首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 808 毫秒
1.
The pH-stat fed-batch culture of Pseudomonas aeruginosa YPJ-80 was done to produce a rhamnolipid biosurfactant. With glucose as the sole carbon source, the final concentrations of cells and rhamnolipid biosurfactant obtained in 25 h were 25 g cell dry weight/l and 4.4 g/l, respectively.  相似文献   

2.
The optimization of culture conditions for the bacteriumPseudomonas aeruginosa BYK-2 KCTC 18012P, was performed to increase its rhamnolipid production. The optimum level for carbon, nitrogen sources, temperature and pH, for rhamnolipid production in a flask, were identified as 25 g/L fish oil, 0.01% (w/v) urea, 25 and pH 7.0, respectively. Optimum conditions for batch culture, using a 7-L jar fermentor, were 200 rpm of agitation speed and a 2.0 L/min aeration rate. Under the optimum conditions, on fish oil for 216 h, the final cell and rhamnolipid concentrations were 5.3 g/L and 17.0 g/L respectively. Fed-batch fermentation, with different feeding conditions, was carried out in order to increase, cell growth and rhamnolipid production by thePseudomonas aeruginosa, BYK-2 KCTC 18012P. When 2.5 g of fish oil and 100 mL basal salts medium, containing 0.01% (w/v) urea, were fed intermittently during the fermentation, the final cell and rhamnolipid concentrations at 264 h, were 6.1 and 22.7 g/L respectively. The fed-batch culture resulted in a 1.2-fold increase in the dry cell mass and a 1.3-fold increase in rhamnolipid production, compared to the production of the batch culture. The rhamnolipid production-substrate conversion factor (0.75 g/g) was higher than that of the batch culture (0.68 g/g).  相似文献   

3.
The pH-stat fed-batch culture of Pseudomonas aeruginosa YPJ-80 was done to produce a rhamnolipid biosurfactant. With glucose as the sole carbon source, the final concentrations of cells and rhamnolipid biosurfactant obtained in 25 h were 25 g cell dry weight/l and 4.4 g/l, respectively.  相似文献   

4.
A locally-isolated Pseudomonas aeruginosa USM AR2 possessing the ability to produce glycolipid-type biosurfactant (rhamnolipid) was used in this research to explore fermentation technology for rhamnolipid production. Rhamnolipid concentration in 2.5 L fed-batch fermentation was improved from 0.173 to 8.06 g/L by manipulating the feeding strategy and cultivation protocol. The culture was fed with petroleum diesel and complex medium. The highest rhamnolipid concentration was achieved when the culture was initially fed with both petroleum diesel and complex medium, followed by feeding of petroleum diesel only at the end of the stationary phase. Severe foaming problem was resolved by modifying and integrating a foam recycler to the bioreactor. This successfully extended the cultivation period and increased the yield of final rhamnolipid. No antifoam agent was added as this modified bioreactor allowed cultivation to proceed even under foam generation. The viscosity measurement, surface tension activity test, and drop-collapse test were performed as an indirect measure of rhamnolipid presence.  相似文献   

5.
In order to achieve high butanol production by Clostridium saccharoperbutylacetonicum N1-4, the effect of lactic acid on acetone–butanol–ethanol fermentation and several fed-batch cultures in which lactic acid is fed have been investigated. When a medium containing 20 g/l glucose was supplemented with 5 g/l of closely racemic lactic acid, both the concentration and yield of butanol increased; however, supplementation with more than 10 g/l lactic acid did not increase the butanol concentration. It was found that when fed a mixture of lactic acid and glucose, the final concentration of butanol produced by a fed-batch culture was greater than that produced by a batch culture. In addition, a pH-controlled fed-batch culture resulted in not only acceleration of lactic acid consumption but also a further increase in butanol production. Finally, we obtained 15.5 g/l butanol at a production rate of 1.76 g/l/h using a fed-batch culture with a pH-stat continuous lactic acid and glucose feeding method. To confirm whether lactic acid was converted to butanol by the N1-4 strain, we performed gas chromatography–mass spectroscopy (GC-MS) analysis of butanol produced by a batch culture during fermentation in a medium containing [1,2,3-13C3] lactic acid as the initial substrate. The results of the GC-MS analysis confirmed the bioconversion of lactic acid to butanol.  相似文献   

