首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
Cardiac outflow tract (OFT) septation is crucial to the formation of the aortic and pulmonary arteries. Defects in the formation of the OFT can result in serious congenital heart defects. Two cell populations, the anterior heart field (AHF) and cardiac neural crest cells (CNCCs), are crucial for OFT development and septation. In this study, we use a series of tissue-specific genetic manipulations to define the crucial role of the Hedgehog pathway in these two fields of cells during OFT development. These data indicate that endodermally-produced SHH ligand is crucial for several distinct processes, all of which are required for normal OFT septation. First, SHH is required for CNCCs to survive and populate the OFT cushions. Second, SHH mediates signaling to myocardial cells derived from the AHF to complete septation after cushion formation. Finally, endodermal SHH signaling is required in an autocrine manner for the survival of the pharyngeal endoderm, which probably produces a secondary signal required for AHF survival and for OFT lengthening. Disruption of any of these steps can result in a single OFT phenotype.  相似文献   

6.
The second heart field (SHF), foregut endoderm and sonic hedgehog (SHH) signaling pathway are all reported to associate with normal morphogenesis and septation of outflow tract (OFT). However, the morphological relationships of the development of foregut endoderm and expression of SHH signaling pathway members with the development of surrounding SHF and OFT are seldom described. In this study, serial sections of mouse embryos from ED9 to ED13 (midgestation) were stained with a series of marker antibodies for specifically highlighting SHF (Isl‐1), endoderm (Foxa2), basement membrane (Laminin), myocardium (MHC) and smooth muscle (α‐SMA) respectively, or SHH receptors antibodies including patched1 (Ptc1), patched2 (Ptc2) and smoothened, to observe the spatiotemporal relationship between them and their contributions to OFT morphogenesis. Our results demonstrated that the development of an Isl‐1 positive field in the splanchnic mesoderm ventral to foregut, a subset of SHF, is closely coupled with pulmonary endoderm or tracheal groove, the Isl‐1 positive cells surrounding pulmonary endoderm are distributed in a special cone‐shaped pattern and take part in the formation of the lateral walls of the intrapericardial aorta and pulmonary trunk and the transient aortic‐pulmonary septum, and Ptc1 and Ptc2 are exclusively expressed in pulmonary endoderm during this Isl‐l positive field development, suggesting special roles played in inducing the Isl‐l positive field formation by pulmonary endoderm. It is indicated that pulmonary endoderm plays a role in the development and specification of SHF in midgestation, and that pulmonary endoderm‐associated Isl‐l positive field is involved in patterning the morphogenesis and septation of the intrapericardial arterial trunks.  相似文献   

7.
8.
The cardiac outflow tract (OFT) is a developmentally complex structure derived from multiple lineages and is often defective in human congenital anomalies. Although emerging evidence shows that fibroblast growth factor (FGF) is essential for OFT development, the downstream pathways mediating FGF signaling in cardiac progenitors remain poorly understood. Here, we report that FRS2alpha (FRS2), an adaptor protein that links FGF receptor kinases to multiple signaling pathways, mediates crucial aspects of FGF-dependent OFT development in mouse. Ablation of Frs2alpha in mesodermal OFT progenitor cells that originate in the second heart field (SHF) affects their expansion into the OFT myocardium, resulting in OFT misalignment and hypoplasia. Moreover, Frs2alpha mutants have defective endothelial-to-mesenchymal transition and neural crest cell recruitment into the OFT cushions, resulting in OFT septation defects. These results provide new insight into the signaling molecules downstream of FGF receptor tyrosine kinases in cardiac progenitors.  相似文献   

9.
10.
11.
12.
BMP-2 and BMP-4 are known to be involved in the early events which specify the cardiac lineage. Their later patterns of expression in the developing mouse and chick heart, in the myocardium overlying the atrioventricular canal (AV) and outflow tract (OFT) cushions, also suggest that they may play a role in valvoseptal development. In this study, we have used a recombinant retrovirus expressing noggin to inhibit the function of BMP-2/4 in the developing chick heart. This procedure resulted in abnormal development of the OFT and the ventricular septum. A spectrum of abnormalities was seen ranging from common arterial trunk to double outlet right ventricle. In hearts infected with noggin virus, where the neural crest cells have been labelled, the results show that BMP-2/4 function is required for the migration of neural crest cells into the developing OFT to form the aortopulmonary septum. Prior to septation, misexpression of noggin also leads to a decrease in the number of proliferating mesenchymal cells within the proximal cushions of the outflow tract. These results suggest that BMP-2/4 function may mediate several key events during cardiac development.  相似文献   

13.
The invasion of the cardiac neural crest (CNC) into the outflow tract (OFT) and subsequent outflow tract septation are critical events during vertebrate heart development. We have performed four modified differential display screens in the chick embryo to identify genes that may be involved in CNC, OFT, secondary heart field, and heart development. The screens included differential display of RNA isolated from three different axial segments containing premigratory cranial neural crest cells; of RNA from distal outflow tract, proximal outflow tract, and atrioventricular tissue of embryonic chick hearts; and of RNA isolated from left and right cranial tissues, including the early heart fields. These screens have resulted in the identification of the five cDNA clones presented here, which are expressed in the cardiac neural crest, outflow tract and developing heart in patterns that are unique in heart development.  相似文献   

