首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To increase the NAD(P)H-dependent xylitol production in recombinant Saccharomyces cerevisiae harboring the xylose reductase gene from Pichia stipitis, the activity of glucose 6-phosphate dehydrogenase (G6PDH) encoded by the ZWF1 gene was amplified to increase the metabolic flux toward the pentose phosphate pathway and NADPH regeneration. Compared with the control strain, the specific G6PDH activity was enhanced approximately 6.0-fold by overexpression of the ZWF1 gene. Amplification in the G6PDH activity clearly improved the NAD(P)H-dependent xylitol production in the recombinant S. cerevisiae strain. With the aid of an elevated G6PDH level, maximum xylitol concentration of 86 g/l was achieved with productivity of 2.0 g/l h in the glucose-limited fed-batch cultivation, corresponding to 25% improvement in volumetric xylitol productivity compared with the recombinant S. cerevisiae strain containing the xylose reductase gene only.  相似文献   

2.
Xylitol, a functional sweetener, was produced from xylose by biological conversion using Candida tropicalis ATCC 13803. Based on a two-substrate fermentation using glucose for cell growth and xylose for xylitol production, fed-batch fermentations were undertaken to increase the final xylitol concentration. The effects of xylose and xylitol on xylitol production rate were studied to determine the optimum concentrations for fed-batch fermentation. Xylose concentration in the medium (100 g l−1) and less than 200 g l−1 total xylose plus xylitol concentration were determined as optimum for maximum xylitol production rate and xylitol yield. Increasing the concentrations of xylose and xylitol decreased the rate and yield of xylitol production and the specific cell growth rate, probably because of an increase in osmotic stress that would interfere with xylose transport, xylitol flux to secretion to cell metabolism. The feeding rate of xylose solution during the fed-batch mode of operation was determined by using the mass balance equations and kinetic parameters involved in the equations in order to increase final xylitol concentration without affecting xylitol and productivity. The optimized fed-batch fermentation resulted in 187 g l−1 xylitol concentration, 0.75 g xylitol g xylose−1 xylitol yield and 3.9 g xylitol l−1 h−1 volumetric productivity. Journal of Industrial Microbiology & Biotechnology (2002) 29, 16–19 doi:10.1038/sj.jim.7000257 Received 15 October 2001/ Accepted in revised form 30 March 2002  相似文献   

3.
Fermentation characteristics of recombinant Saccharomyces cerevisiae containing a xylose reductase gene from Pichia stipitis were investigated in an attempt to convert xylose to xylitol, a natural five-carbon sugar alcohol used as a sweetener. Xylitol was produced with a maximum yield of 0.95 g g−1 xylitol xylose consumed in the presence of glucose used as a co-substrate for co-factor regeneration. Addition of glucose caused inhibition of xylose transport and accumulation of ethanol. Such problems were solved by adopting glucose-limited fed-batch fermentations where a high ratio of xylose to glucose was maintained during the bioconversion phase. The optimized two-substrate fed-batch fermentation carried out with S. cerevisiae EH13.15:pY2XR at 30°C resulted in 105.2 g l−1 xylitol concentration with 1.69 g l−1 h−1 productivity.  相似文献   

4.
Xylitol was produced a in two-substrate, batch fermentation with cell recycling of Candida tropicalis ATCC 13803. A series of cell-recycle experiments showed that the feeding of xylose, glucose and yeast extract in the xylitol production phase was most effective in enhancing xylitol productivity. The optimized cell recycle fermentation resulted in 0.82 g xylitol/g xylose yield, 4.94 g xylitol l–1 h–1 productivity, and final xylitol concentration of 189 g l–1. These results were 1.3 times higher in volumetric xylitol productivity and 2.2 times higher in final product concentration compared with the corresponding values of the optimized two-substrate batch culture.  相似文献   