6.
Low-cost raw materials can be used to reduce significantly the production cost of polyhydroxyalkanoates (PHA). In this study, extruded rice bran (ERB) and extruded cornstarch (ECS) were used as carbon sources to produce PHA by an archaea, Haloferax mediterranei, which cannot use native rice bran or cornstarch as a carbon source. By employing pH-stat control strategy to maintain pH at 6.9–7.1 in a 5-liter jar fermentor using ERB:ECS (1:8 g/g) as the major carbon source, we obtained a cell concentration of 140 g/L, PHA concentration of 77.8 g/L and PHA content of 55.6 wt.% in a repeated fed-batch fermentation. In contrast, when ECS was used as the major carbon source, we obtained 62.6 g/L cell concentration, 24.2 g/L PHA concentration and 38.7 wt.% PHA content. Under a hyper-saline condition and with no nitrogen-limitation restriction, the repeated fed-batch process can be sustained a long time for the mass production of PHA.  相似文献   

7.
Summary High concentration production of an antibiotic, thiostrepton, was achieved by the fed-batch culture of Streptomyces laurentii. To produce thiostrepton efficiently, the pH of the medium had to be maintained in a very narrow range between 6.0 and 6.2. As the substrates, not only glucose but also natural nutrients such as defatted soy bean meal and corn steep liquor were demanded. All of these substrates (multi-substrate) had to be supplied during the cultivation. pH was used as the indicator to detect the deficiency of substrates. When the glucose in the medium had been exhaustively consumed, the pH increased immediately; the multi-substrate solution (MS-solution) was then supplied. The composition of the feeding solution was determined from data obtained in batch cultures. During the fed-batch culture, glucose concentration was kept lower than 5 g/l by regulating the feed amount of MS-solution with this pH-stat modal control. By this control strategy a high concentration of thiostrepton, 10.5 g/l, was obtained, while total cell mass concentration reached 157 g/l. The productivity of thiostrepton was greatly increased compared with the conventional batch culture.  相似文献   

8.
Xylitol is a well-known sugar substitute with low-calorie and anti-cariogenic characteristics. An effort of biological production of xylitol from xylose was made in repeated fed-batch and cell-recycle fermentations of recombinant Saccharomyces cerevisiae BJ3505/δXR harboring the xylose reductase gene from Pichia stipitis. Batch fermentation with 20 g/l xylose and 18 g/l glucose resulted in 9.52 g/l dry cell mass, 20.1 g/l xylitol concentration and approximately 100% conversion yield. Repeated fed-batch operation to remove 10% of culture broth and to supplement an equal volume of 200 g/l xylose was designed to improve xylitol production. In spite of a sudden drop of cell concentration, an increase in dry cell mass led to high accumulation of xylitol at 48.7 g/l. To overcome loss of xylitol-producing biocatalysts in repeated fed-batch fermentation, cell-recycle equipment of hollow fiber membrane was implemented into a xylitol production system. Cell-recycle operation maintained concentration of the recombinant cells high inside a bioreactor. Final dry cell mass of 22.0 g/l, 116 g/l xylitol concentration, 2.34 g/l h overall xylitol productivity were obtained in cell-recycle fermentation supplemented with xylose and yeast extract solution, which were equivalent to 2.3-, 5.8- and 3.8-fold increases compared with the corresponding values of batch-type xylitol production parameters.  相似文献   

9.
Fu W  Lin J  Cen P 《Bioresource technology》2008,99(11):4864-4870
5-Aminolevulinate (ALA) production with recombinant Escherichia coli Rosetta (DE3)/pET28a(+)-hemA was studied. In batch fermentation, the addition of glucose and glycine was effective to improve ALA production. Then the fed-batch fermentation was conducted with continuous feeding of precursors. When the concentrations of succinic acid and glycine were 7.0 g/l and 4.0 g/l, respectively, in the feeding, the ALA yield reached 4.1g/l. But the molar yield (ALA/glycine) was decreased in the fed-batch fermentation compared to batch fermentation. And it was found that the pH control during fed-batch cultivation was very important for the cell growth and ALA production. A two-stage pH value controlling strategy was suggested, in which, the pH value in the first 6h was regulated at pH 5.9, after then at pH 6.2, and the ALA yield was as high as 6.6g/l via fed-batch fermentation.  相似文献   

