首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GIGANTEA (GI) is a nuclear protein involved in the promotion of flowering by long days, in light input to the circadian clock, and in seedling photomorphogenesis under continuous red light but not far-red light (FR). Here, we report that in Arabidopsis (Arabidopsis thaliana) different alleles of gi have defects in the hypocotyl-growth and cotyledon-unfolding responses to hourly pulses of FR, a treatment perceived by phytochrome A (phyA). This phenotype is rescued by overexpression of GI. The very-low-fluence response of seed germination was also reduced in gi. Since the circadian clock modulates many light responses, we investigated whether these gi phenotypes were due to alterations in the circadian system or light signaling per se. In experiments where FR pulses were given to dark-incubated seeds or seedlings at different times of the day, gi showed reduced seed germination, cotyledon unfolding, and activity of a luciferase reporter fused to the promoter of a chlorophyll a/b-binding protein gene; however, rhythmic sensitivity was normal in these plants. We conclude that while GI does not affect the high-irradiance responses of phyA, it does affect phyA-mediated very-low-fluence responses via mechanisms that do not obviously involve its circadian functions.  相似文献   

2.
The fhy3 mutation of Arabidopsis impairs phytochrome A (phyA)-mediated inhibition of hypocotyl growth without affecting the levels of phyA measured spectrophotometrically or immunochemically. We investigated whether the fhy3-1 mutation has similar effects on very low fluence responses (VLFR) and high irradiance responses (HIR) of phyA. When exposed to hourly pulses of far-red light, etiolated seedlings of the wild type or of the fhy3-1 mutant showed similar inhibition of hypocotyl growth, unfolding of the cotyledons, anthocyanin synthesis, and greening upon transfer to white light. In the wild type, continuous far-red light was significantly more effective than hourly far-red pulses (at equal total fluence). In the fhy3-1 mutant, hourly pulses were as effective as continuous far-red light, i.e. the failure of reciprocity typical of HIR was not observed. Germination was similarly promoted by continuous or pulsed far-red in wild-type and fhy3-1 seeds. Thus, for hypocotyl growth, cotyledon unfolding, greening, and seed germination, the fhy3-1 mutant retains VLFR but is severely impaired in HIR. These data are consistent with the idea that VLFR and HIR involve divergent signaling pathways of phyA.  相似文献   

3.
Phytochrome (phy) A mediates two distinct photobiological responses in plants: the very-low-fluence response (VLFR), which can be saturated by short pulses of very-low-fluence light, and the high-irradiance response (HIR), which requires prolonged irradiation with higher fluences of far-red light (FR). To investigate whether the VLFR and HIR involve different domains within the phyA molecule, transgenic tobacco (Nicotiana tabacum cv Xanthi) and Arabidopsis seedlings expressing full-length (FL) and various deletion mutants of oat (Avena sativa) phyA were examined for their light sensitivity. Although most mutants were either partially active or inactive, a strong differential effect was observed for the Delta6-12 phyA mutant missing the serine-rich domain between amino acids 6 and 12. Delta6-12 phyA was as active as FL phyA for the VLFR of hypocotyl growth and cotyledon unfolding in Arabidopsis, and was hyperactive in the VLFR of hypocotyl growth and cotyledon unfolding in tobacco, and the VLFR blocking subsequent greening under white light in Arabidopsis. In contrast, Delta6-12 phyA showed a dominant-negative suppression of HIR in both species. In hypocotyl cells of Arabidopsis irradiated with FR phyA:green fluorescent protein (GFP) and Delta6-12 phyA:GFP fusions localized to the nucleus and coalesced into foci. The proportion of nuclei with abundant foci was enhanced by continuous compared with hourly FR provided at equal total fluence in FL phyA:GFP, and by Delta6-12 phyA mutation under hourly FR. We propose that the N-terminal serine-rich domain of phyA is involved in channeling downstream signaling via the VLFR or HIR pathways in different cellular contexts.  相似文献   

