首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Restoration approaches rely on native plants; yet in some situations, natural vegetation may not grow fast enough to prevent the fragmentation of original vegetation and the consequent negative impacts on fauna. In this context, some introduced plants may grow faster and provide more food than native species, and they may also contribute to human livelihood. We investigate to what extent introduced plant species (1) can serve as habitat and food for endemic vertebrates and (2) provide benefits to local people. We address this question in Madagascar, characterized by high degrees of endemism, long histories of coevolution between endemic species, highly fragmented forests, and a high reliance of the rural population on natural resources. A literature search for interactions between endemic fauna and introduced flora revealed that 100 of 1,379 introduced species recorded for Madagascar are used by endemic vertebrates. They provide food mainly for primates, flying foxes, and birds, and habitat for all terrestrial vertebrate groups. One hundred vertebrate species were reported to use introduced plants, many of which are fast growing and are useful for populations. Although these introduced plants should be approached with caution due to their potentially invasive behavior, many introduced plants can provide services for the native fauna and for humans. For example, trees can provide an interim solution to secure the survival of endemic fauna that otherwise would be lost due to fragmentation effects. These plants could bridge the time lag until native forest regeneration or restoration with native trees will have become effective.  相似文献   

2.
Invasion by exotic species in Mediterranean grasslands has determined assembly patterns of native and introduced species, knowledge of which provides information on the ecological processes underlying these novel communities. We considered grasslands from Spain and Chile. For each country we considered the whole grassland community and we split species into two subsets: in Chile, species were classified as natives or colonizers (i.e. exotics); in Spain, species were classified as exclusives (present in Spain but not in Chile) or colonizers (Spanish natives and exotics into Chile). We used null models and co-occurrence indices calculated in each country for each one of 15 sites distributed along a precipitation gradient and subjected to similar silvopastoral exploitation. We compared values of species co-occurrence between countries and between species subsets (natives/colonizers in Chile; exclusives/colonizers in Spain) within each country and we characterised them according to climatic variables. We hypothesized that: a) the different coexistence time of the species in both regions should give rise to communities presenting a spatial pattern further from random in Spain than in Chile, b) the co-occurrence patterns in the grasslands are affected by mesoclimatic factors in both regions. The patterns of co-occurrence are similar in Spain and Chile, mostly showing a spatial pattern more segregated than expected by random. The colonizer species are more segregated in Spain than in Chile, possibly determined by the longer residence time of the species in the source area than in the invaded one. The segregation of species in Chile is related to water availability, being species less segregated in habitat with greater water deficit; in Spain no relationship with climatic variables was found. After an invasion process, our results suggest that the possible process of alteration of the original Chilean communities has not prevented the assembly between the native and colonizer species together.  相似文献   

3.
Summary The establishment of exotic species of vascular flora and vertebrate fauna on subantarctic Macquarie Island since its discovery in 1810 has resulted in major changes in the biota. A management programme aims to reduce the numbers of exotic plant and animal species and assist with the recovery of pre-existing communities and processes. This paper reviews the integrated vertebrate pests management programme on Macquarie Island since 1974 and outlines future management considerations. As part of this programme, the responses of some native and exotic species of vascular flora and vertebrate fauna were monitored following control of European Rabbit ( Oryctolagus cuniculus ) numbers. Changes in the vegetation recorded over 10 years showed that approximately half of all the vascular species had benefited from rabbit grazing, including several which formed a major part of the rabbit's diet. After rabbit control, some adversely affected plants responded rapidly to a reduction in grazing pressure while others will require an almost total cessation of grazing in order to re-establish their former distributions. With the decrease in rabbit numbers it was also necessary to control Feral Cats ( Felis catus ) due to their increased predation on native burrow-nesting birds. Feral Cat predation on introduced fauna also increased, one result of which was the eradication from the island of the introduced Weka ( Gallirallus australis scotti ). Reduced rabbit grazing is leading to re-establishment of the native Tall Tussock ( Poa foliosa ) grassland and with it the spread of the introduced Ship Rat ( Rattus rattus ). This review indicates that an integrated approach to pest management, with monitoring of the responses of both target and non-target species, is the most effective way to restore pre-existing communities and processes.
Key words grazing pressure, introduced species, predation, recovery, vertebrate pest management.  相似文献   

