首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Reovirus-induced apoptosis: A minireview   总被引:1,自引:0,他引:1  
Reoviruses infect a variety of mammalian hosts and serve as an important experimental system for studying the mechanisms of virus-induced injury. Reovirus infection induces apoptosis in cultured cells in vitro and in target tissues in vivo, including the heart and central nervous system (CNS). In epithelial cells, reovirus-induced apoptosis involves the release of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) from infected cells and the activation of TRAIL-associated death receptors (DRs) DR4 and DR5. DR activation is followed by activation of caspase 8, cleavage of Bid, and the subsequent release of pro-apoptotic mitochondrial factors. By contrast, in neurons, reovirus-induced apoptosis involves a wider array of DRs, including TNFR and Fas, and the mitochondria appear to play a less critical role. These results show that reoviruses induce apoptotic pathways in a cell and tissue specific manner. In vivo there is an excellent correlation between the location of viral infection, the presence of tissue injury and apoptosis, indicating that apoptosis is a critical mechanism by which disease is triggered in the host. These studies suggest that inhibition of apoptosis may provide a novel strategy for limiting virus-induced tissue damage following infection.  相似文献   

2.
TNF-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor (TNF) ligand family that exerts its apoptotic activity in human cells by binding to two transmembrane receptors, TRAILR1 and TRAILR2. In cells co-expressing both receptors the particular contribution of either protein to the overall cellular response is not well defined. Here we have investigated whether differences in the signaling capacities of TRAILR1 and TRAILR2 can be attributed to certain functional molecular subdomains. We generated and characterized various chimeric receptors comprising TRAIL receptor domains fused with parts from other members of the TNF death receptor family. This allowed us to compare the contribution of particular domains of the two TRAIL receptors to the overall apoptotic response and to identify elements that regulate apoptotic signaling. Our results show that the TRAIL receptor death domains are weak apoptosis inducers compared to those of CD95/Fas, because TRAILR-derived constructs containing the CD95/Fas death domain possessed strongly enhanced apoptotic capabilities. Importantly, major differences in the signaling strengths of the two TRAIL receptors were linked to their transmembrane domains in combination with the adjacent extracellular stalk regions. This was evident from receptor chimeras comprising the extracellular part of TNFR1 and the intracellular signaling part of CD95/Fas. Both receptor chimeras showed comparable ligand binding affinities and internalization kinetics. However, the respective TRAILR2-derived molecule more efficiently induced apoptosis. It also activated caspase-8 and caspase-3 more strongly and more quickly, albeit being expressed at lower levels. These results suggest that the transmembrane domains together with their adjacent stalk regions can play a major role in control of death receptor activation thereby contributing to cell type specific differences in TRAILR1 and TRAILR2 signaling.  相似文献   

3.
4.
Chemotherapeutic genotoxins induce apoptosis in epithelial-cell-derived cancer cells. The death receptor ligand TRAIL also induces apoptosis in epithelial-cell-derived cancer cells but generally fails to induce apoptosis in nontransformed cells. We show here that the treatment of four different epithelial cell lines with the topoisomerase II inhibitor etoposide in combination with TRAIL (tumor necrosis factor [TNF]-related apoptosis-inducing ligand) induces a synergistic apoptotic response. The mechanism of the synergistic effect results from the etoposide-mediated increase in the expression of the death receptors 4 (DR4) and 5 (DR5). Inhibition of NF-kappaB activation by expression of kinase-inactive MEK kinase 1(MEKK1) or dominant-negative IkappaB (DeltaIkappaB) blocked the increase in DR4 and DR5 expression following etoposide treatment. Addition of a soluble decoy DR4 fusion protein (DR4:Fc) to cell cultures reduced the amount of etoposide-induced apoptosis in a dose-dependent manner. The addition of a soluble TNF decoy receptor (TNFR:Fc) was without effect, demonstrating the specificity of DR4 binding ligands in the etoposide-induced apoptosis response. Thus, genotoxin treatment in combination with TRAIL is an effective inducer of epithelial-cell-derived tumor cell apoptosis relative to either treatment alone.  相似文献   