4.
Phytochrome A (phyA) and phytochrome B (phyB) share the control of many processes but little is known about mutual signaling regulation. Here, we report on the interactions between phyA and phyB in the control of the activity of an Lhcb1*2 gene fused to a reporter, hypocotyl growth and cotyledon unfolding in etiolated Arabidopsis thaliana. The very-low fluence responses (VLFR) induced by pulsed far-red light and the high-irradiance responses (HIR) observed under continuous far-red light were absent in the phyA and phyA phyB mutants, normal in the phyB mutant, and reduced in the fhy1 mutant that is defective in phyA signaling. VLFR were also impaired in Columbia compared to Landsberg erecta. The low-fluence responses (LFR) induced by red-light pulses and reversed by subsequent far-red light pulses were small in the wild type, absent in phyB and phyA phyB mutants but strong in the phyA and fhy1 mutants. This indicates a negative effect of phyA and FHY1 on phyB-mediated responses. However, a pre-treatment with continuous far-red light enhanced the LFR induced by a subsequent red-light pulse. This enhancement was absent in phyA, phyB, or phyA phyB and partial in fhy1. The levels of phyB were not affected by the phyA or fhy1 mutations or by far-red light pre-treatments. We conclude that phyA acting in the VLFR mode (i.e. under light pulses) is antagonistic to phyB signaling whereas phyA acting in the HIR mode (i.e. under continuous far-red light) operates synergistically with phyB signaling, and that both types of interaction require FHY1.  相似文献   

5.
Mutations in a component of phytochrome A (phyA)-specific light signal transduction, SPA1, result in enhanced responsiveness of Arabidopsis seedlings to red and far-red light. Here, we have examined the effects of spa1 mutations on the two known modes of phyA function, the high-irradiance responses (HIRs) to continuous irradiation with far-red light and the very-low-fluence responses (VLFRs) to inductive pulses of light that establish only a small proportion of active phyA. spa1 mutants exhibited an enhanced VLFR under hourly pulses of far-red light for hypocotyl growth inhibition, cotyledon unfolding, anthocyanin accumulation, block of greening in subsequent white light and negative regulation of phyB signaling. We provide evidence that the phenotype of spa1 mutants in red light is also caused by an increase in the VLFR. Taken together, our results indicate that light-induced hypocotyl growth inhibition in spa1 mutants is primarily due to a VLFR. While wild-type seedlings required hourly pulses of far-red light to induce a VLFR, infrequent irradiation with far-red pulses (every 12 h) was sufficient to induce a strong VLFR of hypocotyl elongation in spa1 mutants. This shows that the effect of the VLFR was more persistent in spa1 mutants than in the wild type. We, therefore, propose that SPA1 has an important function in reducing the persistence of phyA signaling. spa1 mutations also enhanced the HIRs of anthocyanin accumulation and of phyA-mediated responsivity amplification towards phyB. Thus, our results suggest that spa1 mutations amplify both the phyA-mediated VLFR and the HIR.  相似文献   

6.
Phytochrome A (phyA) is a versatile plant photoreceptor that mediates responses to brief light exposures (very low fluence responses, VLFR) as well as to prolonged irradiation (high irradiance responses, HIR). We identified the phyA-303 mutant allele of Arabidopsis thaliana bearing an R384K substitution in the GAF subdomain of the N-terminal half of phyA. phyA-303 showed reduced phyA spectral activity, almost normal VLFR, and severely impaired HIR. Recombinant N-terminal half oat of PHYA bearing the phyA-303 mutation showed poor incorporation of chromophore in vitro, despite the predicted relatively long distance (>13 A) between the mutation and the closest ring of the chromophore. Fusion proteins bearing the N-terminal domain of oat phyA, beta-glucuronidase, green fluorescent protein, and a nuclear localization signal showed physiological activity in darkness and mediated VLFR but not HIR. At equal protein levels, the phyA-303 mutation caused slightly less activity than the fusions containing the wild-type sequence. Taken together, these studies highlight the role of the N-terminal domain of phyA in signaling and of distant residues of the GAF subdomain in the regulation of phytochrome bilin-lyase activity.  相似文献   