4.
The Montebello archipelago consists of 218 islands; 80 km from the north-west coast of Western Australia. Before 1912 the islands had a diverse terrestrial fauna. By 1952 several species were locally extinct. Between 1996 and 2011 rodents and cats were eradicated, and 5 mammal and 2 bird species were translocated to the islands. Monitoring of the broader terrestrial ecosystem over time has been limited. We used 20 dry-season Landsat images from 1988 to 2013 and estimation of green fraction cover in nadir photographs taken at 27 sites within the Montebello islands and six sites on Thevenard Island to assess change in vegetation density over time. Analysis of data averaged across the 26-year period suggests that 719 ha out of 2169 ha have increased in vegetation cover by up to 32%, 955 ha have remained stable and 0.6 ha have declined in vegetation cover. Over 492 ha (22%) had no vegetation cover at any time during the period analysed. Chronological clustering analysis identified two breakpoints in the average vegetation cover data occurring in 1997 and 2003, near the beginning and end of the rodent eradication activities. On many islands vegetation cover was declining prior to 1996 but increased after rodents were eradicated from the islands. Data for North West and Trimouille islands were analysed independently because of the potential confounding effect of native fauna being introduced to these islands. Mala (Lagorchestes hirsutus) and Shark Bay mice (Pseudomys fieldi) both appear to suppress native plant recruitment but not to the same degree as introduced rodents. Future research should assess whether the increase in vegetation cover on the Montebello islands is due to an increase in native or introduced plants.  相似文献   

5.
Abstract

We investigated the effects of invasion by introduced grey willow (Salix cinerea) on beetle communities within four wetland vegetation types: native vegetation, native vegetation following grey willow removal, native vegetation undergoing grey willow invasion and dense grey willow-dominated vegetation. In total, 1505 beetles from 90 species were collected using modified Malaise traps. Native wetland vegetation had significantly lower beetle species richness than willow-dominated vegetation and was dominated by herbivores, whereas detritivores characterised willow-dominated vegetation. Beetle abundance was highest in the willow-dominated vegetation and mostly comprised detritivores. In contrast, beetle abundance was lowest in native wetland vegetation, but had even proportions of herbivores and detritivores. Native wetland vegetation had a high proportion of native beetles present. As grey willows invaded, introduced beetles became more common. The beetle community composition differed significantly between grey willow-dominated vegetation and native wetland vegetation. These compositional differences were mainly due to the increasing complexity of vegetation structure following grey willow invasion. The beetle communities within restored native wetland vegetation were most similar to those within the native wetland vegetation. From a conservation perspective, these results are encouraging and suggest that, although grey willows dramatically alter the composition of beetle communities present, these communities can be restored to a beetle fauna that is similar to those found within native wetland through the removal of the willows.  相似文献   

6.
Shade-grown coffee is an agricultural system that contains some forest-like characteristics. However, structure and diversity are poorly known in shade coffee systems. In 61 coffee-growers' plots of Chiapas, Mexico, structural variables of shade vegetation and coffee yields were measured, recording species and their use. Coffee stands had five vegetation strata. Seventy seven woody species mostly used as wood were found (mean density 371.4 trees per hectare). Ninety percent were native species (40% of the local flora), the remaining were introduced species, mainly fruit trees/shrubs. Diametric distribution resembles that of a secondary forest. Principal Coordinates Analysis grouped plots in four classes by the presence of Inga, however the majority of plots are diverse. There was no difference in equitability among groups or coffee yields. Coffee yield was 835 g clean coffee per shrub, or ca. 1,668 kg ha-1. There is a significant role of shade-grown coffee as diversity refuge for woody plants and presumably associated fauna as well as an opportunity for shade-coffee growers to participate in the new biodiversity-friendly-coffee market.  相似文献   