5.
Candida tropicalis, a strain isolated from the sludge of a factory manufacturing xylose, produced a high xylitol concentration of 131 g/l from 150 g/l xylose at 45 h in a flask. Above 150 g/l xylose, however, volumetric xylitol production rates decreased because of a lag period in cell growth. In fed-batch culture, the volumetric production rate and xylitol yield from xylose varied substantially with the controlled xylose concentration and were maximum at a controlled xylose concentration of 60 g/l. To increase the xylitol yield from xylose, feeding experiments using different ratios of xylose and glucose were carried out in a fermentor. The maximum xylitol yield from 300 g/l xylose was 91% at a glucose/xylose feeding ratio of 15%, while the maximum volumetric production rate of xylitol was 3.98 g l−1 h−1 at a glucose/xylose feeding ratio of 20%. Xylitol production was found to decrease markedly as its concentration rose above 250 g/l. In order to accumulate xylitol to 250 g/l, 270 g/l xylose was added in total, at a glucose/xylose feeding ratio of 15%. Under these conditions, a final xylitol production of 251 g/l, which corresponded to a yield of 93%, was obtained from 270 g/l xylose in 55 h. Received: 20 April 1998 / Received revision: 29 May 1998 / Accepted: 19 June 1998  相似文献   

6.
Fermentation media containing different concentrations of toxic compounds were prepared from brewer's spent grain (BSG) hemicellulosic hydrolysate, and used for xylose-to-xylitol bioconversion by Candida guilliermondii. Such fermentation media were composed of the hydrolysate in the following ways: raw (RH); concentrated four-fold (CH); concentrated and treated with activated charcoal (TCH); raw supplemented with sugars until a concentration four-fold higher (SRH); concentrated and subsequently diluted but supplemented with sugars until a concentration four-fold higher (SDCH). All media presented an initial xylose concentration of 85 g/l, except RH, which contained 23 g/l xylose. Fermentation results revealed that the sugars supplementation to raw hydrolysate favored the xylitol production. Nevertheless, xylitol production from CH was negatively affected due to the high concentration of toxic compounds present in the medium. The hydrolysate treatment with activated charcoal partially removed the toxic compounds, and the xylitol production was higher than in CH, but not so efficient as in SRH. It was thus concluded that to obtain an efficient xylose-to-xylitol bioconversion from BSG hydrolysate, the sugars concentration must be increased, but the toxic compounds concentration must be reduced to the same level present in the raw hydrolysate.  相似文献   

7.
Improved fermentation processes were developed for the production of mannitol by a heterofermentative lactic acid bacterium (Lactobacillus intermedius NRRL B-3693). A fed-batch fermentation protocol overcame limitations caused by high substrate concentrations. The process was developed using corn steep liquor and glucose as inexpensive industrial nutrient sources, supplemented with a small amount of soy peptone and manganese. The fed-batch process resulted in a concentration of 176 ± 0.5 g mannitol from 184 ± 0 g fructose and 92 ± 0.1 g glucose per L of final fermentation broth in 30 h with a volumetric productivity of 5.9 g/(L h). Further increases in volumetric productivity of mannitol were obtained in a continuous cell-recycle fermentation process that reached more than 40 g/(L h), despite reduced mannitol levels of 78–98 g/L and residual substrate of 10–20 g/L. This is the first report of such a high volumetric productivity of mannitol by a heterofermentative lactic acid bacterium.  相似文献   

8.
Candida guilliermondii FTI 20037 cells were entrapped in Ca-alginate beads and used for xylitol production from sugarcane bagasse hemicellulosic hydrolysate in a stirred tank reactor (STR). Screening design and response surface methodologies were used to determine adequate cultivation conditions for this fermentation system. Quadratic models were fitted to the experimental data by regression analysis, considering the yield (YP/S) and the productivity (QP) of the xylose-to-xylitol bioconversion as dependent variables. Using a five-fold concentrated hydrolysate, air flowrate of 1.30 l/min, agitation speed of 300 rpm, initial cell concentration of 1.4 g/l and value 6.0 for the initial pH of the fermentation medium resulted in a xylitol production of 47.5 g/l after 120 h of fermentation, corresponding to a YP/S of 0.81 g/g and to a QP of 0.40 g/l h.  相似文献   

9.
Summary Ethanol was produced from xylose, using the enzyme glucose isomerase (xylose isomerase) and Saccharomyces cerevisiae. The influence of aeration, pH, enzyme concentration, cell mass and the concentration of the respiratory inhibitor sodium azide on the production of ethanol and the formation of by-products was investigated. Anaerobic conditions at pH 6.0, 10 g/l enzyme, 75 g/l dry weight cell mass and 4.6 mM sodium azide were found to be optimal. Under these conditions theoretical yields of ethanol were obtained from 42 g/l xylose within 24 hours.In a fed-batch culture, 62 g/l ethanol was produced from 127 g/l xylose with a yield of 0.49 and a productivity of 1.35 g/l·h.  相似文献   