7.
Quinn MH  Oliverio K  Yanovsky MJ  Casal JJ 《Planta》2002,215(4):557-564
Several mutants with altered phytochrome A (phyA) signalling have been identified in screenings under continuous far-red light (FR). The latter protocol could preclude the identification of mutants affected in the signalling pathway that operates even under transient phyA activation, compared to the high-irradiance response (HIR) pathway that requires continuous FR. Since some photomorphogenic mutants show shoot-height phenotypes, the screening was conducted on dwarf mutants of Arabidopsis thaliana (L.) Heynh. from the ABRC stocks grown under hourly FR pulses. The dwarf mutant cp3 (compacta 3) showed normal hypocotyl length and folded cotyledons in darkness but enhanced hypocotyl-growth inhibition and cotyledon unfolding under pulsed FR. The HIR and the response mediated by phyB were not affected. Under pulsed FR, seed germination and blocking of greening upon transfer to white light were enhanced in cp3. PHYA levels were normal in cp3. The phenotype under pulsed FR but not the adult phenotype required phyA. We propose that CP3 is involved in the negative regulation of the signalling pathway that saturates with transient activation of phyA.  相似文献   

8.
Phytochromes play a key role in the perception of light signals by plants. In this study, the three classical phytochrome action modes, i.e. very-low-fluence responses (VLFR), low-fluence responses (LFR) and high-irradiance responses (HIR), were genetically dissected using phyA and phyB mutants of Arabidopsis thaliana (respectively lacking phytochrome A or phytochrome B) and a polymorphism between ecotypes Landsberg erecta and Columbia. Seed germination and potentiation of greening, hypocotyl growth inhibition and cotyledon unfolding in etiolated seedlings of the ecotype Landsberg erecta showed biphasic responses to the calculated proportion of active phytochrome established by one light pulse or repeated light pulses. The first phase, i.e. the VLFR, was absent in the phyA mutant, normal in the phyB mutant (both in the Landsberg erecta background) and severely deficient in Columbia. The second phase, i.e. the LFR, was present in the phyA mutant, deficient in the phyB mutant and normal in Columbia. Under continuous far-red light, HIR of etiolated seedlings were absent in phyA and normal in phyB and Columbia. The segregation of VLFR in recombinant inbred lines derived from a cross between Landsberg erecta and Columbia was analysed by MAPMAKER/QTL. Two quantitative trait loci, one on chromosome 2 ( VLF1 ) and another on chromosome 5 ( VLF2 ), were identified as responsible for the polymorphism. Phytochrome A is proposed to initiate two transduction pathways, VLFR and HIR, involving different cells and/or different molecular steps. This is the first application of the analysis of quantitative trait loci polymorphic between ecotypes to dissect transduction chains of environmental signals.  相似文献   

9.
Phytochromes (phy) A and B provide higher plants the ability to perceive divergent light signals. phyB mediates red/far-red light reversible, low fluence responses (LFR). phyA mediates both very-low-fluence responses (VLFR), which saturate with single or infrequent light pulses of very low fluence, and high irradiance responses (HIR), which require sustained activation with far-red light. We investigated whether VLFR, LFR, and HIR are genetically coregulated. The Arabidopsis enhanced very-low-fluence response1 mutant, obtained in a novel screening under hourly far-red light pulses, showed enhanced VLFR of hypocotyl growth inhibition, cotyledon unfolding, blocking of greening, and anthocyanin synthesis. However, eve1 showed reduced LFR and HIR. eve1 was found allelic to the brassinosteroid biosynthesis mutant dim/dwarf1. The analysis of both the brassinosteroid mutant det2 in the Columbia background (where VLFR are repressed) and the phyA eve1 double mutant indicates that the negative effect of brassinosteroid mutations on LFR requires phyA signaling in the VLFR mode but not the expression of the VLFR. Under sunlight, hypocotyl growth of eve1 showed little difference with the wild type but failed to respond to canopy shadelight. We propose that the opposite regulation of VLFR versus LFR and HIR could be part of a context-dependent mechanism of adjustment of sensitivity to light signals.  相似文献   