7.
The introduction of non-native gastropods on islands has repetitively been related to a decline of the endemic fauna. So far, no quantitative information is available even for the native gastropod fauna from the laurel forests (the so-called Laurisilva) of the Canary Islands. Much of the original laurel forest has been logged in recent centuries. Based on vegetation studies, we hypothesized that densities and the number of introduced species decline with the age of the regrowth forests. We sampled 27 sites from which we collected thirty native and seven introduced species. Two introduced species, Milax nigricans and Oxychilus alliarius, were previously not reported from the Canary Islands. Assemblage composition was mainly structured by disturbance history and altitude. Overall species richness was correlated with slope inclination, prevalence of rocky outcrops, amounts of woody debris and leaf litter depth. Densities were correlated with the depth of the litter layer and the extent of herb layer cover and laurel canopy cover. Introduced species occurred in 22 sites but were neither related to native species richness nor to the time that elapsed since forest regrowth. One introduced slug, Lehmannia valentiana, is already wide-spread, with densities strongly related to herb cover. Overall species richness seemed to be the outcome of invasibility, thus factors enhancing species richness likely also enhance invasibility. Although at present introduced species contribute to diversity, the potential competition between introduced slugs and the rich native semi-slug fauna, and the effects of introduced predatory snails (Oxychilus spp. and Testacella maugei) warrant further monitoring.  相似文献   

8.
Buffel grass (Cenchrus ciliaris) is a highly invasive species that thrives in semi-arid environments and has the capacity to transform native vegetation outside its native range. However, there is limited information on the effects of buffel grass invasion on native fauna. We used an experimental approach to investigate the impact of buffel grass on the native ant fauna near Alice Springs in semi-arid central Australia. A series of plots where buffel grass was removed and native vegetation had regenerated (B?), paired with adjacent control plots heavily invaded by buffel grass (B+), were used to assess the impact of buffel grass on ant diversity and composition, and on rates of seed dispersal by ants. Differences in ant diversity were also compared between two microhabitat types: bare ground and under cover, to examine the extent to which any impacts were a simple function of change in vegetation cover. Ant abundance and richness were approximately 50 % higher in B? compared with B+ plots, and higher abundance was especially pronounced for the very thermophilic Hot-Climate Specialists. Ant species composition varied significantly between plot types. B? plots supported more species and individuals in both bare and covered microhabitats, which suggests that the differences in ant diversity was not simply through changes in vegetation cover. Rates of seed removal by ants were marginally higher in B? plots. Our findings indicate that buffel grass has a major impact on a dominant faunal group of arid Australia, and possibly reduces the delivery of an important ecosystem service. In addition, our study demonstrates the potential for ecosystem recovery following effective buffel grass management.  相似文献   

9.
Climate envelope models (CEMs) are widely used to forecast future shifts in species ranges under climate change, but these models are rarely validated against independent data, and their fundamental assumption that climate limits species distributions is rarely tested. Here, we use the data on the introduction of five South African dung beetle species to Australia to test whether CEMs developed in the native range can predict distribution in the introduced range, where the confounding effects of dispersal limitation, resource limitation and the impact of natural enemies have been removed, leaving climate as the dominant constraint. For two of the five species, models developed in the native range predict distribution in the introduced range about as well as models developed in the introduced range where we know climate limits distribution. For the remaining three species, models developed in the native range perform poorly, implying that non-climatic factors limit the native distribution of these species and need to be accounted for in species distribution models. Quantifying relevant non-climatic factors and their likely interactions with climatic variables for forecasting range shifts under climate change remains a challenging task.  相似文献   