14.
15.
16.
Evidence in animal models indicates that signaling networks functioning in the developing pharyngeal arches regulate stereotyped processes critical for proper development of the aortic arch and cardiac outflow tract. Here, we describe the phenotype of mice lacking fibroblast growth factor 15 (Fgf15), which encodes a secreted signaling molecule expressed within the developing pharyngeal arches. Homozygous Fgf15 mutants present heart defects consistent with malalignment of the aorta and pulmonary trunk. These defects correlate with early morphological defects of the outflow tract due to aberrant behavior of the cardiac neural crest. We demonstrate that Fgf15 expression within the pharyngeal arches is unaltered by a loss of Tbx1, a key regulator of pharyngeal arch development implicated in DiGeorge syndrome. In addition, Fgf15 and Tbx1 do not interact genetically, suggesting that Fgf15 operates through a pathway independent of Tbx1. These studies reveal a novel role of Fgf15 during development of the cardiac outflow tract.  相似文献   

17.
The arterial pole of the heart is the region where the ventricular myocardium continues as the vascular smooth muscle tunics of the aorta and pulmonary trunk. It has been shown that the arterial pole myocardium derives from the secondary heart field and the smooth muscle tunic of the aorta and pulmonary trunk derives from neural crest. However, this neural crest-derived smooth muscle does not extend to the arterial pole myocardium leaving a region at the base of the aorta and pulmonary trunk that is invested by vascular smooth muscle of unknown origin. Using tissue marking and vascular smooth muscle markers, we show that the secondary heart field, in addition to providing myocardium to the cardiac outflow tract, also generates prospective smooth muscle that forms the proximal walls of the aorta and pulmonary trunk. As a result, there are two seams in the arterial pole: first, the myocardial junction with secondary heart field-derived smooth muscle; second, the secondary heart field-derived smooth muscle with the neural crest-derived smooth muscle. Both of these seams are points where aortic dissection frequently occurs in Marfan's and other syndromes.  相似文献   

18.
Blood flow plays a critical role in regulating embryonic cardiac growth and development, with altered flow leading to congenital heart disease. Progress in the field, however, is hindered by a lack of quantification of hemodynamic conditions in the developing heart. In this study, we present a methodology to quantify blood flow dynamics in the embryonic heart using subject-specific computational fluid dynamics (CFD) models. While the methodology is general, we focused on a model of the chick embryonic heart outflow tract (OFT), which distally connects the heart to the arterial system, and is the region of origin of many congenital cardiac defects. Using structural and Doppler velocity data collected from optical coherence tomography, we generated 4D (\(\hbox {3D}\,+\,\hbox {time}\)) embryo-specific CFD models of the heart OFT. To replicate the blood flow dynamics over time during the cardiac cycle, we developed an iterative inverse-method optimization algorithm, which determines the CFD model boundary conditions such that differences between computed velocities and measured velocities at one point within the OFT lumen are minimized. Results from our developed CFD model agree with previously measured hemodynamics in the OFT. Further, computed velocities and measured velocities differ by \(<\)15 % at locations that were not used in the optimization, validating the model. The presented methodology can be used in quantifications of embryonic cardiac hemodynamics under normal and altered blood flow conditions, enabling an in-depth quantitative study of how blood flow influences cardiac development.  相似文献   

19.
Much of the heart, including the atria, right ventricle and outflow tract (OFT) is derived from a progenitor cell population termed the second heart field (SHF) that contributes progressively to the embryonic heart during cardiac looping. Several studies have revealed anterior-posterior patterning of the SHF, since the anterior region (anterior heart field) contributes to right ventricular and OFT myocardium whereas the posterior region gives rise to the atria. We have previously shown that Retinoic Acid (RA) signal participates to this patterning. We now show that Hoxb1, Hoxa1, and Hoxa3, as downstream RA targets, are expressed in distinct sub-domains within the SHF. Our genetic lineage tracing analysis revealed that Hoxb1, Hoxa1 and Hoxa3-expressing cardiac progenitor cells contribute to both atria and the inferior wall of the OFT, which subsequently gives rise to myocardium at the base of pulmonary trunk. By contrast to Hoxb1Cre, the contribution of Hoxa1-enhIII-Cre and Hoxa3Cre-labeled cells is restricted to the distal regions of the OFT suggesting that proximo-distal patterning of the OFT is related to SHF sub-domains characterized by combinatorial Hox genes expression. Manipulation of RA signaling pathways showed that RA is required for the correct deployment of Hox-expressing SHF cells. This report provides new insights into the regulatory gene network in SHF cells contributing to the atria and sub-pulmonary myocardium.  相似文献   

20.
Outflow tract myocardium in the mouse heart is derived from the anterior heart field, a subdomain of the second heart field. We have recently characterized a transgene (y96-Myf5-nlacZ-16), which is expressed in the inferior wall of the outflow tract and then predominantly in myocardium at the base of the pulmonary trunk. Transgene A17-Myf5-nlacZ-T55 is expressed in the developing heart in a complementary pattern to y96-Myf5-nlacZ-16, in the superior wall of the outflow tract at E10.5 and in myocardium at the base of the aorta at E14.5. At E9.5, the two transgenes are transcribed in different subdomains of the anterior heart field. A clonal analysis of cardiomyocytes in the outflow tract, at E10.5 and E14.5, provides insight into the behaviour of myocardial cells and their progenitors. At E14.5, most clones are located at the base of either the pulmonary trunk or the aorta, indicating that these derive from distinct myocardial domains. At E10.5, clones are observed in subdomains of the outflow tract. The distribution of small clones indicates proliferative differences, whereas regionalisation of large clones, that derive from an early myocardial progenitor cell, reflect coherent cell growth in the heart field as well as in the myocardium. Our results suggest that myocardial differences at the base of the great arteries are prefigured in distinct progenitor cell populations in the anterior heart field, with important implications for understanding the etiology of congenital heart defects affecting the arterial pole of the heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号