10.
Seeds of the wild type (WT) and of the phyA and phyB mutants of Arabidopsis thaliana were exposed to single red light (R)/far-red light (FR) pulses predicted to establish a series of calculated phytochrome photoequilibria (Pfr/P). WT and phyB seeds showed biphasic responses to Pfr/P. The first phase, i.e. the very-low-fluence response (VLFR), occurred below Pfr/P = 10-1%. The second phase, i.e. the low-fluence response, occurred above Pfr/P = 3%. The VLFR was similarly induced by either a FR pulse saturating photoconversion or a subsaturating R pulse predicted to establish the same Pfr/P. The VLFR was absent in phyA seeds, which showed a strong low-fluence response. In the field, even brief exposures to the very low fluences of canopy shade light (R/FR ratio < 0.05) promoted germination above dark controls in WT and phyB seeds but not in the phyA mutant. Seeds of the phyA mutant germinated normally under canopies providing higher R/FR ratios or under deep canopy shade light supplemented with R from light-emitting diodes. We propose that phytochrome A mediates VLFR of A. thaliana seeds.  相似文献   

11.
Phytochromes (phy) are a family of photoreceptors that control various aspects of light-dependent plant development. Phytochrome A (phyA) is responsible for the very low fluence response (VLFR) under inductive light conditions and for the high irradiance response (HIR) under continuous far-red light. We have recently shown that nuclear import of rice phyA:GFP is regulated by VLFR in transgenic tobacco. The import is preceded by very fast, light-induced formation of sequestered areas of phyA:GFP in the cytosol. Here we report that expression of the Arabidopsis phyA:GFP fusion protein in phyA-deficient Arabidopsis plants complements the mutant phenotype. In these transgenic Arabidopsis lines, both light-dependent cytosolic formation of sequestered areas of the phyA:GFP as well as VLFR or HIR-mediated nuclear import of the fusion protein was observed. By contrast, light-dependent nuclear import of the same fusion protein was induced only by continuous far-red light (HIR) but not by pulses of far-red light (VLFR) in transgenic tobacco. These results demonstrate that photoregulation of intracellular partitioning of the Arabidopsis phyA:GFP differs significantly in different genetic backgrounds.  相似文献   

12.
The occurrence of phytochrome-mediated highirradiance responses (HIR), previously characterised largely in dicotyledonous plants, was investigated in Triticum aestivum L., Zea mays L., Lolium multiflorum Lam. and in both wild-type Oryza sativa L. and in transgenic plants overexpressing oat phytochrome A under the control of a 35S promoter. Coleoptile growth was promoted (maize, ryegrass) or inhibited (wild-type rice) by continuous far-red light (FRc). However, at equal fluences, hourly pulses of far-red light (FRp) were equally effective, indicating that the growth responses to FRc were not true HIR. In contrast, in maize and rice, FRc increased anthocyanin content in the coleoptile in a fluence-rate dependent manner. This response was a true HIR as FRp had reduced effects. In maize, anthocyanin levels were significantly higher under FRc than under continuous red light. In rice, overexpression of phytochrome A increased the inhibition of coleoptile growth and the levels of anthocyanin under FRc but not under FRp or under continuous red light. The effect of FRc was fluence-rate dependent. In light-grown rice, overexpression of phytochrome A reduced leaf-sheath length, impaired the response to supplementary far-red light, but did not affect the response to canopy shade-light. In grasses, typical HIR, i.e. fluence-rate dependent responses showing reciprocity failure, can be induced by FRc. Under FRc, overexpressed phytochrome A operates through this action mode in transgenic rice.Abbreviations FR far-red light - FRc continuous far-red light - FRp pulses of far-red light - HIR high-irradiance responses - LFR low-fluence responses - OPHYA transgenic rice overexpressing oat phytochrome A - Pfr far-red light-absorbing form of phytochrome - phyA phytochrome A - R red light - Rc continuous red light - VLFR very low-fluence responses - WT wildtype We thank Marcelo J. Yanovsky for his help with the photographs and Professor Rodolfo A. Sanchez for providing a reprint of the paper by P.J.A.L. de Lint. This work was supported by grants from UBA (AG041) and Fundacion Antorchas (A-13218/1-15) to J.J.C.  相似文献   