10.
To protect the remaining biodiversity on tropical islands it is important to predict the elevational ranges of non-native species. We evaluated two hypotheses by examining land snail faunas on the eastern (windward) side of the island of Hawaii: (1) the latitude of a species' native region can be used to predict its potential elevational range and (2) non-native temperate species, which experience greater climatic fluctuations in their native range, are more likely to become established at higher elevations and to extend over larger elevational ranges than non-native tropical species. All non-native tropical species were distributed patchily among sites ≤500 m and occupied small elevational ranges, whereas species introduced from temperate regions occupied wide elevational ranges and formed a distinct fauna spanning elevations 500–2000 m. Most native land snail species and ecosystems occur >500 m in areas dominated by temperate non-native snail and slug species. Therefore, knowing the native latitudinal region of a non-native species is important for conservation of tropical island ecosystems because it can be translated into potential elevational range if those species are introduced. Because temperate species will survive in tropical locales particularly at high elevation, on many tropical islands the last refuges of the native species, preventing introduction of temperate species should be a conservation priority.  相似文献   

11.
Pollination mechanisms and pollinators are reported for a total of 137 species (75% of the non-abiotically pollinated flora) as they occur at three altitudinal levels (subandean scrub: 2,200–2,600 m; cushion-plant zone: 2,700–3,100 m; subnival feldfield: 3,200–3,600 m) in the Andean (alpine) zone on the Cordon del Cepo (33°17'S) in central Chile as part of community oriented research in reproductive biology in the high temperate Andes of South America. Only around 4% of the species studied failed to be visited by potential pollinators. Hymenopterans (principally bees) are important pollinators of 50% of the biotically pollinated flora, butterflies of 24% and flies of 46%. Other vectors include beetles, moths, and hummingbirds. An estimated 17% of the flora is anemophilous. Bee species-richness, specialist feeding, and melittophily reach maxima in the subandean scrub; thereafter, bees diminish rapidly in number, with bees pollinating only 13% of the subnival flora as contrasted with 68% of the subandean flora. Although fly and butterfly species-richness also decline with increasing altitude, the proportions of species pollinated by these vectors actually increases. High-altitude populations of melittophilous species with broad altitudinal ranges are invariably serviced by fewer bee species as compared with lower populations. The rich bee fauna at the lower end of the Andean zone in central Chile appears to have resulted from upward colonization from that of the subtending lowland Mediterranean sclerophyllous woodland vegetation. Altitudinal variation in pollination spectra is discussed in relation to contrasting life history characteristics and different modes of thermoregulation in the insect groups involved.  相似文献   

12.
The geographical extent of exotic plant species is a major component of invasiveness, which has been explained by intrinsic attributes of the plants, such as growth rate, reproductive type, life form, and biogeographical origin. We assessed quantitatively life cycle and biogeographical origin as determinants of the geographical distribution of naturalized plants in continental Chile, using minimum residence time (MRT) as an estimator of introduction date. We assembled a database with information on 428 plants (principally herbs) in continental Chile, corresponding to 61% of the exotic naturalized flora. For each species we recorded: (1) minimum residence time (introduction date or first recorded date in the country); (2) biogeographical origin (American, Eurasian, others); (3) life cycle (annual, perennial, others); (4) number of Chilean regions occupied by the plant. We found that 82 species (19%) have been recorded in only one region of Chile, while only three species have been found in all 13 regions of the country. About 89% of the species (381) have been found only in central Chile (Regions IV to VIII), while the remaining 11% (47) are found only in the northern (Regions I to III) or southern parts of the country (Regions IX to XII). We detected significant differences in regional spread of naturalized plants according to minimum residence time: those species with shorter MRT had more limited spread ranges than those with longer MRT. Biogeographical origin and life cycle did not explain geographical extent in Chile. This study shows that historical factors are more important than biological ones in determining the geographical extent of naturalized plants in continental Chile. Thus, caution should be exercised when assigning value to biological attributes that may confer invasiveness to naturalized plants.  相似文献   