5.
Apoptosis-inducing ligand 2 (Apo2L), also called tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), triggers programmed cell death in various types of cancer cells but not in most normal cells. Apo2L/TRAIL is a homotrimeric protein that interacts with five receptors: death receptor 4 (DR4) and DR5 mediate apoptosis activation, whereas decoy receptor 1 (DcR1), DcR2, and osteoprotegerin counteract this function. Many cancer cell lines express both DR4 and DR5, and each of these receptors can initiate apoptosis independently of the other. However, the relative contribution of DR4 and DR5 to ligand-induced apoptosis is unknown. To investigate this question, we generated death receptor-selective Apo2L/TRAIL variants using a novel approach that enables phage display of mutated trimeric proteins. Selective binding to DR4 or DR5 was achieved with three to six-ligand amino acid substitutions. The DR4-selective Apo2L/TRAIL variants examined in this study showed a markedly reduced ability to trigger apoptosis, whereas the DR5-selective variants had minimally decreased or slightly increased apoptosis-inducing activity. These results suggest that DR5 may contribute more than DR4 to Apo2L/TRAIL-induced apoptosis in cancer cells that express both death receptors.  相似文献   

6.
RAS oncogenes play a major role in cancer development by activating an array of signaling pathways, most notably mitogen-activated protein kinases, resulting in aberrant proliferation and inhibition of apoptotic signaling cascades, rendering transformed cells resistant to extrinsic death stimuli. However, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is able to kill specific tumor cells through the engagement of its receptors, death receptor 4 (DR4) and death receptor 5 (DR5), and the activation of apoptotic pathways, providing promising targets for anticancer therapies. In this study, we show that TRAIL induces cell death in human colon adenocarcinoma cells in a MEK-dependent manner. We also report a prolonged MEK-dependent activation of ERK1/2 and increased c-FOS expression induced by TRAIL in this system. Our study reveals that transformation of the colon cell line Caco-2 by Ki- and mainly by Ha-ras oncogenes sensitizes these cells to TRAIL-induced apoptosis by causing specific MEK-dependent up-regulation of DR4 and DR5. These observations taken together reveal that RAS-MEK-ERK1/2 signaling pathway can sensitize cells to TRAIL-induced apoptosis by up-regulating DR4 and DR5 and overall imply that TRAIL-based therapeutic strategies using TRAIL agonists could be used in cases of human colon cancers bearing RAS mutations.  相似文献   

7.
Members of the tumor necrosis factor superfamily of receptors induce apoptosis by recruiting adaptor molecules through death domain interactions. The central adaptor molecule for these receptors is the death domain-containing protein Fas-associated death domain (FADD). FADD binds a death domain on a receptor or additional adaptor and recruits caspases to the activated receptor. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signals apoptosis through two receptors, DR4 and DR5. Although there is much interest in TRAIL, the mechanism by which FADD is recruited to the TRAIL receptors is not clear. Using a reverse two-hybrid system we previously identified mutations in the death effector domain of FADD that prevented binding to Fas/CD95. Here we show that these mutations also prevent binding to DR5. FADD-deficient Jurkat cells stably expressing these FADD mutations did not transduce TRAIL or Fas/CD95 signaling. Second site compensating mutations that restore binding to and signaling through Fas/CD95 and DR5 were also in the death effector domain. We conclude that in contrast to current models where the death domain of FADD functions independently of the death effector domain, the death effector domain of FADD comes into direct contact with both TRAIL and Fas/CD95 receptors.  相似文献   

8.
The proteasome inhibitors are a new class of antitumor agents. These inhibitors cause the accumulation of many proteins in the cell with the induction of apoptosis including TRAIL death receptors DR4 and DR5, but the role of the TRAIL apoptotic pathway in proteasome inhibitor cytotoxicity is unknown. Herein, we have demonstrated that the induction of apoptosis by the proteasome inhibitors, MG-132 and PS-341 (bortezomib, Velcade), in primary CLL cells and the Burkitt lymphoma cell line, BJAB, is associated with up-regulation of TRAIL and its death receptors, DR4 and DR5. In addition, FLICE-like inhibitory protein (c-FLIP) protein is decreased. MG-132 treatment increases binding of DR5 to the adaptor protein FADD, and causes caspase-8 activation and cleavage of pro-apoptotic BID. Moreover, DR4:Fc or blockage of DR4 and DR5 expression using RNA interference, which prevents TRAIL apoptotic signaling, blocks proteasome inhibitor induced apoptosis. MG-132 also increases apoptosis and DR5 expression in normal B-cells. However, when the proteasome inhibitors are combined with TRAIL or TRAIL receptor activating antibodies the amount of apoptosis is increased in CLL cells but not in normal B cells. Thus, activation of the TRAIL apoptotic pathway contributes to proteasome inhibitor induced apoptosis in CLL cells.  相似文献   