13.
The interactions of phytochrome A (phyA) and phytochrome B (phyB) in the photocontrol of vegetative and reproductive development in pea have been investigated using null mutants for each phytochrome. White-light-grown phyA phyB double mutant plants show severely impaired de-etiolation both at the seedling stage and later in development, with a reduced rate of leaf production and swollen, twisted internodes, and enlarged cells in all stem tissues. PhyA and phyB act in a highly redundant manner to control de-etiolation under continuous, high-irradiance red light. The phyA phyB double mutant shows no significant residual phytochrome responses for either de-etiolation or shade-avoidance, but undergoes partial de-etiolation in blue light. PhyB is shown to inhibit flowering under both long and short photoperiods and this inhibition is required for expression of the promotive effect of phyA. PhyA is solely responsible for the promotion of flowering by night-breaks with white light, whereas phyB appears to play a major role in detection of light quality in end-of-day light treatments, night breaks and day extensions. Finally, the inhibitory effect of phyB is not graft-transmissible, suggesting that phyB acts in a different manner and after phyA in the control of flower induction.  相似文献   

14.
Phytochrome A signaling shows two photobiologically discrete outputs: so-called very-low-fluence responses (VLFR) and high-irradiance responses (HIR). By modifying previous screening protocols, we isolated two Arabidopsis mutants retaining VLFR and lacking HIR. Phytochrome A negatively or positively regulates phytochrome B signaling, depending on light conditions. These mutants retained the negative but lacked the positive regulation. Both mutants carry the novel phyA-302 allele, in which Glu-777 (a residue conserved in angiosperm phytochromes) changed to Lys in the PAS2 motif of the C-terminal domain. The phyA-302 mutants showed a 50% reduction in phytochrome A levels in darkness, but this difference was compensated for by greater stability under continuous far-red light. phyA-302:green fluorescent protein fusion proteins showed normal translocation from the cytosol to the nucleus under continuous far-red light but failed to produce nuclear spots, suggesting that nuclear speckles could be involved in HIR signaling and phytochrome A degradation. We propose that the PAS2 domain of phytochrome A is necessary to initiate signaling in HIR but not in VLFR, likely via interaction with a specific partner.  相似文献   

15.
Phytochrome (phy), a 124 kDa biliprotein, mediates plants' perception of environmental light conditions including quantity, quality and duration of light. The complex phenomenology of phy function is connected with its polymorphism, the major phys being phyA and phyB. PhyA mediates irreversible photoresponses in the very low and high fluence ranges (VLFR and HIR) primarily in the far-red (FR) spectral region, whereas phyB mediates the 'classical' R/FR reversible responses in the low fluence range (LFR). This phyA specificity is determined at the level of (i) intramolecular events, (ii) turnover, phyA being light-labile, and (iii) nuclear-cytoplasmic partitioning and interaction with partner proteins. A unique feature of phyA is that two native isoforms, phyA' and phyA', comprise it, distinguished by spectroscopic and photochemical properties, localization and abundance in plant tissues, light stability, and other properties. They differ by the post-translational modification at the 6 kDa N-terminus, possibly phosphorylation, phyA' being phosphorylated and phyA' dephosphorylated. Both species participate in the light-induced nuclear-cytoplasmic partitioning. The light-labile phyA' is responsible for de-etiolation (VLFR and HIR modes), whereas the relatively more light-stable phyA' could be active throughout the whole life cycle. PhyA' interferes with the action of phyA' and this interaction may be part of the fine tuning mechanism of the phyA function. Finally, within the phyA' pool there are different conformers in thermal equilibrium, that differ by the activation and kinetic parameters of the Pr-->lumi-R photoreaction. This heterogeneity of phyA may account, at least partially, for the complex dynamics of its photoprocesses and the phenomenology of photoresponses.  相似文献   