13.
We explored the relationships between ground vegetation, ground fauna (native skinks and invertebrates), rabbits, and predators in a modified New Zealand dryland ecosystem. We hypothesised that vegetation cover would provide habitat for ground fauna. We also hypothesised that rabbits (Oryctolagus cuniculus) would reduce the abundance of these fauna by reducing vegetation, and by providing prey for mammalian predators (cats Felis catus and ferrets Mustela putorius) that consume ground fauna as secondary prey. We measured these variables at 30 sites across three pastoral properties in the South Island in 1996 and 2002. There were mostly positive relationships between vegetation ground cover and fauna captures in pitfall traps. Relatively few beetles and caterpillars were caught where cover was less than 80%, no millipedes were caught where cover was less than 70%, and few spiders and mostly no skinks, crickets, flies or slugs were caught where vegetation cover was less than 50%. Most grasshoppers were caught where cover ranged from 30 to 80%. Faunal species richness was also positively related to cover. This supports our hypothesis that ground vegetation provides habitat for skinks and invertebrates in this ecosystem. The introduction of rabbit haemorrhagic disease in 1997 provided a natural experiment to test the hypothesised indirect effects of rabbits on ground fauna. Declines in rabbits varied between properties, and vegetation cover and predator abundance changed according to the magnitude of these declines. However, skink and invertebrate abundance did not track these changes as expected, but instead varied more or less consistently between properties. Some fauna increased (skink captures quadrupled and cricket captures nearly doubled), others declined (flies, caterpillars and spiders), and some did not change (beetles, millipedes, slugs and grasshoppers, and faunal species richness and diversity). Therefore, rabbits, predators and vegetation did not affect changes in skinks and invertebrates in consistent ways. The dynamics of ground fauna are likely to be more influenced by factors other than those we measured.  相似文献   

14.
River environments are characterized by extreme spatial and temporal variation in the physical environment. The relationship of fish assemblages to environmental variation is poorly understood in many systems. In Chile zonation patterns of fish assemblages have been documented in several Andean river drainages. Coastal river drainages are comparatively small, but inordinately important because of their highly endemic flora and fauna and their proximity to major human populations. For conservation purposes it is important to understand what environmental factors affect assemblage structure of fishes especially in the comparatively high diversity coastal drainages. We studied patterns of fish distribution and abundance in three rivers of the coastal, Andalien drainage near Concepción, Chile. We used multi-dimensional scaling analyses to compare patterns among zones (rithron, transition and potamon) and high and low flow seasons. Species assemblages differed by zone, but not with season. Assemblages consisted of nested subsets of species characterized by their range of distribution among zones. One species group was composed of widespread species that occurred in all three zones, another species group consisted of species found only in transitional and potamal zones, and a final group was comprised of species found only in the potamal zone. The potamal zone contained the most diverse and abundant fish assemblage. Fish assemblages were related to both water quality and habitat structure variables. This study suggests that the key to conserving the diversity of native fish communities in coastal Chilean rivers is in the conservation of potamal regions. Unfortunately, most protected areas in Chile are in the depauperate headwaters of drainages. Protection of only headwaters is clearly inadequate and will not contribute to the conservation of this unique freshwater fish fauna.  相似文献   

15.
One of the key gaps in understanding the impacts of predation by small mammalian predators on prey is how habitat structure affects the hunting success of small predators, such as feral cats. These effects are poorly understood due to the difficulty of observing actual hunting behaviours. We attached collar-mounted video cameras to feral cats living in a tropical savanna environment in northern Australia, and measured variation in hunting success among different microhabitats (open areas, dense grass and complex rocks). From 89 hours of footage, we recorded 101 hunting events, of which 32 were successful. Of these kills, 28% were not eaten. Hunting success was highly dependent on microhabitat structure surrounding prey, increasing from 17% in habitats with dense grass or complex rocks to 70% in open areas. This research shows that habitat structure has a profound influence on the impacts of small predators on their prey. This has broad implications for management of vegetation and disturbance processes (like fire and grazing) in areas where feral cats threaten native fauna. Maintaining complex vegetation cover can reduce predation rates of small prey species from feral cat predation.  相似文献   