9.
10.
The apoptotic cell death process in the prostate is known to be under the control of androgens. Tumor necrosis factor-alpha (TNF-alpha)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF-alpha family of cytokines, known to induce apoptosis upon binding to its death domain-containing receptors, DR4/TRAIL-R1 and DR5/TRAIL-R2. Two additional TRAIL receptors, DcR1/TRAIL-R3 and DcR2/TRAIL-R4, lack functional death domains and act as decoy receptors for TRAIL. In this study, we examined whether TRAIL and cellular receptors expression was targeted by androgens during the apoptotic cell death process in the hormone sensitive ventral prostate. The role of androgens was investigated using two sets of experiment. (1) Androgen deprivation associated with an apoptotic process resulted in a decrease in DcR2 mRNA and protein expression in the ventral prostate 3 days after castration. Testosterone administration to castrated adult rats prevented the decrease in DcR2 mRNA and protein levels in the ventral prostate. In contrast, DcR2 expression was modified, neither in the dorsolateral nor in the anterior prostate following castration. No changes were observed in DR4, DR5, DcR1, and TRAIL mRNA and protein levels in prostate after castration. (2) A specific decrease in DcR2 expression was observed in the ventral prostate after treatment of rats with the anti-androgen flutamide. Together, the present results suggest that testosterone specifically controls DcR2 expression in the adult rat ventral prostate. Androgen withdrawal, by reducing DcR2 expression, might leave the cells vulnerable to cell death signals generated by TRAIL via its functional receptors.  相似文献   

11.
The extrinsic apoptosis pathway is triggered by the binding of death ligands of the tumor necrosis factor (TNF) family to their appropriate death receptors (DRs) on the cell surface. One TNF family member, TNF-related apoptosis-inducing ligand (TRAIL or Apo2L), seems to preferentially cause apoptosis of transformed cells and can be systemically administered in the absence of severe toxicity. Therefore, there has been enthusiasm for the use of TRAIL or agonist antibodies to the TRAIL DR4 and DR5 in cancer therapy. Nonetheless, many cancer cells are very resistant to TRAIL apoptosis in vitro. Therefore, there is much interest in identifying compounds that can be combined with TRAIL to amplify its apoptotic effects. In this review, I will provide a brief overview of apoptosis signaling by TRAIL and discuss apoptosis-sensitizing agents, focusing mainly on the proteasome inhibitor bortezomib (VELCADE) and some novel sensitizers that we have recently identified. Alternative ways to administer TRAIL or DR agonist antibodies as therapeutic agents will also be described. Finally, I will discuss some of the gaps in our understanding of TRAIL apoptosis signaling and suggest some research directions that may provide additional information for optimizing the targeting of the extrinsic apoptosis pathway for future cancer therapy.  相似文献   

12.
The tumour necrosis factor family member TNF-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in a variety of cancer cells through the activation of death receptors 4 (DR4) and 5 (DR5) and is considered a promising anticancer therapeutic agent. As apoptosis seems to occur primarily via only one of the two death receptors in many cancer cells, the introduction of DR selectivity is thought to create more potent TRAIL agonists with superior therapeutic properties. By use of a computer-aided structure-based design followed by rational combination of mutations, we obtained variants that signal exclusively via DR4. Besides an enhanced selectivity, these TRAIL-DR4 agonists show superior affinity to DR4, and a high apoptosis-inducing activity against several TRAIL-sensitive and -resistant cancer cell lines in vitro. Intriguingly, combined treatment of the DR4-selective variant and a DR5-selective TRAIL variant in cancer cell lines signalling by both death receptors leads to a significant increase in activity when compared with wild-type rhTRAIL or each single rhTRAIL variant. Our results suggest that TRAIL induced apoptosis via high-affinity and rapid-selective homotrimerization of each DR represent an important step towards an efficient cancer treatment.  相似文献   

13.
TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) is a member of the tumor necrosis factor family that can kill a wide variety of tumor cells but not normal cells. TRAIL-induced apoptosis in humans is mediated by its receptors DR4 (TRAIL-R1) and DR5 (TRAIL-R2). What constitutes the signaling molecules downstream of these receptors, however, remains highly controversial. Using the FADD dominant negative molecule, several groups have reached different conclusions with respect to the role of FADD in TRAIL-induced apoptosis. More recently, using FADD-deficient (-/-) mouse embryonic fibroblasts, Yeh et al. (Yeh, W.-C., Pompa, J. L., McCurrach, M. E., Shu, H.-B., Elia, A. J., Shahinian, A., Ng, M., Wakeham, A., Khoo, W., Mitchell, K., El-Deiry, W. S., Lowe, S. W., Goeddel, D. V., and Mak, T. W. (1998) Science 279, 1954-1958) concluded that DR4 utilizes a FADD-independent apoptotic pathway. The latter experiment, however, involved transient overexpression, which often leads to nonspecific aggregation of death domain-containing receptors. To address this issue in a more physiological setting, we stably transfected mouse DR4/5, human DR4, or human DR5 into FADD(-/-) mouse embryonic fibroblast cells. We showed that FADD(-/-) MEF cells stably transfected with TRAIL receptors are resistant to TRAIL-mediated cell death. In contrast, TRAIL receptors stably transfected into heterozygous FADD(+/-) cells or FADD(-/-) cells reconstituted with a FADD retroviral construct are sensitive to the TRAIL cytotoxic effect. We conclude that FADD is required for DR4- and DR5-mediated apoptosis.  相似文献   