10.
Cell immobilization has shown to be especially adequate for xylitol production. This work studies the suitability of the air lift bioreactor for xylitol production by Debaryomyces hansenii immobilized in Ca-alginate operating in fed-batch cultures to avoid substrate inhibition. The results showed that the air lift bioreactor is an adequate system since the minimum air flow required for fluidization was even lower than that leading to the microaerobic conditions that trigger xylitol accumulation by this yeast, also maintaining the integrity of the alginate beads and the viability of the immobilized cells until 3 months of reuses. Maximum productivities and yields of 0.43 g/l/h and 0.71 g/g were achieved with a xylose concentration of 60 g/l after each feeding. The xylose feeding rate, the air flow, and the biomass concentration at the beginning of the fed-batch operation have shown to be critical parameters for achieving high productivities and yields. Although a maximum xylitol production of 139 g/l was obtained, product inhibition was evidenced in batch experiments, which allowed estimating at 200 and 275 g/l the IC50 for xylitol productivity and yield, respectively. The remarkable production of glycerol in the absence of glucose was noticeable, which could not only be attributed to the osmoregulatory function of this polyol in conditions of high osmotic pressure caused by high xylitol concentrations but also to the role of the glycerol synthesis pathway in the regeneration of NAD+ in conditions of suboptimal microaeration caused by insufficient aeration or high oxygen demand when high biomass concentrations were achieved.  相似文献   

11.
Batch fermentation of sugarcane bagasse hemicellulosic hydrolyzate by the yeast Candida guilliermondii FTI 20037 was performed using controlled pH values (3.5, 5.5, 7.5). The maximum values of xylitol volumetric productivity (Q p=0.76 g/l h) and xylose volumetric consumption (Q s=1.19 g/l h) were attained at pH 5.5. At pH 3.5 and 7.5 the Q p value decreased by 66 and 72%, respectively. Independently of the pH value, Y x/s decreased with the increase in Y p/s suggesting that the xylitol bioconversion improves when the cellular growth is limited. At the highest pH value (7.5), the maximum specific xylitol production value was the lowest (q pmax=0.085 g/l h.), indicating that the xylose metabolism of the yeast was diverted from xylitol formation to cell growth.List of symbols P max xylitol concentration (g/l) - Q x volumetric cell production rate (g/l h) - Q s volumetric xylose uptake rate (g/l h) - Q p volumetric xylitol production rate (g/l h) - q pmax specific xylitol production (g/g h) - q smax specific xylose uptake rate (g/g h) - max specific cell growth rate (h–1) - Y p/s xylitol yield coefficient, g xylitol per g xylose consumed (g/g) - Y p/x xylitol yield coefficient, g xylitol per g dry cell mass produced (g/g) - Y x/s cell yield coefficient, g dry cell mass per g xylose consumed (g/g) - cell percentage of the cell yield from the theoretical value (%) - xylitol percentage of xylitol yield from the theoretical value (%)  相似文献   

12.
Summary Eucalyptus globulus wood hydrolysates were concentrated by vacuum evaporation to increase their xylose contents, treated with activated charcoal, supplemented with nutrients and used as culture media for xylitol production by Debaryomyces hansenii NRRL Y-7426. The susceptibility of hydrolysates to fermentation was strongly dependent on the initial cell concentration: media containing 58–78 g xylose/l were hardly consumed in batch experiments starting with 16 g cells/l, whereas 39–41 g xylitol/l were achieved in fermentations carried out with similar concentration of the carbon source and initial cell concentrations of 50–80 g/l).  相似文献   

13.
The influence of other hemicellulosic sugars (arabinose, galactose, mannose and glucose), oxygen limitation, and initial xylose concentration on the fermentation of xylose to xylitol was investigated using experimental design methodology. Oxygen limitation and initial xylose concentration had considerable influences on xylitol production by Canadida tropicalis ATCC 96745. Under semiaerobic conditions, the maximum xylitol yield was 0.62 g/g substrate, while under aerobic conditions, the maximum volumetric productivity was 0.90 g/l h. In the presence of glucose, xylose utilization was strongly repressed and sequential sugar utilization was observed. Ethanol produced from the glucose caused 50% reduction in xylitol yield when its concentration exceeded 30 g/l. When complex synthetic hemicellulosic sugars were fermented, glucose was initially consumed followed by a simultaneous uptake of the other sugars. The maximum xylitol yield (0.84 g/g) and volumetric productivity (0.49 g/l h) were obtained for substrates containing high arabinose and low glucose and mannose contents.  相似文献   