10.
The production yield of Coenzyme Q10 (CoQ10) from the sucrose consumed by Agrobacterium tumefaciens KCCM 10413 decreased, and high levels of exopolysaccharide (EPS) accumulated after switching from batch culture to fed-batch culture. Therefore, we examined the effect of sucrose concentration on the fermentation profile by A. tumefaciens. In the continuous fed-batch culture with the sucrose concentration maintained constantly at 10, 20, 30, and 40 g l−1, the dry cell weight (DCW), specific CoQ10 content, CoQ10 production, and the production yield of CoQ10 from the sucrose consumed increased, whereas EPS production decreased as maintained sucrose concentration decreased. The pH-stat fed-batch culture system was adapted for CoQ10 production to minimize the concentration of the carbon source and osmotic stress from sucrose. Using the pH-stat fed-batch culture system, the DCW, specific CoQ10 content, CoQ10 production, and the product yield of CoQ10 from the sucrose consumed increased by 22.6, 13.7, 39.3, and 39.3%, respectively, whereas EPS production decreased by 30.7% compared to those of fed-batch culture in the previous report (Ha SJ, Kim SY, Seo JH, Oh DK, Lee JK, Appl Microbiol Biotechnol, 74:974–980, 2007). The pH-stat fed-batch culture system was scaled up to a pilot scale (300 l), and the CoQ10 production results obtained (626.5 mg l−1 of CoQ10 and 9.25 mg g DCW−1 of specific CoQ10 content) were similar to those obtained at the laboratory scale. Thus, an efficient and highly competitive process for microbial CoQ10 production is available.  相似文献   

11.
Summary High production (9016 U/ml) of alkaline protease byBacillus licheniformis has been achieved. A 49% increase in production was achieved by the method used as compared with a batch process. By using a synthetic medium and a fed-batch operation controlled by the Advanced Fermentation Software (AFS) package, it was found that the keys to high production of protease are: (i) to maintain a low concentration of glucose (<0.43 g/l) in the medium; (ii) to control pH at a certain level (pH 6.50) in the culture; and (iii) to use rough type colonies as the starting culture. Our fed-batch fermentation process successfully simulates and surpasses ordinary batch fermentation processes. By using ammonium sulfate instead of soy bean flour as the only nitrogen source, an expected benefit was the elimination of unpleasant odors caused by natural organic nitrogenous components in the media. This would improve the industrial production environment.  相似文献   

12.
Recombinant Escherichia coli engineered to contain the whole mevalonate pathway and foreign genes for β-carotene biosynthesis, was utilized for production of β-carotene in bioreactor cultures. Optimum culture conditions were established in batch and pH-stat fed-batch cultures to determine the optimal feeding strategy thereby improving production yield. The specific growth rate and volumetric productivity in batch cultures at 37°C were 1.7-fold and 2-fold higher, respectively, than those at 28°C. Glycerol was superior to glucose as a carbon source. Maximum β-carotene production (titer of 663 mg/L and overall volumetric productivity of 24.6 mg/L × h) resulted from the simultaneous addition of 500 g/L glycerol and 50 g/L yeast extract in pH-stat fed-batch culture.  相似文献   

13.
Cell yield and toxicity of B. thuringiensis H-14 was improved markedly by adopting a simple fed-batch fermentation technique based on controlling glucose concentration. Maintenance of steady glucose concentration (0.3-0.5%) in the culture medium was achieved by the continuous addition of concentrated glucose solution. Addition of glucose at 3 g/hr/l of culture starting from 3rd hr till 16th hr of fermentation was found to yield cell densities of 80 g/l (wet weight) which represented a nearly 3-fold increase over the batch mode. A fivefold increase in toxicity was obtained by fed-batch fermentation. Cultivation of B. thuringiensis H-14 to high cell densities had no negative effect on sporulation and toxin synthesis. The rate of pH drop and dissolved oxygen level were within manageable limits.  相似文献   

14.
Glucose-stat and pH-stat control strategies were employed in order to culture a recombinant E. coli XL1 Blue to produce a fusion protein of sweet potato sporamin (SPA) and glutathione S-transferase (GST) from the recombinant E. coli XL1 Blue. Cell densities up to 25 g l–1 and 28.9 mg fusion protein (GST-SPA) g–1 cell dry weight (CDW) was achieved from a fed-batch fermentation controlled by glucose-stat strategy. A pH-stat control fermentation using glycerol as a carbon source gave E. coli up to 27 g l–1 and 31.5 mg GST-SPA g–1 CDW. Additionally, a pH-stat control strategy using glucose as a carbon source gave E. coli up to 15 g l–1 and about 22.7 mg g–1 CDW of GST-SPA.  相似文献   

15.
Bacillus subtilis was cultivated to high cell density for nattokinase production by pH-stat fed-batch culture. A concentrated mixture solution of glucose and peptone was automatically added by acid-supplying pump when culture pH rose above high limit. Effect of the ratio of glucose to peptone in feeding solution was investigated on cell growth and nattokinase production by changing the ratio from 0.2 to 5 g glucose/g peptone. The highest cell concentration was 77 g/L when the ratio was 0.2 g glucose/g peptone. Cell concentration decreased with increasing the ratio of glucose to peptone in feeding solution, while the optimum condition existed for nattokinase production. The highest nattokinase activity was 14,500 unit/mL at a ratio of 0.33 g glucose/g peptone, which was 4.3 times higher than that in batch culture.  相似文献   