14.
Targeted cancer therapy concepts often aim at the induction of adjuvant antitumor immunity or stimulation of tumor cell apoptosis. There is further evidence that combined application of immune stimulating and tumor apoptosis-inducing compounds elicits a synergistic antitumor effect. Here, we describe the development and characterization of bifunctional fusion proteins consisting of a single-chain variable fragment (scFv) domain derived from the CD40-specific monoclonal antibody G28-5 that is fused to the N-terminus of stabilized trimeric soluble variants of the death ligand TNF-related apoptosis-inducing ligand (TRAIL). As shown before by us and others for other cell surface antigen-targeted scFv-TRAIL fusion proteins, scFv:G28-TRAIL displayed an enhanced capacity to induce apoptosis upon CD40 binding. Studies with scFv:G28 fusion proteins of TRAIL mutants that discriminate between the two TRAIL death receptors, TRAILR1 and TRAILR2, further revealed that the CD40 binding-dependent mode of apoptosis induction of scFv:G28-TRAIL is operable with each of the two TRAIL death receptors. Binding of scFv:G28-TRAIL fusion proteins to CD40 not only result in enhanced TRAIL death receptor signaling but also in activation of the targeted CD40 molecule. In accordance with the latter, the scFv:G28-TRAIL fusion proteins triggered strong CD40-mediated maturation of dendritic cells. The CD40-targeted TRAIL fusion proteins described in this study therefore represent a novel type of bifunctional fusion proteins that couple stimulation of antigen presenting cells and apoptosis induction.  相似文献   

15.
On the TRAIL to apoptosis   总被引:12,自引:0,他引:12  
  相似文献   

16.
Barblu L  Herbeuval JP 《PloS one》2012,7(3):e32874
Activation-induced cell death is a natural process that prevents tissue damages from over-activated immune cells. TNF-Related apoptosis ligand (TRAIL), a TNF family member, induces apoptosis of infected and tumor cells by binding to one of its two death receptors, DR4 or DR5. TRAIL was reported to be secreted by phytohemagglutinin (PHA)-stimulated CD4(+) T cells in microvesicles.We investigate here TRAIL and DR5 regulation by activated primary CD4(+) T cells and its consequence on cell death. We observed that PHA induced CD4(+) T cell apoptosis in a dose-dependent manner. Thus, we investigated molecules involved in PHA-mediated cell death and demonstrated that TRAIL and DR5 were over-expressed on the plasma membrane of PHA-stimulated CD4(+) T cells. Surprisingly, DR5 was constitutively expressed in naive CD4(+) T cells at messenger RNA (mRNA) and protein levels. Thus, using 3 dimensional microscopy and intracellular staining assays, we show that DR5 is constitutively expressed in CD4(+) T cells and is pre-stocked in the cytoplasm. When cells are stimulated by PHA, DR5 is relocalized from cytoplasm to plasma membrane. Small interference RNA (siRNA) and blocking antibody assays demonstrate that TRAIL/DR5 interaction is mainly responsible for PHA-mediated CD4(+) T cell apoptosis. Thus, membrane DR5 expression leading to TRAIL-mediated apoptosis may represent one of the pathways responsible for eradication of over-activated CD4(+) T cells during immune responses.  相似文献   