14.
An optimization method for repeated fed-batch fermentation was established with the aim of improving the recombinant human serum albumin (rHSA) production in Pichia pastoris. A simulation model for fed-batch fermentation was formulated and the optimal methanol-feeding policy calculated by dynamic programming method using five different methanol-feeding periods. The necessary state variables were collected from the calculated results and used for further optimization of repeated fed-batch fermentation. The optimal operation policy was investigated using the pre-collected state variables by estimating the overall profit per total methanol-feeding time. The calculated results indicated that the initial cell mass from the 2nd fed-batch fermentation on should be set at 35 or 40 g and methanol-feeding time at 264 h. In repeated fed-batch fermentation using the optimal operation policy, actual culture volume was in good agreement with the values simulated by model equations, but some discrepancy was observed in rHSA production. Minimum experiments were therefore carried out to re-evaluate rHSA production levels, which were then applied in re-calculations to determine the optimal operation policy. The optimal policy for repeated fed-batch fermentation established in the present study (i.e., 4-times-repeated fed-batch fermentation) achieved a 47% increase in annual rHSA production. Optimization of the culture period also brought about a 28% increase in annual rHSA production even in simple (not repeated) fed-batch fermentation.  相似文献   

15.
Summary The ability ofCandida guillermondii to produce xylitol from xylose and to ferment individual non xylose hemicellulosic derived sugars was investigated in microaerobic conditions. Xylose was converted into xylitol with a yield of 0,63 g/g and ethanol was produced in negligible amounts. The strain did not convert glucose, mannose and galactose into their corresponding polyols but only into ethanol and cell mass. By contrast, fermentation of arabinose lead to the formation of arabitol. On D-xylose medium,Candida guillermondii exhibited high yield and rate of xylitol production when the initial sugar concentration exceeded 110 g/l. A final xylitol concentration of 221 g/l was obtained from 300 g/l D-xylose with a yield of 82,6% of theoretical and an average specific rate of 0,19 g/g.h.Nomenclature Qp average volumetric productivity of xylitol (g xylitol/l per hour) - qp average specific productivity of xylitol (g xylitol/g of cells per hour) - So initial xylose concentration (g/l) - tf incubation time (hours) - YP/S xylitol yield (g of xylitol produced/g of xylose utilized) - YE/S ethanol yield (g of ethanol produced/g of substrate utilized) - YX/S cells yield (g of cells/g of substrate utilized) - specific growth rate coefficient (h–1) - max maximum specific growth rate coefficient (h–1)  相似文献   

16.
In this study, we attempted to assess the process stability of long-term fed-batch ethanol fermentation in the absence and presence of aeration (0.33 vvm). To examine the effect of aeration, a long-term repeated fed-batch operation was conducted for 396 h to mimic a long-term industrial bioethanol production process. In this long-term repeated fed-batch ethanol fermentation experiments, withdrawal-fill operation were conducted every 36 h for 10 repeat cycles. The whole operation was stably sustained in a quasi-steady state. The average maximal cell concentration and the average maximal ethanol production during operation were increased by 81.63 and 12.12%, respectively, when aeration was used. In addition, since aeration was carried out, the average ethanol yield slightly decreased by 4.03% and the average specific ethanol production rate decreased by 46.75% during operation. However, the average ethanol productivity increased by 17.53% when aeration was carried out. After 396 h of long-term repeated fed-batch ethanol fermentation, 1,908.9 g of ethanol was cumulatively produced when aeration was used, which was 12.47%, higher than when aeration was not used (1,697.2 g). Meanwhile, glycerol production was greatly decreased during long-term repeated fed-batch ethanol fermentation, in which the glycerol concentration in the culture broth decreased from about 34∼15 g/L. Thus, we can conclude that cell growth was greatly improved by overcoming ethanol inhibition and glycerol production was remarkably decreased when aeration was carried out, although aeration in ethanol fermentation decreased the specific ethanol production rate and ethanol yield.  相似文献   