16.
Digging and burrowing mammals modify soil resources, creating shelter for other animals and influencing vegetation and soil biota. The use of conservation translocations to reinstate the ecosystem functions of digging and burrowing mammals is becoming more common. However, in an increasingly altered world, the roles of translocated populations, and their importance for other species, may be different. Boodies (Bettongia lesueur), a commonly translocated species in Australia, construct extensive warrens, but how their warrens affect soil properties and vegetation communities is unknown. We investigated soil properties, vegetation communities, and novel ecosystem elements (specifically non‐native flora and fauna) on boodie warrens at three translocation sites widely distributed across the species’ former range. We found that soil moisture and most soil nutrients were higher, and soil compaction was lower, on warrens in all sites and habitat types. In contrast, there were few substantial changes to vegetation species richness, cover, composition, or productivity. In one habitat type, the cover of shrubs less than 1 m tall was greater on warrens than control plots. At the two sites where non‐native plants were present, their cover was greater, and they were more commonly found on boodie warrens compared to control plots. Fourteen species of native mammals and reptiles were recorded using the warrens, but, where they occurred, the scat of the non‐native rabbit (Oryctolagus cuniculus) was also more abundant on the warrens. Together, our results suggest that translocated boodie populations may be benefiting both native and non‐native flora and fauna. Translocated boodies, through the construction of their warrens, substantially alter the sites where they are released, but this does not always reflect their historic ecosystem roles.  相似文献   

17.
Aim Globally, one of the major threats to the integrity of native faunas is the loss of biodiversity that can result from the introduction of exotics. Here we document recent changes in the distribution of five common fish species that are linked to introductions in Chile. Location Chile from 28° S to 54° S. Methods We assess the extent of changes in distribution of galaxiid species by comparing their historical and current distributions based on the results of the most extensive survey of freshwater fishes in Chile to date, a range that encompasses the full latitudinal and elevational range of the Galaxiidae in Chile. We test for relationships of the distributions and abundances of native fishes with the incidence of introduced species. Results The latitudinal range of Galaxias maculatus has declined by 26%, and most of this reduction has occurred in the northern part of its range. Aplochiton taeniatus and Brachygalaxias bullocki have experienced reductions (8–17% loss) in total drainage area occupied, and they have disappeared from, or are now extremely difficult to find, in latitudes 36° to 41° S, coincidently with areas of urban growth and intense economic activities. The distribution of Galaxias platei has, instead, increased considerably. In northern basins, G. maculatus has apparently been replaced by an introduced poeciliid Gambusia sp. High‐elevation systems remain dominated by native Galaxias platei, whereas systems at intermediate elevations, especially rivers, are now dominated by introduced salmonids. Within drainages, native galaxiids remain abundant where exotic salmonid abundance is low. Main conclusions We suggest that negative interactions between introduced and native fish are responsible for some of the range reductions among Galaxiidae in Chile. The severity of the impacts varies with latitude and altitude and is probably related to temperature. The effects of Gambusia are restricted to warmer systems. Native fish also appear to have found temperature refugia from salmonids; impacts are low in the warmer northern and coastal systems, as well as in high‐altitude relatively cold systems. Native fish also appear less vulnerable to salmonids in lakes than in rivers. This study identifies watersheds critical for the conservation of biodiversity within the Galaxiidae.  相似文献   