17.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potential anticancer agent that selectively induces apoptosis in a variety of cancer cells by interacting with death receptors DR4 and DR5. TRAIL can also bind to decoy receptors (DcR1, DcR2, and osteoprotegerin receptor) that cannot induce apoptosis. Different tumor types respond either to DR4 or to DR5 activation, and chemotherapeutic drugs can increase the expression of DR4 or DR5 in cancer cells. Thus, DR4 or DR5 receptor-specific TRAIL variants would permit new and tumor-selective therapies. Previous success in generating a DR5-selective TRAIL mutant using computer-assisted protein design prompted us to make a DR4-selective TRAIL variant. Technically, the design of DR4 receptor-selective TRAIL variants is considerably more challenging compared with DR5 receptor-selective variants, because of the lack of a crystal structure of the TRAIL-DR4 complex. A single amino acid substitution of Asp at residue position 218 of TRAIL to His or Tyr was predicted to have a favorable effect on DR4 binding specificity. Surface plasmon resonance-based receptor binding tests showed a lowered DR5 affinity in concert with increased DR4 specificity for the designed variants, D218H and D218Y. Binding to DcR1, DcR2, and osteoprotegerin was also decreased. Cell line assays confirmed that the variants could not induce apoptosis in DR5-responsive Jurkat and A2780 cells but were able to induce apoptosis in DR4-responsive EM-2 and ML-1 cells.  相似文献   

18.
Like anti-Fas monoclonal antibodies, some monoclonal antibodies against tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptors have tumoricidal activity too. In this article we report a novel mouse anti-human DR5 monoclonal antibody, AD5-10, that induces apoptosis of various tumor cell lines in the absence of second cross-linking in vitro and showed strong tumoricidal activity in vivo. AD5-10 does not compete with TRAIL for binding to DR5 and synergizes with TRAIL to induce apoptosis of tumor cells. AD5-10 induces both caspase-dependent and caspase-independent cell death in Jurkat cells, whereas TRAIL induces only caspase-dependent cell death. We show for the first time that DR5 can mediate caspase-independent cell death, and DR5 can mediate distinct cell signals when interacting with different extracellular proteins. Studies on AD5-10 help us to understand more on the functions of DR5 and may provide new ideas for cancer immunotherapy.  相似文献   

19.
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family and a potent inducer of apoptosis. TRAIL has been shown to effectively limit tumor growth in vivo without detectable cytotoxic side-effects. Interferon (IFN)-gamma often modulates the anticancer activities of TNF family members including TRAIL. However, little is known about the mechanism. To explore the mechanism, A549, HeLa, LNCaP, Hep3B and HepG2 cells were pretreated with IFN-gamma, and then exposed to TRAIL. IFN-gamma pretreatment augmented TRAIL-induced apoptosis in all these cell lines. A549 cells were selected and further characterized for IFN-gamma action in TRAIL-induced apoptosis. Western blotting analyses revealed that IFN-gamma dramatically increased the protein levels of interferon regulatory factor (IRF)-1, but not TRAIL receptors (DR4 and DR5) and pro-apoptotic (FADD and Bax) and anti-apoptotic factors (Bcl-2, Bcl-XL, cIAP-1, cIAP-2 and XIAP). To elucidate the functional role of IRF-1 in IFN-gamma-enhanced TRAIL-induced apoptosis, IRF-1 was first overexpressed by using an adenoviral vector AdIRF-1. IRF-1 overexpression minimally increased apoptotic cell death, but significantly enhanced apoptotic cell death induced by TRAIL when infected cells were treated with TRAIL. In further experiments using an antisense oligonucleotide, a specific repression of IRF-1 expression abolished enhancer activity of IFN-gamma for TRAIL-induced apoptosis. Therefore, our data indicate that IFN-gamma enhances TRAIL-induced apoptosis through IRF-1.  相似文献   

20.
Non-small cell lung cancer (NSCLC) A549 cells are resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. Therefore, combination therapy using sensitizing agents to overcome TRAIL resistance may provide new strategies for treatment of NSCLC. Here, we investigated whether lithium chloride (LiCl), a drug for mental illness, could sensitize A549 cells to TRAIL-induced apoptosis. We observed that LiCl significantly enhanced A549 cells apoptosis through up-regulation of death receptors DR4 and DR5 and activation of caspase cascades. In addition, G2/M arrest induced by LiCl also contributed to TRAIL-induced apoptosis. Concomitantly, LiCl strongly inhibited the activity of c-Jun N-terminal kinases (JNKs), and the inhibition of JNKs by SP600125 also induced G2/M arrest and augmented cell death caused by TRAIL or TRAIL plus LiCl. However, glycogen synthase kinase-3β (GSK3β) inhibition was not involved in TRAIL sensitization induced by LiCl. Collectively, these findings indicated that LiCl sensitized A549 cells to TRAIL-induced apoptosis through caspases-dependent apoptotic pathway via death receptors signaling and G2/M arrest induced by inhibition of JNK activation, but independent of GSK3β.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号