our findings demonstrate the importance of S-acylation for regulating the spatial accuracy of Ca2+-decoding proteins and suggest a novel mechanism that enables the functional specificity of calcium sensor/kinase complexes.  相似文献   

9.
Shi S  Chen W  Sun W 《Proteomics》2011,11(24):4712-4725
Many environmental stimuli, including light, biotic and abiotic stress factors, induce changes in cellular Ca(2+) concentrations in plants. Such Ca(2+) signatures are perceived by sensor molecules such as calcineurin B-like (CBL) proteins. AtCBL1, a member of the CBL family which is highly inducible by multiple stress signals, is known to function in the salt stress signal transduction pathway and to positively regulate the plant tolerance to salt. To shed light into the molecular mechanisms of the salt stress response mediated by AtCBL1, a two-dimensional DIGE proteomic approach was applied to identify the differentially expressed proteins in Arabidopsis wild-type and cbl1 null mutant plants in response to salt stress. Seventy-three spots were found altered in expression by least 1.2-fold and 50 proteins were identified by MALDI-TOF/TOF-MS, including some well-known and novel salt-responsive proteins. These proteins function in various processes, such as signal transduction, ROS scavenging, energy production, carbon fixation, metabolism, mRNA processing, protein processing and structural stability. Receptor for activated C kinase 1C (RACK1C, spot 715), a WD40 repeat protein, was up-regulated in the cbl1 null mutant, and two rack1c mutant lines showed decreased tolerance to salt stress, suggesting that RACK1C plays a role in salt stress resistance. In conclusion, our work demonstrated the advantages of the proteomic approach in studies of plant biology and identified candidate proteins in CBL1-mediated salt stress signaling network.  相似文献   

10.
The family of calcineurin B-like (CBL) proteins is a unique group of Ca2+ sensors in plants. CBLs relay the calcium signal by interacting with and regulating the family of CBL-interacting protein kinases (CIPKs). Extensive studies have demonstrated that the CBL-CIPK complexes mediate plant responses to a variety of external stresses. However, there are few reports on the CBL-CIPK involved in cold stress responses. In this study, we analyzed expression of CIPK7 and CBL1 in Arabidopsis during cold treatments. Expression of CIPK7 was induced by cold, and CIPK7 interacted with CBL1 in vitro. Moreover, affinity chromatography purification of CIPK7 from Arabidopsis plants using CBL1 suggested that CIPK7 may associate with CBL1 in vivo. Expression of CBL1 was cold inducible, and CBL1 had a role in regulating cold response. By comparing expression patterns of CIPK7 between wild-type and cbl1 mutant plants, we found the induction of CIPK7 by cold stress was influenced by CBL1. This is the first report to demonstrate that CIPK7 may play a role in cold response via its interaction with CBL1.  相似文献   

11.
The calcineurin B-like protein–CBL-interacting protein kinase (CBL–CIPK) signaling pathway in plants is a Ca2+-related pathway that responds strongly to both abiotic and biotic environmental stimuli. The CBL–CIPK system shows variety, specificity, and complexity in response to different stresses, and the CBL–CIPK signaling pathway is regulated by complex mechanisms in plant cells. As a plant-specific Ca2+ sensor relaying pathway, the CBL–CIPK pathway has some crosstalk with other signaling pathways. In addition, research has shown that there is crosstalk between the CBL–CIPK pathway and the low-K+ response pathway, the ABA signaling pathway, the nitrate sensing and signaling pathway, and others. In this paper, we summarize and review research discoveries on the CBL–CIPK network. We focus on the different modification and regulation mechanisms (phosphorylation and dephosphorylation, dual lipid modification) of the CBL–CIPK network, the expression patterns and functions of CBL–CIPK network genes, the responses of this network to abiotic stresses, and its crosstalk with other signaling pathways. We also discuss the technical research methods used to analyze the CBL–CIPK network and some of its newly discovered functions in plants.  相似文献   