18.
Montane ecosystems are vulnerable to the removal of vegetation cover through browsing by feral or native vertebrate fauna. The highest elevated peaks of the Stirling Range in Western Australia provide habitat for an endemic plant community, Critically Endangered due to plant disease, frequent fire and an emerging threat of browsing by vertebrate fauna. Survey and camera trapping confirmed the herbivorous feral Rabbit (Oryctolagus cuniculus) and native Quokka (Setonix brachyurus) are present. Dietary analysis through faecal examination revealed contrasting diets and implicates native rather than feral species as responsible for impacts on dicotyledonous species, and in particular those of conservation significance. Exclosure experiments conducted over 1 year revealed significant changes in abundance, cover and height of perennial herbs and an increase in growth and/or reproduction of four threatened endemic plants. Detrimental impacts caused by native browsing fauna are not unprecedented and may be attributed to disequilibria in ecosystem processes due to multiple interacting threats. Montane ecosystems may be particularly vulnerable to browsing due to their naturally slow recovery after disturbance and browsing may also create environmental conditions more conducive to plant disease. For plant species with critically low population numbers, the impact of browsing poses a threat to population persistence and undermines investment into other conservation recovery actions. For effective management, it is critical to determine the relative impact of browsing species present. Where native species are implicated, the physical protection of high value assets in wire exclosures is warranted to complement other recovery actions and ensure effective species and community recovery.  相似文献   

19.
The potential impact of genetically modified (GM) crops on biodiversity is one of the main concerns in an environmental risk assessment (ERA). The likelihood of outcrossing and pollen‐mediated gene flow from GM crops and non‐GM crops are explained by the same principles and depend primarily on the biology of the species. We conducted a national‐scale study of the likelihood of outcrossing between 11 GM crops and vascular plants in Chile by use of a systematized database that included cultivated, introduced and native plant species in Chile. The database included geographical distributions and key biological and agronomical characteristics for 3505 introduced, 4993 native and 257 cultivated (of which 11 were native and 246 were introduced) plant species. Out of the considered GM crops (cotton, soya bean, maize, grape, wheat, rice, sugar beet, alfalfa, canola, tomato and potato), only potato and tomato presented native relatives (66 species total). Introduced relative species showed that three GM groups were formed having: a) up to one introduced relative (cotton and soya bean), b) up to two (rice, grape, maize and wheat) and c) from two to seven (sugar beet, alfalfa, canola, tomato and potato). In particular, GM crops presenting introduced noncultivated relative species were canola (1 relative species), alfalfa (up to 4), rice (1), tomato (up to 2) and potato (up to 2). The outcrossing potential between species [OP; scaled from ‘very low’ (1) to ‘very high’ (5)] was developed, showing medium OPs (3) for GM–native relative interactions when they occurred, low (2) for GMs and introduced noncultivated and high (4) for the grape‐Vitis vinifera GM–introduced cultivated interaction. This analytical tool might be useful for future ERA for unconfined GM crop release in Chile.  相似文献   

20.
Invasive plant impacts vary widely across introduced ranges. We tested the hypothesis that differences in the eco‐evolutionary experience of native communities with the invader correspond with the impacts of invasive species on native vegetation, with impacts increasing with ecological novelty. We compared plant species richness and composition beneath Pinus contorta to that in adjacent vegetation and other P. contorta stands across a network of sites in its native (Canada and USA) and non‐native (Argentina, Chile, Finland, New Zealand, Scotland, Sweden) ranges. At sites in North America and Europe, within the natural distribution of the genus Pinus, P. contorta was not associated with decreases in diversity. In the Southern Hemisphere, where there are no native Pinaceae, plant communities beneath P. contorta were less diverse than in other regions and compared to uninvaded native vegetation. Effects on native vegetation were particularly pronounced where P. contorta was a more novel life form and exhibited higher growth rates. Our results support the hypothesis that the eco‐evolutionary experience of the native vegetation, and thus the novelty of the invader, determines the magnitude of invader impacts on native communities. Understanding the eco‐evolutionary context of invasions will help to better understand and predict where invasion impacts will be greatest and to prioritize invasive species management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号