17.
The yeast strain Candida guilliermondii 2581 was chosen for its ability to produce xylitol in media with high concentrations of xylose. The rate of xylitol production at a xylose concentration of 150 g/l is 1.25 g/l per h; the concentration of xylitol after three days of cultivation is 90 g/l; and the relative xylitol yield is 0.6 g per g substrate consumed. The growth conditions were found that resulted in the maximum relative xylitol yield with complete consumption of the sugar: xylose concentration, 150 g/l; pH 6.0; and shaking at 60 rpm. It was shown that the growth under conditions of limited aeration favors the reduction of xylose.  相似文献   

18.
Xylitol formation by Candida boidinii in oxygen limited chemostat culture   总被引:2,自引:0,他引:2  
Summary Production of xylitol by Candida boidinii NRRL Y-17213 occurs under conditions of an oxygen limitation. The extent to which substrate is converted to xylitol and its coproducts (ethanol, other polyols, acetic acid), and the relative flow rates of substrate to energetic and biosynthetic pathways is controlled by the degree of oxygen limitation.With decrease in oxygen concentration in the inlet gas, for a constant dilution rate of 0.05 1/h. the specific oxygen uptake rate decreased from 1.30 to 0.36 mmol/gh Xylitol was not produced at specific oxygen uptake rates above 0.91 mmol/gh. Upon shift to lower oxygen rates, specific xylitol production rate increased more rapidly than specific ethanol production rate:Nomenclature D dilution rate (1/h) - DOT dissolved oxygen tension (%) - mo2 maintenance coefficient (mmol O2/g cell mass h) - qo2 specific oxygen uptake rate (mmol O2/g cell mass h) - qs specific xylose uptake rate (g xylose/g cell mass h) or (mmol xylose/g cell mass h) - qx specific xylitol production rate (g xylitol/ g cell mass h) or (mmol xylitol/ g cell mass h) - qe specific ethanol production rate (g ethanol/ g cell mass h) or (mmol ethanol/ g cell mass h) - qCO2 specific carbon dioxide production rate (mmol CO2/g cell mass h) - S xylose concentration (g/1) - Ycm/s cell mass yield coefficient, (g cell mass/mmol xylose) or (g cell mass/ g xylose consumed) - Ycm/O2 cell mass yield coefficient, (g cell mass/mmol O2) - YX/S xylitol yield coefficient (g xylitol/g xylose consumed) - Yx/O2 xylitol yield coefficient (g xylitol/mmol O2) - Ye/s ethanol yield coefficient (g ethanol/g xylose consumed) - OUR oxygen uptake rate (mmol O2/1h) - specific growth rate (1/h)  相似文献   

19.
The yeast strain Candida guilliermondii2581 was chosen for its ability to produce xylitol in media with high concentrations of xylose. The rate of xylitol production at a xylose concentration of 150 g/l is 1.25 g/l per h; the concentration of xylitol after three days of cultivation is 90 g/l; and the relative xylitol yield is 0.6 g per g substrate consumed. The growth conditions were found that resulted in the maximum relative xylitol yield with complete consumption of the sugar: xylose concentration, 150 g/l; pH 6.0; and shaking at 60 rpm. It was shown that the growth under conditions of limited aeration favors the reduction of xylose.  相似文献   

20.
Pyridine nucleotide transhydrogenase is a metabolic enzyme transferring the reducing equivalent between two nucleotide acceptors such as NAD+ and NADP+ for balancing the intracellular redox potential. Soluble transhydrogenase (STH) of Azotobacter vinelandii was expressed in a recombinant Saccharomyces cerevisiae strain harboring the Pichia stipitis xylose reductase (XR) gene to study effects of redox potential change on cell growth and sugar metabolism including xylitol and ethanol formation. Remarkable changes were not observed by expression of the STH gene in batch cultures. However, expression of STH accelerated the formation of ethanol in glucose-limited fed-batch cultures, but reduced xylitol productivity to 71% compared with its counterpart strain expressing xylose reductase gene alone. The experimental results suggested that A. vinelandii STH directed the reaction toward the formation of NADH and NADP+ from NAD+ and NADPH, which concomitantly reduced the availability of NADPH for xylose conversion to xylitol catalyzed by NADPH-preferable xylose reductase in the recombinant S. cerevisiae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号