12.
Calcium serves as a critical messenger in many adaptation and developmental processes. Cellular calcium signals are detected and transmitted by sensor molecules such as calcium-binding proteins. In plants, the calcineurin B-like protein (CBL) family represents a unique group of calcium sensors and plays a key role in decoding calcium transients by specifically interacting with and regulating a family of protein kinases (CIPKs). We report here that the CBL protein CBL10 functions as a crucial regulator of salt tolerance in Arabidopsis. Cbl10 mutant plants exhibited significant growth defects and showed hypersensitive cell death in leaf tissues under high-salt conditions. Interestingly, the Na(+) content of the cbl10 mutant, unlike other salt-sensitive mutants identified thus far, was significantly lower than in the wild type under either normal or high-salt conditions, suggesting that CBL10 mediates a novel Ca(2+)-signaling pathway for salt tolerance. Indeed, the CBL10 protein physically interacts with the salt-tolerance factor CIPK24 (SOS2), and the CBL10-CIPK24 (SOS2) complex is associated with the vacuolar compartments that are responsible for salt storage and detoxification in plant cells. These findings suggest that CBL10 and CIPK24 (SOS2) constitute a novel salt-tolerance pathway that regulates the sequestration/compartmentalization of Na(+) in plant cells. Because CIPK24 (SOS2) also interacts with CBL4 (SOS3) and regulates salt export across the plasma membrane, our study identifies CIPK24 (SOS2) as a multi-functional protein kinase that regulates different aspects of salt tolerance by interacting with distinct CBL calcium sensors.  相似文献   

13.
The Arabidopsis calcineurin B-like calcium sensor proteins (AtCBLs) interact with a group of serine-threonine protein kinases (AtCIPKs) in a calcium-dependent manner. Here we identify a 24 amino acid domain (NAF domain) unique to these kinases as being required and sufficient for interaction with all known AtCBLs. Mutation of conserved residues either abolished or significantly diminished the affinity of AtCIPK1 for AtCBL2. Comprehensive two-hybrid screens with various AtCBLs identified 15 CIPKs as potential targets of CBL proteins. Database analyses revealed additional kinases from Arabidopsis and other plant species harbouring the NAF interaction module. Several of these kinases have been implicated in various signalling pathways mediating responses to stress, hormones and environmental cues. Full-length CIPKs show preferential interaction with distinct CBLs in yeast and in vitro assays. Our findings suggest differential interaction affinity as one of the mechanisms generating the temporal and spatial specificity of calcium signals within plant cells and that different combinations of CBL-CIPK proteins contribute to the complex network that connects various extracellular signals to defined cellular responses.  相似文献   

14.
In a given environment, plants are constantly exposed to multitudes of stimuli. These stimuli are sensed and transduced to generate a diverse array of responses by several signal transduction pathways. Calcium (Ca2+) signaling is one such important pathway involved in transducing a large number of stimuli or signals in both animals and plants. Ca2+ engages a plethora of decoders to mediate signaling in plants. Among these groups of decoders, the sensor responder complex of calcineurin B‐like protein (CBL) and CBL‐interacting protein kinases (CIPKs) play a very significant role in transducing these signals. The signal transduction mechanism in most cases is phosphorylation events, but some structural role for the pair has also come to light recently. In this review, we discuss the structural nature of the sensor‐responder duo; their mechanism of substrate phosphorylation and also their structural role in modulating targets. Moreover, the mechanism of complex formation and mechanistic role of protein phosphatases with CBL–CIPK module has been mentioned. A comparison of CBL–CIPK with other decoders of Ca2+ signaling in plants also signifies the relatedness and diversity in signaling pathways. Further an attempt has been made to compare this aspect of Ca2+ signaling pathways in different plant species to develop a holistic understanding of conservation of stimulus–response‐coupling mediated by this Ca2+–CBL–CIPK module.  相似文献   

15.
The specificity of intracellular signaling and developmental patterning in biological systems relies on selective interactions between different proteins in specific cellular compartments. The identification of such protein-protein interactions is essential for unraveling complex signaling and regulatory networks. Recently, bimolecular fluorescence complementation (BiFC) has emerged as a powerful technique for the efficient detection of protein interactions in their native subcellular localization. Here we report significant technical advances in the methodology of plant BiFC. We describe a series of versatile BiFC vector sets that are fully compatible with previously generated vectors. The new vectors enable the generation of both C-terminal and N-terminal fusion proteins and carry optimized fluorescent protein genes that considerably improve the sensitivity of BiFC. Using these vectors, we describe a multicolor BiFC (mcBiFC) approach for the simultaneous visualization of multiple protein interactions in the same cell. Application to a protein interaction network acting in calcium-mediated signal transduction revealed the concurrent interaction of the protein kinase CIPK24 with the calcium sensors CBL1 and CBL10 at the plasma membrane and tonoplast, respectively. We have also visualized by mcBiFC the simultaneous formation of CBL1/CIPK1 and CBL9/CIPK1 protein complexes at the plasma membrane. Thus, mcBiFC provides a useful new tool for exploring complex regulatory networks in plants.  相似文献   