16.
A new feeding strategy in fed-batch culture, exponential feeding combined with pH-stat is suggested to avoid the accumulation of substrate in culture broth. Exponential feeding was stopped whenever a predetermined amount of limiting substrate was supplied and then pH change was observed. When pH rose above an upper limit due to the depletion of substrate, feeding was restarted. With this feeding strategy, recombinant Escherichia coli could be grown to 101 g/l by controlling the specific growth rate at 0.1 h–1.An erratum to this article can be found at  相似文献   

17.
Glycolipids are one of the major classes of biosurfactants in which the rhamnolipids are best studied. The present work investigates the optimization of inoculum age and batch time for maximizing the yield of rhamnolipid from Pseudomonas aeruginosa (MTCC 2453). The yield and titer of rhamnolipids were maximum in the fermentation batch with an inoculum age of 24?hr. Batch time studies were performed on biomass production, rhamnolipid production, and sunflower oil utilization. The maximum yield of rhamnolipid was achieved at 96?hr when the culture cells were in the late exponential/early stationary phase. At optimum substrate concentration, maximum yield of 10.8?g/L was achieved. Further, downstream processing of crude rhamnolipid from broth using organic solvent extraction and subsequent purification using adsorption chromatography was done. In this study, chromatographic method was developed for purification of rhamnolipid by adsorption phenomena with more than 88.7% purity and 86.5% recovery. The present study provides new perspective on concepts involving separation by adsorption. Further antimicrobial properties and surfactant properties were studied for rhamnolipid production.  相似文献   

18.
The objectives of this study were to optimize submerged culture conditions of a new fungal isolate, Ganorderma resinaceum, and to enhance the production of bioactive mycelial biomass and exopolysaccharides (EPS) by fed-batch culture. The maximum mycelial growth and EPS production in batch culture were achieved in a medium containing 10 g/l glucose, 8 g/l soy peptone, and 5 mM MnCl(2) at an initial pH 6.0 and temperature 31 degrees C. After optimization of culture medium and environmental conditions in batch cultures, a fed-batch culture strategy was employed to enhance production of mycelial biomass and EPS. Five different EPS with molecular weights ranging from 53,000 to 5,257,000 g/mole were obtained from either top or bottom fractions of ethanol precipitate of culture filtrate. A fed-batch culture of G. resinaceum led to enhanced production of both mycelial biomass and EPS. The maximum concentrations of mycelial biomass (42.2 g/l) and EPS (4.6 g/l) were obtained when 50 g/l of glucose was fed at day 6 into an initial 10 g/l of glucose medium. It may be worth attempting with other mushroom fermentation processes for enhanced production of mushroom polysaccharides, particularly those with industrial potential.  相似文献   

19.
Bioconversion of cassava-derived glucose to 2-keto-d-gluconic acid (2-KDG) using resting cells of immobilized Pseudomonas aeruginosa IFO 3448 was investigated. The tuberous roots of cassava were selected as the feedstock as they are inexpensive and widely available, and possess high amounts of starch (approximately 70% (w/w) of dry mass). Immobilized bacteria was used in a fed-batch fermenter and recycled over a period of 2 weeks. Given that the formation of 2-KDG from glucose requires oxygen as a reagent, and that high glucose concentrations are detrimental to the production yield of 2-KDG by resting cells, a DO-stat control strategy was used, whereby the feed rate of cassava hydrolysate was regulated by coupling it with the control variable, dissolved oxygen. For 319 h of operation including three cycles of repeated fed batch, 72 g of 2-KDG was produced from hydrolysate derived from 110 g of dried cassava at a maximum production rate of 0.55 g/L/h and an average concentration of 35 g/L.  相似文献   

20.
A new fermentation strategy using cell recycle membrane system was developed for the efficient production of poly(3-hydroxybutyrate) (PHB) from whey by recombinant Escherichia coli strain CGSC 4401 harboring the Alcaligenes latus polyhydroxyalkanoate (PHA) biosynthesis genes. By cell recycle, fed-batch cultivation employing an external membrane module, the working volume of fermentation could be constantly maintained at 2.3 l. The final cell concentration, PHB concentration and PHB content of 194 g l–1, 168 g l–1 and 87%, respectively, were obtained in 36.5 h by the pH-stat cell recycle fed-batch culture using whey solution concentrated to contain 280 g lactose l–1 as a feeding solution, resulting in a high productivity of 4.6 g PHB l–1 h–1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号