16.
To identify specific mutants for components of phytochrome A (phyA) signaling in Arabidopsis, we established a light program consisting of multiple treatments with alternating red and far-red light. In wild-type seedlings, irradiation with multiple red light pulses can reduce the amount of phyA, which in turn decreases the high-irradiance responses (HIRs) mediated by the subsequent treatments with far-red light. Our mutants were able to avoid this red light-dependent reduction of the HIR. Here, we describe eid1, a new recessive mutant with increased sensitivity to far-red light. The eid1 mutation maps to the top of chromosome 4. The mutants showed no change in phenotype in darkness or under continuous white light, but they exhibited an increased sensitivity to red light and an increased persistence of HIR during prolonged dark phases after multiple short pulses of far-red light. The eid1 seedlings accumulated normal amounts of phytochrome and showed no alterations in the degradation or de novo synthesis of phyA. The expression of the Eid1 phenotype requires the presence of phyA. Our data provide evidence that EID1 is a negatively acting component in the phyA-dependent HIR-signaling pathway.  相似文献   

17.
In this study, we show that CIPK14, a stress responsive CBL-interacting protein kinase gene, is involved in phytochrome A-mediated far-red light inhibition of greening in Arabidopsis seedlings. The CIPK14-impairment mutant cipk14 grown in continuous far-red (FR) light did not show greening when exposed to white light illumination for 15 h. By contrast, the FR-grown phytochrome A null mutant phyA greened within 0.5 h of exposure to white light. Although greening of Col-4 (wild-type) was not completely abolished by FR, it exhibited a significantly decreased greening capacity compared with that of phyA. Further analyses demonstrated that the expression of protochlorophyllide reductase (POR) genes was correlated with the greening ability of the genotypes. In addition, CIPK14 appeared to be regulated by both the circadian clock and PhyA. Taken together, these results suggest that CIPK14 plays a role in PhyA-mediated FR inhibition of seedling greening, and that a Ca-related kinase may be involved in a previously undefined branch point in the phytochrome A signaling pathway.  相似文献   

18.
To identify specific mutants for components of phytochrome A (phyA) signaling in Arabidopsis, we established a light program consisting of multiple treatments with alternating red and far-red light. In wild-type seedlings, irradiation with multiple red light pulses can reduce the amount of phyA, which in turn decreases the high-irradiance responses (HIRs) mediated by the subsequent treatments with far-red light. Our mutants were able to avoid this red light–dependent reduction of the HIR. Here, we describe eid1, a new recessive mutant with increased sensitivity to far-red light. The eid1 mutation maps to the top of chromosome 4. The mutants showed no change in phenotype in darkness or under continuous white light, but they exhibited an increased sensitivity to red light and an increased persistence of HIR during prolonged dark phases after multiple short pulses of far-red light. The eid1 seedlings accumulated normal amounts of phytochrome and showed no alterations in the degradation or de novo synthesis of phyA. The expression of the Eid1 phenotype requires the presence of phyA. Our data provide evidence that EID1 is a negatively acting component in the phyA-dependent HIR-signaling pathway.  相似文献   

19.
In Arabidopsis, although studies have demonstrated that phytochrome A(phyA) and phyB are involved in blue light signaling, how blue light-activated phytochromes modulate the activity of the CONSTITUTIVELY PHOTOMORPHOGENIC1(COP1)-SUPPRESSOR OF PHYA-105(SPA1) E3 complex remains largely unknown. Here, we show that phyA responds to early and weak blue light, whereas phyB responds to sustainable and strong blue light. Activation of both phyA and phyB by blue light inhibits SPA1 activity.Specifically,...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号