16.
CBL是一类Ca2+感受蛋白,在植物适应或抵制逆境胁迫的过程中发挥重要的作用。从烟草品种K326中克隆到了一个CBL1的同源基因,该序列包含了一个642 bp的开放阅读框,编码一个由213个氨基酸残基组成的蛋白,预测分子量为24.5 kDa,等电点为5.03。同源性分析结果显示,该基因与林烟草CBL1、甜辣椒CBL1等具有较高的同源性,故命名为NtCBL1。生物信息学分析表明,NtCBL1具有CBL家族保守的EF-hand钙结合结构域。组织表达分析发现该基因在成熟期的根、茎、叶、花中均有表达,在根中的表达量最高。逆境胁迫实验表明,该基因表达受低钾、高盐、干旱、ABA和低温诱导调控,参与烟草生物与非生物逆境胁迫的响应。并成功构建了NtCBL1-pBI121过表达载体。研究结果为解析NtCBL1在响应逆境胁迫的功能奠定一定理论基础。  相似文献   

17.
Batistic O  Kudla J 《Planta》2004,219(6):915-924
Plant development and reproduction depend on a precise recognition of environmental conditions and the integration of this information with endogenous metabolic and developmental cues. Calcium ions have been firmly established as ubiquitous second messengers functioning in these processes. Calcium signal deciphering and signal-response coupling often involve calcium-binding proteins as responders or relays in this information flow. Here we review the calcineurin B-like protein (CBL) calcium sensor/CBL-interacting protein kinase (CIPK) network as a newly emerging signaling system mediating a complex array of environmental stimuli. We focus particularly on the mechanisms generating signaling specificity. Moreover, we emphasize the functional implications that are emerging from the analyses of CBL and CIPK loss-of-function mutants.  相似文献   

18.
Oh SI  Park J  Yoon S  Kim Y  Park S  Ryu M  Nam MJ  Ok SH  Kim JK  Shin JS  Kim KN 《Plant physiology》2008,148(4):1883-1896
Calcineurin B-like (CBL) proteins represent a unique family of calcium sensors in plant cells. Sensing the calcium signals elicited by a variety of abiotic stresses, CBLs transmit the information to a group of serine/threonine protein kinases (CBL-interacting protein kinases [CIPKs]), which are currently known as the sole targets of the CBL family. Here, we report that the CBL3 member of this family has a novel interaction partner in addition to the CIPK proteins. Extensive yeast two-hybrid screenings with CBL3 as bait identified an interesting Arabidopsis (Arabidopsis thaliana) cDNA clone (named AtMTAN, for 5'-methylthioadenosine nucleosidase), which encodes a polypeptide similar to EcMTAN from Escherichia coli. Deletion analyses showed that CBL3 utilizes the different structural modules to interact with its distinct target proteins, CIPKs and AtMTAN. In vitro and in vivo analyses verified that CBL3 and AtMTAN physically associate only in the presence of Ca(2+). In addition, we empirically demonstrated that the AtMTAN protein indeed possesses the MTAN activity, which can be inhibited specifically by Ca(2+)-bound CBL3. Overall, these findings suggest that the CBL family members can relay the calcium signals in more diverse ways than previously thought. We also discuss a possible mechanism by which the CBL3-mediated calcium signaling regulates the biosynthesis of ethylene and polyamines, which are involved in plant growth and development as well as various stress responses.  相似文献   

19.
20.
Kim KN  Cheong YH  Gupta R  Luan S 《Plant physiology》2000,124(4):1844-1853
Calcium is a critical component in a number of plant signal transduction pathways. A new family of calcium sensors called calcineurin B-like proteins (AtCBLs) have been recently identified from Arabidopsis. These calcium sensors have been shown to interact with a family of protein kinases (CIPKs). Here we report that each individual member of AtCBL family specifically interacts with a subset of CIPKs and present structural basis for the interaction and for the specificity underlying these interactions. Although the C-terminal region of CIPKs is responsible for interaction with AtCBLs, the N-terminal region of CIPKs is also involved in determining the specificity of such interaction. We have also shown that all three EF-hand motifs in AtCBL members are required for the interaction with CIPKs. Several AtCBL members failed to interact with any of the CIPKs presented in this study, suggesting that these AtCBL members either have other CIPKs as targets or they target distinct proteins other than CIPKs. These results may provide structural basis for the functional specificity of CBL family of calcium sensors and their targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号